1
|
Bauer CCC, Zhang J, Morfini F, Hinds O, Wighton P, Lee Y, Stone L, Awad A, Okano K, Hwang M, Hammoud J, Nestor P, Whitfield-Gabrieli S, Shinn AK, Niznikiewicz MA. Real-time fMRI neurofeedback modulates auditory cortex activity and connectivity in schizophrenia patients with auditory hallucinations: A controlled study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632809. [PMID: 39868187 PMCID: PMC11761034 DOI: 10.1101/2025.01.13.632809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background and Hypothesis We have reported previously a reduction in superior temporal gyrus (STG) activation and in auditory verbal hallucinations (AHs) after real-time fMRI neurofeedback (NFB) in schizophrenia patients with AHs. Study Design With this randomized, participant-blinded, sham-controlled trial, we expanded our previous results. Specifically, we examined neurofeedback effects from the STG, an area associated with auditory hallucinations. The effects were compared to Sham-NFB from the motor cortex, a region unrelated to hallucinations. Twenty-three adults with schizophrenia or schizoaffective disorder and frequent medication-resistant hallucinations performed mindfulness meditation to ignore pre-recorded stranger's voices while receiving neurofeedback either from the STG (n=10, Real-NFB) or motor cortex (n=13 Sham-NFB). Individuals randomized to Sham-NFB received Real-NFB in a subsequent visit, providing a within-subject 'Real-after-Sham-NFB' comparison. Study Results Both groups showed reduced AHs after NFB, with no group differences. Compared to the Sham-NFB group, the Real-NFB group showed more reduced activation in secondary auditory cortex (AC) and more reduced connectivity between AC and cognitive control regions including dorsolateral prefrontal cortex (DLPFC) and anterior cingulate. The connectivity reduction was also observed in the Real-after-Sham-NFB condition. Secondary AC-DLPFC connectivity reduction correlated with hallucination reduction in the Real-NFB group. Replicating prior results, both groups showed reduced primary auditory cortex activation, suggesting mindfulness meditation may regulate bottom-up processes involved in hallucinations. Conclusions Our findings emphasize delivering NFB from brain regions involved in medication-resistant AHs. They provide insights into auditory cortex and cognitive control network interactions, highlighting complex processing dynamics and top-down modulation of sensory information.
Collapse
|
2
|
Leaver AM. Perceptual and Cognitive Effects of Focal Transcranial Direct Current Stimulation of Auditory Cortex in Tinnitus. Neuromodulation 2025; 28:136-145. [PMID: 39396357 DOI: 10.1016/j.neurom.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVES Transcranial direct current stimulation (tDCS) has been studied as a potential treatment for many brain conditions. Although tDCS is well tolerated, continued study of perceptual and cognitive side effects is warranted, given the complexity of functional brain organization. This study tests the feasibility of brief tablet-based tasks to assess auditory and cognitive side effects in a recently reported pilot study of auditory-cortex tDCS in chronic tinnitus and attempts to confirm that this untested multisession tDCS protocol does not worsen hearing. MATERIALS AND METHODS Participants with chronic tinnitus completed two hearing tasks (pure-tone thresholds, Words In Noise [WIN]) and two cognitive tasks (Flanker, Dimension Change Card Sort) from the NIH Toolbox (2024 Toolbox Assessments, Inc, Lincolnwood, IL). Participants were randomized to active or sham 4×1 silver/silver-chloride tDCS of left auditory cortex (n = 10/group). Tasks were completed immediately before and after the first tDCS session, and after the fifth/final tDCS session. Statistics included linear mixed-effects models for change in task performance over time. RESULTS Before tDCS, performance on both auditory tasks was highly correlated with clinical audiometry, supporting the external validity of these measures (r2 > 0.89 for all). Although overall auditory task performance did not change after active or sham tDCS, detection of right-ear WIN stimuli modestly improved after five active tDCS sessions (t34 = -2.07, p = 0.05). On cognitive tasks, reaction times (RTs) were quicker after sham tDCS, reflecting expected practice effects (eg, t88 = 3.22, p = 0.002 after five sessions on the Flanker task). However, RTs did not improve over repeated sessions in the active group, suggesting that tDCS interfered with learning these practice effects. CONCLUSIONS Repeated sessions of auditory-cortex tDCS do not seem to adversely affect hearing or cognition but may modestly improve hearing in noise and interfere with some types of motor learning. Low-burden cognitive/perceptual test batteries could be a powerful way to identify adverse effects and new treatment targets in brain stimulation research.
Collapse
Affiliation(s)
- Amber M Leaver
- Department of Radiology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
3
|
Prete G, Rollo B, Palumbo R, Ceccato I, Mammarella N, Di Domenico A, Capotosto P, Tommasi L. Investigating the effect of rTMS over the temporoparietal cortex on the Right Ear Advantage for perceived and imagined voices. Sci Rep 2024; 14:24930. [PMID: 39438571 PMCID: PMC11496506 DOI: 10.1038/s41598-024-75671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
A Right Ear Advantage (REA) is well-established in perceptual tasks but it has been found also during imagery. It is ascribed to the left temporoparietal activity for language, and it can be absent/reversed in some clinical conditions including auditory hallucinations. We applied 1-Hz repetitive TMS over TP3/TP4 (left/right language areas) identified through neuronavigation in 18 healthy participants, before administering a modified white noise (WN) speech illusion paradigm: a voice was presented at one ear, at the same or lower intensities with respect to binaural WN. In some trials the voice was not presented, but participants were anyway instructed to report in which ear they believed perceiving it in all trials. Results confirmed the REA both when the voice was present (perceptual REA) and when it was absent (imaginative REA). Interestingly, results suggested that the correct localization of the voice when the stimulus was ambiguous (presented at low intensity and "masked" by WN) was better when TMS was applied over the right/left hemisphere, in male participants with a low/high proneness to unusual experiences (e.g., auditory hallucinations), respectively. This interaction must be further explored to shed light on the relationship between hemispheric asymmetries and auditory hallucinations, in healthy and clinical samples.
Collapse
Affiliation(s)
- Giulia Prete
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Benedetta Rollo
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Rocco Palumbo
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Irene Ceccato
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Nicola Mammarella
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Alberto Di Domenico
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Paolo Capotosto
- Department of Neuroscience, Imaging and Clinical Sciences, 'G. d'Annunzio' University of Chieti and Pescara, Via Dei Vestini 29, 66013, Chieti, Italy.
