1
|
Clarke S, Da Costa S, Crottaz-Herbette S. Dual Representation of the Auditory Space. Brain Sci 2024; 14:535. [PMID: 38928534 PMCID: PMC11201621 DOI: 10.3390/brainsci14060535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Auditory spatial cues contribute to two distinct functions, of which one leads to explicit localization of sound sources and the other provides a location-linked representation of sound objects. Behavioral and imaging studies demonstrated right-hemispheric dominance for explicit sound localization. An early clinical case study documented the dissociation between the explicit sound localizations, which was heavily impaired, and fully preserved use of spatial cues for sound object segregation. The latter involves location-linked encoding of sound objects. We review here evidence pertaining to brain regions involved in location-linked representation of sound objects. Auditory evoked potential (AEP) and functional magnetic resonance imaging (fMRI) studies investigated this aspect by comparing encoding of individual sound objects, which changed their locations or remained stationary. Systematic search identified 1 AEP and 12 fMRI studies. Together with studies of anatomical correlates of impaired of spatial-cue-based sound object segregation after focal brain lesions, the present evidence indicates that the location-linked representation of sound objects involves strongly the left hemisphere and to a lesser degree the right hemisphere. Location-linked encoding of sound objects is present in several early-stage auditory areas and in the specialized temporal voice area. In these regions, emotional valence benefits from location-linked encoding as well.
Collapse
Affiliation(s)
- Stephanie Clarke
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Av. Pierre-Decker 5, 1011 Lausanne, Switzerland; (S.D.C.); (S.C.-H.)
| | | | | |
Collapse
|
2
|
Grisendi T, Clarke S, Da Costa S. Emotional sounds in space: asymmetrical representation within early-stage auditory areas. Front Neurosci 2023; 17:1164334. [PMID: 37274197 PMCID: PMC10235458 DOI: 10.3389/fnins.2023.1164334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/07/2023] [Indexed: 06/06/2023] Open
Abstract
Evidence from behavioral studies suggests that the spatial origin of sounds may influence the perception of emotional valence. Using 7T fMRI we have investigated the impact of the categories of sound (vocalizations; non-vocalizations), emotional valence (positive, neutral, negative) and spatial origin (left, center, right) on the encoding in early-stage auditory areas and in the voice area. The combination of these different characteristics resulted in a total of 18 conditions (2 categories x 3 valences x 3 lateralizations), which were presented in a pseudo-randomized order in blocks of 11 different sounds (of the same condition) in 12 distinct runs of 6 min. In addition, two localizers, i.e., tonotopy mapping; human vocalizations, were used to define regions of interest. A three-way repeated measure ANOVA on the BOLD responses revealed bilateral significant effects and interactions in the primary auditory cortex, the lateral early-stage auditory areas, and the voice area. Positive vocalizations presented on the left side yielded greater activity in the ipsilateral and contralateral primary auditory cortex than did neutral or negative vocalizations or any other stimuli at any of the three positions. Right, but not left area L3 responded more strongly to (i) positive vocalizations presented ipsi- or contralaterally than to neutral or negative vocalizations presented at the same positions; and (ii) to neutral than positive or negative non-vocalizations presented contralaterally. Furthermore, comparison with a previous study indicates that spatial cues may render emotional valence more salient within the early-stage auditory areas.