- ITAB Istituto Di Tecnologie Avanzate Biomediche, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy.
| | - Luca Tommasi
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| |
Collapse
|
4
|
Pasquini L, Simon AJ, Gallen CL, Kettner H, Roseman L, Gazzaley A, Carhart-Harris RL, Timmermann C. Dynamic medial parietal and hippocampal deactivations under DMT relate to sympathetic output and altered sense of time, space, and the self. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580356. [PMID: 38464275 PMCID: PMC10925211 DOI: 10.1101/2024.02.14.580356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
N,N-Dimethyltryptamine (DMT) is a serotonergic psychedelic, known to rapidly induce short-lasting alterations in conscious experience, characterized by a profound and immersive sense of physical transcendence alongside rich and vivid auditory distortions and visual imagery. Multimodal neuroimaging data paired with dynamic analysis techniques offer a valuable approach for identifying unique signatures of brain activity - and linked autonomic physiology - naturally unfolding during the altered state of consciousness induced by DMT. We leveraged simultaneous fMRI and EKG data acquired in 14 healthy volunteers prior to, during, and after intravenous administration of DMT, and, separately, placebo. fMRI data was preprocessed to derive individual dynamic activity matrices, reflecting the similarity of brain activity in time, and community detection algorithms were applied on these matrices to identify brain activity substates; EKG data was used to derive continuous heart rate. We identified a brain substate occurring immediately after DMT injection, characterized by hippocampal and medial parietal deactivations and increased superior temporal lobe activity under DMT. Deactivations in the hippocampus and medial parietal cortex correlated with alterations in the usual sense of time, space and self-referential processes, reflecting a deconstruction of essential features of ordinary consciousness. Superior lobe activations instead correlated with audio/visual hallucinations and experience of "entities", reflecting the emergence of altered sensory experiences under DMT. Finally, increased heart rate under DMT correlated positively with hippocampus/medial parietal deactivation and the experience of "entities", and negatively with altered self-referential processes. These results suggest a chain of influence linking sympathetic regulation to hippocampal and medial parietal deactivations under DMT, which combined, may contribute to positive mental health outcomes related to self-referential processing following psychedelic administration.
Collapse
Affiliation(s)
- Lorenzo Pasquini
- Department of Neurology, Neuroscape, University of California, San Francisco, CA 94158
| | - Alexander J. Simon
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511
| | - Courtney L. Gallen
- Department of Neurology, Neuroscape, University of California, San Francisco, CA 94158
| | - Hannes Kettner
- Department of Neurology, Neuroscape, University of California, San Francisco, CA 94158
- DMT Research Group, Centre for Psychedelic Research, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
| | - Leor Roseman
- DMT Research Group, Centre for Psychedelic Research, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
- Department of Psychology, University of Exeter, UK
| | - Adam Gazzaley
- Department of Neurology, Neuroscape, University of California, San Francisco, CA 94158
- Department of Psychiatry, University of California, San Francisco, CA 94158
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Robin L. Carhart-Harris
- Department of Neurology, Neuroscape, University of California, San Francisco, CA 94158
- DMT Research Group, Centre for Psychedelic Research, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
- Department of Psychiatry, University of California, San Francisco, CA 94158
| | - Christopher Timmermann
- DMT Research Group, Centre for Psychedelic Research, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
| |
Collapse
|
5
|
Orepic P, Bernasconi F, Faggella M, Faivre N, Blanke O. Robotically-induced auditory-verbal hallucinations: combining self-monitoring and strong perceptual priors. Psychol Med 2024; 54:569-581. [PMID: 37779256 DOI: 10.1017/s0033291723002222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
BACKGROUND Inducing hallucinations under controlled experimental conditions in non-hallucinating individuals represents a novel research avenue oriented toward understanding complex hallucinatory phenomena, avoiding confounds observed in patients. Auditory-verbal hallucinations (AVH) are one of the most common and distressing psychotic symptoms, whose etiology remains largely unknown. Two prominent accounts portray AVH either as a deficit in auditory-verbal self-monitoring, or as a result of overly strong perceptual priors. METHODS In order to test both theoretical models and evaluate their potential integration, we developed a robotic procedure able to induce self-monitoring perturbations (consisting of sensorimotor conflicts between poking movements and corresponding tactile feedback) and a perceptual prior associated with otherness sensations (i.e. feeling the presence of a non-existing another person). RESULTS Here, in two independent studies, we show that this robotic procedure led to AVH-like phenomena in healthy individuals, quantified as an increase in false alarm rate in a voice detection task. Robotically-induced AVH-like sensations were further associated with delusional ideation and to both AVH accounts. Specifically, a condition with stronger sensorimotor conflicts induced more AVH-like sensations (self-monitoring), while, in the otherness-related experimental condition, there were more AVH-like sensations when participants were detecting other-voice stimuli, compared to detecting self-voice stimuli (strong-priors). CONCLUSIONS By demonstrating an experimental procedure able to induce AVH-like sensations in non-hallucinating individuals, we shed new light on AVH phenomenology, thereby integrating self-monitoring and strong-priors accounts.
Collapse
Affiliation(s)
- Pavo Orepic
- Laboratory of Cognitive Neuroscience, Neuro-X Institute & Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Fosco Bernasconi
- Laboratory of Cognitive Neuroscience, Neuro-X Institute & Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Melissa Faggella
- Laboratory of Cognitive Neuroscience, Neuro-X Institute & Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Nathan Faivre
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Neuro-X Institute & Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Leaver AM. Perceptual and cognitive effects of focal tDCS of auditory cortex in tinnitus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.31.24302093. [PMID: 38352362 PMCID: PMC10863023 DOI: 10.1101/2024.01.31.24302093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
OBJECTIVES Noninvasive brain stimulation continues to grow as an effective, low-risk way of improving the symptoms of brain conditions. Transcranial direct current stimulation (tDCS) is particularly well-tolerated, with benefits including low cost and potential portability. Nevertheless, continued study of perceptual and cognitive side effects is warranted, given the complexity of functional brain organization. This paper describes the results of a brief battery of tablet-based tasks used in a recent pilot study of auditory-cortex tDCS in people with chronic tinnitus. METHODS Volunteers with chronic tinnitus (n=20) completed two hearing tasks (pure-tone thresholds, Words In Noise) and two cognitive tasks (Flanker, Dimension Change Card Sort) from the NIH Toolbox. Volunteers were randomized to active or sham 4×1 Ag/AgCl tDCS of auditory cortex, and tasks were completed immediately before and after the first tDCS session, and after the fifth/final tDCS session. Statistics included linear mixed-effects models for change in task performance over time. RESULTS Before tDCS, performance on both auditory tasks was highly correlated with clinical audiometry, supporting the external validity of these measures (r2>0.89 for all). Although overall auditory task performance did not change after active or sham tDCS, detection of right-ear Words in Noise stimuli modestly improved after five active tDCS sessions (t(34)=-2.07, p=0.05). On cognitive tasks, reaction times were quicker after sham tDCS, reflecting expected practice effects (e.g., t(88)=3.22, p=0.002 after 5 sessions on Flanker task). However, reaction times did not improve over repeated sessions in the active group, suggesting that tDCS interfered with learning these practice effects. CONCLUSIONS Repeated sessions of auditory-cortex tDCS does not appear to adversely affect hearing or cognition, but may modestly improve hearing in noisy environments and interfere with some types of motor learning. Low-burden cognitive/perceptual test batteries could be a powerful way to identify adverse effects and new treatment targets in brain stimulation research.
Collapse
Affiliation(s)
- Amber M. Leaver
- Department of Radiology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Rouy M, Pereira M, Saliou P, Sanchez R, El Mardi W, Sebban H, Baqué E, Dezier C, Porte P, Micaux J, de Gardelle V, Mamassian P, Moulin CJA, Dondé C, Roux P, Faivre N. Confidence in visual detection, familiarity and recollection judgments is preserved in schizophrenia spectrum disorder. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:55. [PMID: 37679358 PMCID: PMC10485068 DOI: 10.1038/s41537-023-00387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
An effective way to quantify metacognitive performance is to ask participants to estimate their confidence in the accuracy of their response during a cognitive task. A recent meta-analysis1 raised the issue that most assessments of metacognitive performance in schizophrenia spectrum disorders may be confounded with cognitive deficits, which are known to be present in this population. Therefore, it remains unclear whether the reported metacognitive deficits are metacognitive in nature or rather inherited from cognitive deficits. Arbitrating between these two possibilities requires equating task performance between experimental groups. Here, we aimed to characterize metacognitive performance among individuals with schizophrenia across three tasks (visual detection, familiarity, recollection) using a within-subject design while controlling experimentally for intra-individual task performance and statistically for between-subject task performance. In line with our hypotheses, we found no metacognitive deficit for visual detection and familiarity judgments. While we expected metacognition for recollection to be specifically impaired among individuals with schizophrenia, we found evidence in favor of an absence of a deficit in that domain also. We found no specific metacognitive deficit in schizophrenia spectrum disorder in the visual or memory domain. The clinical relevance of our findings is discussed in light of a hierarchical framework of metacognition.
Collapse
Affiliation(s)
- Martin Rouy
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France.
| | - Michael Pereira
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - Pauline Saliou
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - Rémi Sanchez
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - Wassila El Mardi
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - Hanna Sebban
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - Eugénie Baqué
- Centre Hospitalier de Versailles, Service Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie, Le Chesnay; Université Paris-Saclay; Université de Versailles Saint-Quentin-En-Yvelines; DisAP-DevPsy-CESP, INSERM UMR1018, Villejuif, France
| | - Childéric Dezier
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - Perrine Porte
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - Julia Micaux
- Centre Hospitalier de Versailles, Service Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie, Le Chesnay; Université Paris-Saclay; Université de Versailles Saint-Quentin-En-Yvelines; DisAP-DevPsy-CESP, INSERM UMR1018, Villejuif, France
| | - Vincent de Gardelle
- Centre d'Économie de la Sorbonne, CNRS and Paris School of Economics, Paris, France
| | - Pascal Mamassian
- Laboratoire des Systèmes Perceptifs, Département d'Études Cognitives, École Normale Supérieure, PSL University, CNRS, Paris, France
| | - Chris J A Moulin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - Clément Dondé
- Univ. Grenoble Alpes, Inserm, U1216, Adult Psychiatry Department CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Adult Psychiatry Department, CH Alpes-Isère, F-38000, Saint-Egrève, France
| | - Paul Roux
- Centre Hospitalier de Versailles, Service Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie, Le Chesnay; Université Paris-Saclay; Université de Versailles Saint-Quentin-En-Yvelines; DisAP-DevPsy-CESP, INSERM UMR1018, Villejuif, France
| | - Nathan Faivre
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| |
Collapse
|
8
|
Mak O, Couth S, Plack CJ, Kotz SA, Yao B. Investigating the lateralisation of experimentally induced auditory verbal hallucinations. Front Neurosci 2023; 17:1193402. [PMID: 37483346 PMCID: PMC10359906 DOI: 10.3389/fnins.2023.1193402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/16/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Auditory verbal hallucinations (AVHs), or hearing non-existent voices, are a common symptom in psychosis. Recent research suggests that AVHs are also experienced by neurotypical individuals. Individuals with schizophrenia experiencing AVHs and neurotypicals who are highly prone to hallucinate both produce false positive responses in auditory signal detection. These findings suggest that voice-hearing may lie on a continuum with similar mechanisms underlying AVHs in both populations. Methods The current study used a monaural auditory stimulus in a signal detection task to test to what extent experimentally induced verbal hallucinations are (1) left-lateralised (i.e., more likely to occur when presented to the right ear compared to the left ear due to the left-hemisphere dominance for language processing), and (2) predicted by self-reported hallucination proneness and auditory imagery tendencies. In a conditioning task, fifty neurotypical participants associated a negative word on-screen with the same word being played via headphones through successive simultaneous audio-visual presentations. A signal detection task followed where participants were presented with a target word on-screen and indicated whether they heard the word being played concurrently amongst white noise. Results Results showed that Pavlovian audio-visual conditioning reliably elicited a significant number of false positives (FPs). However, FP rates, perceptual sensitivities, and response biases did not differ between either ear. They were neither predicted by hallucination proneness nor auditory imagery. Discussion The results show that experimentally induced FPs in neurotypicals are not left-lateralised, adding further weight to the argument that lateralisation may not be a defining feature of hallucinations in clinical or non-clinical populations. The findings also support the idea that AVHs may be a continuous phenomenon that varies in severity and frequency across the population. Studying induced AVHs in neurotypicals may help identify the underlying cognitive and neural mechanisms contributing to AVHs in individuals with psychotic disorders.
Collapse
Affiliation(s)
- Olivia Mak
- Division of Human Communication, Development & Hearing, School of Health Sciences, The University of Manchester, Manchester, United Kingdom
| | - Samuel Couth
- Division of Human Communication, Development & Hearing, School of Health Sciences, The University of Manchester, Manchester, United Kingdom
| | - Christopher J. Plack
- Division of Human Communication, Development & Hearing, School of Health Sciences, The University of Manchester, Manchester, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| | - Sonja A. Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Bo Yao
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
9
|
Paul AK, Bose A, Kalmady SV, Shivakumar V, Sreeraj VS, Parlikar R, Narayanaswamy JC, Dursun SM, Greenshaw AJ, Greiner R, Venkatasubramanian G. Superior temporal gyrus functional connectivity predicts transcranial direct current stimulation response in Schizophrenia: A machine learning study. Front Psychiatry 2022; 13:923938. [PMID: 35990061 PMCID: PMC9388779 DOI: 10.3389/fpsyt.2022.923938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a promising adjuvant treatment for persistent auditory verbal hallucinations (AVH) in Schizophrenia (SZ). Nonetheless, there is considerable inter-patient variability in the treatment response of AVH to tDCS in SZ. Machine-learned models have the potential to predict clinical response to tDCS in SZ. This study aims to examine the feasibility of identifying SZ patients with persistent AVH (SZ-AVH) who will respond to tDCS based on resting-state functional connectivity (rs-FC). Thirty-four SZ-AVH patients underwent resting-state functional MRI at baseline followed by add-on, twice-daily, 20-min sessions with tDCS (conventional/high-definition) for 5 days. A machine learning model was developed to identify tDCS treatment responders based on the rs-FC pattern, using the left superior temporal gyrus (LSTG) as the seed region. Functional connectivity between LSTG and brain regions involved in auditory and sensorimotor processing emerged as the important predictors of the tDCS treatment response. L1-regularized logistic regression model had an overall accuracy of 72.5% in classifying responders vs. non-responders. This model outperformed the state-of-the-art convolutional neural networks (CNN) model-both without (59.41%) and with pre-training (68.82%). It also outperformed the L1-logistic regression model trained with baseline demographic features and clinical scores of SZ patients. This study reports the first evidence that rs-fMRI-derived brain connectivity pattern can predict the clinical response of persistent AVH to add-on tDCS in SZ patients with 72.5% accuracy.
Collapse
Affiliation(s)
- Animesh Kumar Paul
- Alberta Machine Intelligence Institute, University of Alberta, Edmonton, AB, Canada
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada
| | - Anushree Bose
- Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Sunil Vasu Kalmady
- Alberta Machine Intelligence Institute, University of Alberta, Edmonton, AB, Canada
- Canadian VIGOUR Centre, University of Alberta, Edmonton, AB, Canada
| | - Venkataram Shivakumar
- Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Vanteemar S Sreeraj
- Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Rujuta Parlikar
- Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Janardhanan C Narayanaswamy
- Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Serdar M Dursun
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | | | - Russell Greiner
- Alberta Machine Intelligence Institute, University of Alberta, Edmonton, AB, Canada
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Ganesan Venkatasubramanian
- Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| |
Collapse
|
10
|
Moseley P, Alderson-Day B, Common S, Dodgson G, Lee R, Mitrenga K, Moffatt J, Fernyhough C. Continuities and Discontinuities in the Cognitive Mechanisms Associated With Clinical and Nonclinical Auditory Verbal Hallucinations. Clin Psychol Sci 2022; 10:752-766. [PMID: 35846173 PMCID: PMC9280701 DOI: 10.1177/21677026211059802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/01/2021] [Indexed: 11/15/2022]
Abstract
Auditory verbal hallucinations (AVHs) are typically associated with schizophrenia but also occur in individuals without any need for care (nonclinical voice hearers [NCVHs]). Cognitive models of AVHs posit potential biases in source monitoring, top-down processes, or a failure to inhibit intrusive memories. However, research across clinical/nonclinical groups is limited, and the extent to which there may be continuity in cognitive mechanism across groups, as predicted by the psychosis-continuum hypothesis, is unclear. We report two studies in which voice hearers with psychosis (n = 31) and NCVH participants reporting regular spiritual voices (n = 26) completed a battery of cognitive tasks. Compared with non-voice-hearing groups (ns = 33 and 28), voice hearers with psychosis showed atypical performance on signal detection, dichotic listening, and memory-inhibition tasks but intact performance on the source-monitoring task. NCVH participants, however, showed only atypical signal detection, which suggests differences between clinical and nonclinical voice hearers potentially related to attentional control and inhibition. These findings suggest that at the level of cognition, continuum models of hallucinations may need to take into account continuity but also discontinuity between clinical and nonclinical groups.
Collapse
Affiliation(s)
| | | | - Stephanie Common
- Tees, Esk, & Wear Valley National Health Service (NHS) Foundation Trust, West Park Hospital, Darlington, England
| | - Guy Dodgson
- Cumbria, Northumberland, Tyne, & Wear NHS Foundation Trust, St. Nicholas Hospital, Newcastle upon Tyne, England
| | | | | | | | | |
Collapse
|
11
|
Efficacy and Safety of Multi-Session Transcranial Direct Current Stimulation on Social Cognition in Schizophrenia: A Study Protocol for an Open-Label, Single-Arm Trial. J Pers Med 2021; 11:jpm11040317. [PMID: 33921706 PMCID: PMC8073289 DOI: 10.3390/jpm11040317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022] Open
Abstract
Backgrounds: Social cognition is defined as the mental operations underlying social behavior. Patients with schizophrenia elicit impairments of social cognition, which is linked to poor real-world functional outcomes. In a previous study, transcranial direct current stimulation (tDCS) improved emotional recognition, a domain of social cognition, in patients with schizophrenia. However, since social cognition was only minimally improved by tDCS when administered on frontal brain areas, investigations on the effect of tDCS on other cortical sites more directly related to social cognition are needed. Therefore, we present a study protocol to determine whether multi-session tDCS on superior temporal sulcus (STS) would improve social cognition deficits of schizophrenia. Methods: This is an open-label, single-arm trial, whose objective is to investigate the efficacy and safety of multi-session tDCS over the left STS to improve social cognition in patients with schizophrenia. The primary outcome measure will be the Social Cognition Screening Questionnaire. Neurocognition, functional capacity, and psychotic symptoms will also be evaluated by the Brief Assessment of Cognition in Schizophrenia, UCSD Performance-Based Skills Assessment-Brief, and Positive and Negative Syndrome Scale, respectively. Data will be collected at baseline, and 4 weeks after the end of intervention. If social cognition is improved in patients with schizophrenia by tDCS based on this protocol, we may plan randomized controlled trial.
Collapse
|
12
|
Faramarzi M, Kasten FH, Altaş G, Aleman A, Ćurčić-Blake B, Herrmann CS. Similar EEG Activity Patterns During Experimentally-Induced Auditory Illusions and Veridical Perceptions. Front Neurosci 2021; 15:602437. [PMID: 33867913 PMCID: PMC8047478 DOI: 10.3389/fnins.2021.602437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/12/2021] [Indexed: 12/31/2022] Open
Abstract
Hallucinations and illusions are two instances of perceptual experiences illustrating how perception might diverge from external sensory stimulations and be generated or altered based on internal brain states. The occurrence of these phenomena is not constrained to patient populations. Similar experiences can be elicited in healthy subjects by means of suitable experimental procedures. Studying the neural mechanisms underlying these experiences not only has the potential to expand our understanding of the brain's perceptual machinery but also of how it might get impaired. In the current study, we employed an auditory signal detection task to induce auditory illusions by presenting speech snippets at near detection threshold intensity embedded in noise. We investigated the neural correlates of auditory false perceptions by examining the EEG activity preceding the responses in speech absent (false alarm, FA) trials and comparing them to speech present (hit) trials. The results of the comparison of event-related potentials (ERPs) in the activation period vs. baseline revealed the presence of an early negativity (EN) and a late positivity (LP) similar in both hits and FAs, which were absent in misses, correct rejections (CR) and control button presses (BPs). We postulate that the EN and the LP might represent the auditory awareness negativity (AAN) and centro-parietal positivity (CPP) or P300, respectively. The event-related spectral perturbations (ERSPs) exhibited a common power enhancement in low frequencies (<4 Hz) in hits and FAs. The low-frequency power enhancement has been frequently shown to be accompanied with P300 as well as separately being a marker of perceptual awareness, referred to as slow cortical potentials (SCP). Furthermore, the comparison of hits vs. FAs showed a significantly higher LP amplitude and low frequency power in hits compared to FAs. Generally, the observed patterns in the present results resembled some of the major neural correlates associated with perceptual awareness in previous studies. Our findings provide evidence that the neural correlates associated with conscious perception, can be elicited in similar ways in both presence and absence of externally presented sensory stimuli. The present findings did not reveal any pre-stimulus alpha and beta modulations distinguishing conscious vs. unconscious perceptions.
Collapse
Affiliation(s)
- Maryam Faramarzi
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4All,” Carl von Ossietzky University, Oldenburg, Germany
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Florian H. Kasten
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4All,” Carl von Ossietzky University, Oldenburg, Germany
- Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany
| | - Gamze Altaş
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4All,” Carl von Ossietzky University, Oldenburg, Germany
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Branislava Ćurčić-Blake
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4All,” Carl von Ossietzky University, Oldenburg, Germany
- Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
13
|
Auditory signal detection in schizophrenia: Correlates with auditory verbal hallucinations & effect of single session transcranial direct current stimulation (tDCS). Psychiatry Res 2021; 297:113704. [PMID: 33453498 DOI: 10.1016/j.psychres.2021.113704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/31/2020] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Transcranial Direct Current Stimulation (tDCS) has been beneficial for treating auditory verbal hallucinations (AVH) in schizophrenia (SZ). Aberrant auditory signal detection (ASD) is one of the pathogenetic mechanisms for AVH. We investigated the correlates of ASD with AVH and the impact of single-session tDCS on ASD in SZ patients. METHODS The ASD performance in SZ patients was compared with matched healthy controls (HC) (N = 24). Subsequently, the effect of single-session tDCS on ASD in SZ patients (N = 24) with AVH was examined in a randomized, double-blind, sham-controlled, cross-over design. The true and sham tDCS were administered (anode at the left dorsolateral prefrontal cortex and cathode at the left temporoparietal junction) on two different days. ASD task was performed before and after each session of tDCS. RESULTS Auditory hallucination rating scores correlated significantly with false alarm rate, discriminability index, and response bias. SZ patients had a significantly lesser discriminability index in ASD than HC. Single-session tDCS (true versus sham) did not have any significant effect on ASD in SZ patients. CONCLUSION The study findings support the pathogenetic role of ASD in AVH in SZ. Lack of effect on ASD following single-session tDCS suggests the need for multi-session studies in the future.
Collapse
|
14
|
Spontaneous brain activity underlying auditory hallucinations in the hearing-impaired. Cortex 2021; 136:1-13. [PMID: 33450598 DOI: 10.1016/j.cortex.2020.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 12/05/2020] [Indexed: 11/22/2022]
Abstract
Auditory hallucinations, the perception of a sound without a corresponding source, are common in people with hearing impairment. Two forms can be distinguished: simple (i.e., tinnitus) and complex hallucinations (speech and music). Little is known about the precise mechanisms underlying these types of hallucinations. Here we tested the assumption that spontaneous activity in the auditory pathways, following deafferentation, underlies these hallucinations and is related to their phenomenology. By extracting (fractional) Amplitude of Low Frequency Fluctuation [(f)ALFF] scores from resting state fMRI of 18 hearing impaired patients with complex hallucinations (voices or music), 18 hearing impaired patients with simple hallucinations (tinnitus or murmuring), and 20 controls with normal hearing, we investigated differences in spontaneous brain activity between these groups. Spontaneous activity in the anterior and posterior cingulate cortex of hearing-impaired groups was significantly higher than in the controls. The group with complex hallucinations showed elevated activity in the bilateral temporal cortex including Wernicke's area, while spontaneous activity of the group with simple hallucinations was mainly located in the cerebellum. These results suggest a decrease in error monitoring in both hearing-impaired groups. Spontaneous activity of language-related areas only in complex hallucinations suggests that the manifestation of the spontaneous activity represents the phenomenology of the hallucination. The link between cerebellar activity and simple hallucinations, such as tinnitus, is new and may have consequences for treatment.
Collapse
|
15
|
Montagnese M, Leptourgos P, Fernyhough C, Waters F, Larøi F, Jardri R, McCarthy-Jones S, Thomas N, Dudley R, Taylor JP, Collerton D, Urwyler P. A Review of Multimodal Hallucinations: Categorization, Assessment, Theoretical Perspectives, and Clinical Recommendations. Schizophr Bull 2020; 47:237-248. [PMID: 32772114 PMCID: PMC7825001 DOI: 10.1093/schbul/sbaa101] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hallucinations can occur in different sensory modalities, both simultaneously and serially in time. They have typically been studied in clinical populations as phenomena occurring in a single sensory modality. Hallucinatory experiences occurring in multiple sensory systems-multimodal hallucinations (MMHs)-are more prevalent than previously thought and may have greater adverse impact than unimodal ones, but they remain relatively underresearched. Here, we review and discuss: (1) the definition and categorization of both serial and simultaneous MMHs, (2) available assessment tools and how they can be improved, and (3) the explanatory power that current hallucination theories have for MMHs. Overall, we suggest that current models need to be updated or developed to account for MMHs and to inform research into the underlying processes of such hallucinatory phenomena. We make recommendations for future research and for clinical practice, including the need for service user involvement and for better assessment tools that can reliably measure MMHs and distinguish them from other related phenomena.
Collapse
Affiliation(s)
- Marcella Montagnese
- Neuroimaging Department, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Pantelis Leptourgos
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Haven, CT
| | | | - Flavie Waters
- School of Psychological Sciences, The University of Western Australia, Perth, Australia
| | - Frank Larøi
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway,Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium,Norwegian Center of Excellence for Mental Disorders Research, University of Oslo, Oslo, Norway
| | - Renaud Jardri
- University of Lille, INSERM U1172, CHU Lille, Centre Lille Neuroscience and Cognition, Lille, France,Laboratoire de Neurosciences Cognitives et Computationnelles, ENS, INSERM U960, PSL Research University, Paris, France
| | | | - Neil Thomas
- Centre for Mental Health, Swinburne University of Technology, Melbourne, Australia,The Alfred Hospital, Melbourne, Australia
| | - Rob Dudley
- Gateshead Early Intervention in Psychosis Service, Northumberland, Tyne and Wear NHS, Newcastle upon Tyne, UK,School of Psychology, Newcastle University, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Collerton
- School of Psychology, Newcastle University, Newcastle upon Tyne, UK
| | - Prabitha Urwyler
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,Gerontechnology and Rehabilitation, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland,Department of Neurology, University Neurorehabilitation Unit, University Hospital Bern—Inselspital, Bern, Switzerland,To whom correspondence should be addressed; tel: +41 31 632 76 07, fax: +41 31 632 75 76, e-mail:
| |
Collapse
|
16
|
Fernyhough C. Modality-general and modality-specific processes in hallucinations. Psychol Med 2019; 49:2639-2645. [PMID: 31530334 PMCID: PMC6877466 DOI: 10.1017/s0033291719002496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/12/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023]
Abstract
There is a growing recognition in psychosis research of the importance of hallucinations in modalities other than the auditory. This has focused attention on cognitive and neural processes that might be shared by, and which might contribute distinctly to, hallucinations in different modalities. In this article, I address some issues around the modality-generality of cognitive and neural processes in hallucinations, including the role of perceptual and reality-monitoring systems, top-down and bottom-up processes in relation to the psychological and neural substrates of hallucinations, and the phenomenon of simultaneous multimodal hallucinations of the same entity. I suggest that a functional systems approach, inspired by some neglected aspects of the writings of A. R. Luria, can help us to understand patterns of hallucinatory experience across modalities and across clinical and non-clinical groups. Understanding the interplay between modality-general and modality-specific processes may bear fruit for improved diagnosis and therapeutic approaches to dealing with distressing hallucinations.
Collapse
|
17
|
Fernyhough C, Watson A, Bernini M, Moseley P, Alderson-Day B. Imaginary Companions, Inner Speech, and Auditory Verbal Hallucinations: What Are the Relations? Front Psychol 2019; 10:1665. [PMID: 31417448 PMCID: PMC6682647 DOI: 10.3389/fpsyg.2019.01665] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/02/2019] [Indexed: 01/24/2023] Open
Abstract
Interacting with imaginary companions (ICs) is now considered a natural part of childhood for many children, and has been associated with a range of positive developmental outcomes. Recent research has explored how the phenomenon of ICs in childhood and adulthood relates to the more unusual experience of hearing voices (or auditory verbal hallucinations, AVH). Specifically, parallels have been drawn between the varied phenomenology of the two kinds of experience, including the issues of quasi-perceptual vividness and autonomy/control. One line of research has explored how ICs might arise through the internalization of linguistically mediated social exchanges to form dialogic inner speech. We present data from two studies on the relation between ICs in childhood and adulthood and the experience of inner speech. In the first, a large community sample of adults (N = 1,472) completed online the new Varieties of Inner Speech – Revised (VISQ-R) questionnaire (Alderson-Day et al., 2018) on the phenomenology of inner speech, in addition to providing data on ICs and AVH. The results showed differences in inner speech phenomenology in individuals with a history of ICs, with higher scores on the Dialogic, Evaluative, and Other Voices subscales of the VISQ-R. In the second study, a smaller community sample of adults (N = 48) completed an auditory signal detection task as well as providing data on ICs and AVH. In addition to scoring higher on AVH proneness, individuals with a history of ICs showed reduced sensitivity to detecting speech in white noise as well as a bias toward detecting it. The latter finding mirrored a pattern previously found in both clinical and nonclinical individuals with AVH. These findings are consistent with the view that ICs represent a hallucination-like experience in childhood and adulthood which shows meaningful developmental relations with the experience of inner speech.
Collapse
Affiliation(s)
| | - Ashley Watson
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Marco Bernini
- Department of English Studies, Durham University, Durham, United Kingdom
| | - Peter Moseley
- Department of Psychology, Durham University, Durham, United Kingdom.,School of Psychology, University of Central Lancashire, Preston, United Kingdom
| | - Ben Alderson-Day
- Department of Psychology, Durham University, Durham, United Kingdom
| |
Collapse
|
18
|
Evidence of a Right Ear Advantage in the absence of auditory targets. Sci Rep 2018; 8:15569. [PMID: 30349021 PMCID: PMC6197268 DOI: 10.1038/s41598-018-34086-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/11/2018] [Indexed: 01/08/2023] Open
Abstract
The Right Ear Advantage effect (REA) was explored in a white noise speech illusion paradigm: binaural white noise (WN) could be presented i) in isolation (WN condition), ii) overlapped to a voice pronouncing the vowel /a/ presented in the left ear (LE condition), iii) overlapped to a voice pronouncing the vowel /a/ presented in the right ear (RE condition). Participants were asked to report in which ear the voice has been perceived. The voice could be female or male, and it could be presented at 4 different intensities. Participants carried out the task correctly both in LE and in RE conditions. Importantly, in the WN condition the “right ear” responses were more frequent with respect to both the chance level and the “left ear” responses. A perceptual REA was confirmed both in LE and RE conditions. Moreover, when the voice was presented at low intensities (masked by WN), it was more frequently reported in the right than in the left ear (“illusory” REA). A positive correlation emerged between perceptual and illusory REA. Potential links of the REA effects with auditory hallucinations are discussed.
Collapse
|
19
|
Moseley P, Mitrenga KJ, Ellison A, Fernyhough C. Investigating the roles of medial prefrontal and superior temporal cortex in source monitoring. Neuropsychologia 2018; 120:113-123. [PMID: 30326206 PMCID: PMC6227377 DOI: 10.1016/j.neuropsychologia.2018.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 11/16/2022]
Abstract
Source monitoring, or the ability to recall the origin of information, is a crucial aspect of remembering past experience. One facet of this, reality monitoring, refers to the ability to distinguish between internally generated and externally generated information, biases in which have previously been associated with auditory verbal hallucinations in schizophrenia. Neuroimaging evidence suggests that medial prefrontal and superior temporal (STG) regions may play a role in reality monitoring for auditory verbal information, with evidence from a previous neurostimulation experiment also suggesting that modulation of excitability in STG may affect reality monitoring task performance. Here, two experiments are reported that used transcranial direct current stimulation (tDCS) to modulate excitability in medial prefrontal and superior temporal cortex, to further investigate the role of these brain regions in reality monitoring. In the first experiment (N = 36), tDCS was applied during the encoding stage of the task, while in the second experiment, in a separate sample (N = 36), it was applied during the test stage. There was no effect of tDCS compared to a sham condition in either experiment, with Bayesian analysis providing evidence for the null hypothesis in both cases. This suggests that tDCS applied to superior temporal or medial prefrontal regions may not affect reality monitoring performance, and has implications for theoretical models that link reality monitoring to the therapeutic effect of tDCS on auditory verbal hallucinations.
Collapse
Affiliation(s)
- Peter Moseley
- Psychology Department, Durham University, Durham, UK; School of Psychology, University of Central Lancashire, Preston, UK.
| | | | | | | |
Collapse
|
20
|
Hugdahl K. Auditory Hallucinations as Translational Psychiatry: Evidence from Magnetic Resonance Imaging. Balkan Med J 2017; 34:504-513. [PMID: 29019460 PMCID: PMC5785654 DOI: 10.4274/balkanmedj.2017.1226] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this invited review article, I present a translational perspective and overview of our research on auditory hallucinations in schizophrenia at the University of Bergen, Norway, with a focus on the neuronal mechanisms underlying the phenomenology of experiencing “hearing voices”. An auditory verbal hallucination (i.e. hearing a voice) is defined as a sensory experience in the absence of a corresponding external sensory source that could explain the phenomenological experience. I suggest a general frame or scheme for the study of auditory verbal hallucinations, called Levels of Explanation. Using a Levels of Explanation approach, mental phenomena can be described and explained at different levels (cultural, clinical, cognitive, brain-imaging, cellular and molecular). Another way of saying this is that, to advance knowledge in a research field, it is not only necessary to replicate findings, but also to show how evidence obtained with one method, and at one level of explanation, converges with evidence obtained with another method at another level. To achieve breakthroughs in our understanding of auditory verbal hallucinations, we have to advance vertically through the various levels, rather than the more common approach of staying at our favourite level and advancing horizontally (e.g., more advanced techniques and data acquisition analyses). The horizontal expansion will, however, not advance a deeper understanding of how an auditory verbal hallucination spontaneously starts and stops. Finally, I present data from the clinical, cognitive, brain-imaging, and cellular levels, where data from one level validate and support data at another level, called converging of evidence. Using a translational approach, the current status of auditory verbal hallucinations is that they implicate speech perception areas in the left temporal lobe, impairing perception of and attention to external sounds. Preliminary results also show that amygdala is implicated in the emotional «colouring» of the voices and that excitatory neurotransmitters might be involved. What we do not know is why hallucinatory episodes occur spontaneously, why they fluctuate over time, and what makes them spontaneously stop. Moreover, is voice hearing a category or dimension in its own right, independent of diagnosis, and why is the auditory modality predominantly implicated in psychotic disorders, while the visual modality dominates in, for example, neurological diseases?
Collapse
Affiliation(s)
- Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Division of Psychiatry and Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
21
|
Taylor ST, Chhabra H, Sreeraj VS, Shivakumar V, Kalmady SV, Venkatasubramanian G. Neural Effects of Transcranial Direct Current Stimulation in Schizophrenia: A Case Study using Functional Near-infrared Spectroscopy. Indian J Psychol Med 2017; 39:691-694. [PMID: 29200573 PMCID: PMC5688904 DOI: 10.4103/ijpsym.ijpsym_238_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric disorder characterized by delusions, hallucinations, behavioral symptoms, and cognitive deficits. Roughly, 70%-80% of schizophrenia patients experience auditory verbal hallucinations (AVHs), with 25%-30% demonstrating resistance to conventional antipsychotic medications. Studies suggest a promising role for add-on transcranial direct current stimulation (tDCS) in the treatment of medication-refractory AVHs. The mechanisms through which tDCS could be therapeutic in such cases are unclear, but possibly involve neuroplastic effects. In recent years, functional near-infrared spectroscopy (fNIRS) has been used successfully to study tDCS-induced neuroplastic changes. In a double-blind, sham-controlled design, we applied fNIRS to measure task-dependent cerebral blood flow (CBF) changes as a surrogate outcome of single session tDCS-induced effects on neuroplasticity in a schizophrenia patient with persistent auditory hallucinations. The observations are discussed in this case report.
Collapse
Affiliation(s)
- S Trevor Taylor
- Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Harleen Chhabra
- Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Vanteemar S Sreeraj
- Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Venkataram Shivakumar
- Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Sunil V Kalmady
- Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Ganesan Venkatasubramanian
- Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
22
|
Chhabra H, Sowmya S, Sreeraj VS, Kalmady SV, Shivakumar V, Amaresha AC, Narayanaswamy JC, Venkatasubramanian G. Auditory false perception in schizophrenia: Development and validation of auditory signal detection task. Asian J Psychiatr 2016; 24:23-27. [PMID: 27931901 DOI: 10.1016/j.ajp.2016.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/13/2016] [Accepted: 08/13/2016] [Indexed: 01/30/2023]
Abstract
Auditory hallucinations constitute an important symptom component in 70-80% of schizophrenia patients. These hallucinations are proposed to occur due to an imbalance between perceptual expectation and external input, resulting in attachment of meaning to abstract noises; signal detection theory has been proposed to explain these phenomena. In this study, we describe the development of an auditory signal detection task using a carefully chosen set of English words that could be tested successfully in schizophrenia patients coming from varying linguistic, cultural and social backgrounds. Schizophrenia patients with significant auditory hallucinations (N=15) and healthy controls (N=15) performed the auditory signal detection task wherein they were instructed to differentiate between a 5-s burst of plain white noise and voiced-noise. The analysis showed that false alarms (p=0.02), discriminability index (p=0.001) and decision bias (p=0.004) were significantly different between the two groups. There was a significant negative correlation between false alarm rate and decision bias. These findings extend further support for impaired perceptual expectation system in schizophrenia patients.
Collapse
Affiliation(s)
- Harleen Chhabra
- The Schizophrenia Clinic, Department of Psychiatry & Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Selvaraj Sowmya
- The Schizophrenia Clinic, Department of Psychiatry & Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vanteemar S Sreeraj
- The Schizophrenia Clinic, Department of Psychiatry & Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sunil V Kalmady
- The Schizophrenia Clinic, Department of Psychiatry & Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Venkataram Shivakumar
- The Schizophrenia Clinic, Department of Psychiatry & Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anekal C Amaresha
- The Schizophrenia Clinic, Department of Psychiatry & Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Janardhanan C Narayanaswamy
- The Schizophrenia Clinic, Department of Psychiatry & Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- The Schizophrenia Clinic, Department of Psychiatry & Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
23
|
Mondino M, Poulet E, Suaud-Chagny MF, Brunelin J. Anodal tDCS targeting the left temporo-parietal junction disrupts verbal reality-monitoring. Neuropsychologia 2016; 89:478-484. [PMID: 27452837 DOI: 10.1016/j.neuropsychologia.2016.07.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 11/27/2022]
|
24
|
Tamayo-Agudelo W, Vélez-Urrego JD, Gaviria-Castaño G, Perona-Garcelán S. [Multidimensionality of inner speech and its relationship with abnormal perceptions]. ACTA ACUST UNITED AC 2016; 45:238-244. [PMID: 27842736 DOI: 10.1016/j.rcp.2016.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Inner speech is a common human experience. Recently, there have been studies linking this experience with cognitive functions, such as problem solving, reading, writing, autobiographical memory, and some disorders, such as anxiety and depression. In addition, inner speech is recognised as the main source of auditory hallucinations. OBJECTIVES The main purpose of this study is to establish the factor structure of Varieties of Inner Speech Questionnaire (VISQ) in a sample of the Colombian population. Furthermore, it aims at establishing a link between VISQ and abnormal perceptions. METHOD This was a cross-sectional study in which 232 college students were assessed using the VISQ and the Cardiff Anomalous Perceptions Scale (CAPS). RESULTS Through an exploratory factor analysis, a structure of three factors was found: Other Voices in the Internal Speech, Condensed Inner speech, and Dialogical/Evaluative Inner speech, all of them with acceptable levels of reliability. Gender differences were found in the second and third factor, with higher averages for women. Positive correlations were found among the three VISQ and the two CAPS factors: Multimodal Perceptual Alterations and Experiences Associated with the Temporal Lobe. CONCLUSIONS The results are consistent with previous findings linking the factors of inner speech with the propensity to auditory hallucination, a phenomenon widely associated with temporal lobe abnormalities. The hallucinations associated with other perceptual systems, however, are still weakly explained.
Collapse
|
25
|
Moseley P, Alderson-Day B, Ellison A, Jardri R, Fernyhough C. Non-invasive Brain Stimulation and Auditory Verbal Hallucinations: New Techniques and Future Directions. Front Neurosci 2016; 9:515. [PMID: 26834541 PMCID: PMC4717303 DOI: 10.3389/fnins.2015.00515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/22/2015] [Indexed: 12/11/2022] Open
Abstract
Auditory verbal hallucinations (AVHs) are the experience of hearing a voice in the absence of any speaker. Results from recent attempts to treat AVHs with neurostimulation (rTMS or tDCS) to the left temporoparietal junction have not been conclusive, but suggest that it may be a promising treatment option for some individuals. Some evidence suggests that the therapeutic effect of neurostimulation on AVHs may result from modulation of cortical areas involved in the ability to monitor the source of self-generated information. Here, we provide a brief overview of cognitive models and neurostimulation paradigms associated with treatment of AVHs, and discuss techniques that could be explored in the future to improve the efficacy of treatment, including alternating current and random noise stimulation. Technical issues surrounding the use of neurostimulation as a treatment option are discussed (including methods to localize the targeted cortical area, and the state-dependent effects of brain stimulation), as are issues surrounding the acceptability of neurostimulation for adolescent populations and individuals who experience qualitatively different types of AVH.
Collapse
Affiliation(s)
- Peter Moseley
- School of Psychology, University of Central Lancashire Preston, UK
| | - Ben Alderson-Day
- Science Laboratories, Department of Psychology, Durham University Durham, UK
| | - Amanda Ellison
- Science Laboratories, Department of Psychology, Durham University Durham, UK
| | - Renaud Jardri
- Centre National de la Recherche Scientifique UMR-9193, SCA-Lab & CHU Lille, Fontan Hospital, CURE Platform, Lille University Lille, France
| | - Charles Fernyhough
- Science Laboratories, Department of Psychology, Durham University Durham, UK
| |
Collapse
|
26
|
Moseley P, Smailes D, Ellison A, Fernyhough C. The effect of auditory verbal imagery on signal detection in hallucination-prone individuals. Cognition 2015; 146:206-16. [PMID: 26435050 PMCID: PMC4675095 DOI: 10.1016/j.cognition.2015.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/17/2015] [Accepted: 09/19/2015] [Indexed: 01/07/2023]
Abstract
Investigated relation between hallucinations, mental imagery and signal detection. Individuals prone to hallucinations showed a lower SDT response bias with imagery. Finding held for both instructed and self-reported use of auditory verbal imagery. Atypical auditory imagery may lead to the generation of auditory hallucinations.
Cognitive models have suggested that auditory hallucinations occur when internal mental events, such as inner speech or auditory verbal imagery (AVI), are misattributed to an external source. This has been supported by numerous studies indicating that individuals who experience hallucinations tend to perform in a biased manner on tasks that require them to distinguish self-generated from non-self-generated perceptions. However, these tasks have typically been of limited relevance to inner speech models of hallucinations, because they have not manipulated the AVI that participants used during the task. Here, a new paradigm was employed to investigate the interaction between imagery and perception, in which a healthy, non-clinical sample of participants were instructed to use AVI whilst completing an auditory signal detection task. It was hypothesized that AVI-usage would cause participants to perform in a biased manner, therefore falsely detecting more voices in bursts of noise. In Experiment 1, when cued to generate AVI, highly hallucination-prone participants showed a lower response bias than when performing a standard signal detection task, being more willing to report the presence of a voice in the noise. Participants not prone to hallucinations performed no differently between the two conditions. In Experiment 2, participants were not specifically instructed to use AVI, but retrospectively reported how often they engaged in AVI during the task. Highly hallucination-prone participants who retrospectively reported using imagery showed a lower response bias than did participants with lower proneness who also reported using AVI. Results are discussed in relation to prominent inner speech models of hallucinations.
Collapse
Affiliation(s)
- Peter Moseley
- Psychology Department, Durham University, South Road, Durham DH1 3LE, UK; School of Psychology, University of Central Lancashire, Preston PR1 2HE, UK.
| | - David Smailes
- Psychology Department, Durham University, South Road, Durham DH1 3LE, UK; Department of Psychology, Leeds Trinity University, Horsforth, Leeds, LS18 5HD, UK
| | - Amanda Ellison
- Psychology Department, Durham University, South Road, Durham DH1 3LE, UK
| | - Charles Fernyhough
- Psychology Department, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|