Collapse
Affiliation(s)
- Tiffany Grisendi
- Service de Neuropsychologie et de Neuroréhabilitation, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Stephanie Clarke
- Service de Neuropsychologie et de Neuroréhabilitation, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sandra Da Costa
- Centre d’Imagerie Biomédicale, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
3
|
Functional lateralization of tool-sound and action-word processing in a bilingual brain. HEALTH PSYCHOLOGY REPORT 2020. [DOI: 10.5114/hpr.2020.92718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Tissieres I, Crottaz-Herbette S, Clarke S. Implicit representation of the auditory space: contribution of the left and right hemispheres. Brain Struct Funct 2019; 224:1569-1582. [PMID: 30848352 DOI: 10.1007/s00429-019-01853-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/25/2019] [Indexed: 11/24/2022]
Abstract
Spatial cues contribute to the ability to segregate sound sources and thus facilitate their detection and recognition. This implicit use of spatial cues can be preserved in cases of cortical spatial deafness, suggesting that partially distinct neural networks underlie the explicit sound localization and the implicit use of spatial cues. We addressed this issue by assessing 40 patients, 20 patients with left and 20 patients with right hemispheric damage, for their ability to use auditory spatial cues implicitly in a paradigm of spatial release from masking (SRM) and explicitly in sound localization. The anatomical correlates of their performance were determined with voxel-based lesion-symptom mapping (VLSM). During the SRM task, the target was always presented at the centre, whereas the masker was presented at the centre or at one of the two lateral positions on the right or left side. The SRM effect was absent in some but not all patients; the inability to perceive the target when the masker was at one of the lateral positions correlated with lesions of the left temporo-parieto-frontal cortex or of the right inferior parietal lobule and the underlying white matter. As previously reported, sound localization depended critically on the right parietal and opercular cortex. Thus, explicit and implicit use of spatial cues depends on at least partially distinct neural networks. Our results suggest that the implicit use may rely on the left-dominant position-linked representation of sound objects, which has been demonstrated in previous EEG and fMRI studies.
Collapse
Affiliation(s)
- Isabel Tissieres
- Service de neuropsychologie et de neuroréhabilitation, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne, Lausanne, Switzerland
| | - Sonia Crottaz-Herbette
- Service de neuropsychologie et de neuroréhabilitation, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne, Lausanne, Switzerland
| | - Stephanie Clarke
- Service de neuropsychologie et de neuroréhabilitation, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Tissieres I, Crottaz-Herbette S, Clarke S. Exploring auditory neglect: Anatomo-clinical correlations of auditory extinction. Ann Phys Rehabil Med 2018; 61:386-394. [DOI: 10.1016/j.rehab.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/05/2018] [Accepted: 05/06/2018] [Indexed: 11/26/2022]
|
6
|
Da Costa S, Clarke S, Crottaz-Herbette S. Keeping track of sound objects in space: The contribution of early-stage auditory areas. Hear Res 2018; 366:17-31. [PMID: 29643021 DOI: 10.1016/j.heares.2018.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 12/01/2022]
Abstract
The influential dual-stream model of auditory processing stipulates that information pertaining to the meaning and to the position of a given sound object is processed in parallel along two distinct pathways, the ventral and dorsal auditory streams. Functional independence of the two processing pathways is well documented by conscious experience of patients with focal hemispheric lesions. On the other hand there is growing evidence that the meaning and the position of a sound are combined early in the processing pathway, possibly already at the level of early-stage auditory areas. Here, we investigated how early auditory areas integrate sound object meaning and space (simulated by interaural time differences) using a repetition suppression fMRI paradigm at 7 T. Subjects listen passively to environmental sounds presented in blocks of repetitions of the same sound object (same category) or different sounds objects (different categories), perceived either in the left or right space (no change within block) or shifted left-to-right or right-to-left halfway in the block (change within block). Environmental sounds activated bilaterally the superior temporal gyrus, middle temporal gyrus, inferior frontal gyrus, and right precentral cortex. Repetitions suppression effects were measured within bilateral early-stage auditory areas in the lateral portion of the Heschl's gyrus and posterior superior temporal plane. Left lateral early-stages areas showed significant effects for position and change, interactions Category x Initial Position and Category x Change in Position, while right lateral areas showed main effect of category and interaction Category x Change in Position. The combined evidence from our study and from previous studies speaks in favour of a position-linked representation of sound objects, which is independent from semantic encoding within the ventral stream and from spatial encoding within the dorsal stream. We argue for a third auditory stream, which has its origin in lateral belt areas and tracks sound objects across space.
Collapse
Affiliation(s)
- Sandra Da Costa
- Centre d'Imagerie BioMédicale (CIBM), EPFL et Universités de Lausanne et de Genève, Bâtiment CH, Station 6, CH-1015 Lausanne, Switzerland.
| | - Stephanie Clarke
- Service de Neuropsychologie et de Neuroréhabilitation, CHUV, Université de Lausanne, Avenue Pierre Decker 5, CH-1011 Lausanne, Switzerland
| | - Sonia Crottaz-Herbette
- Service de Neuropsychologie et de Neuroréhabilitation, CHUV, Université de Lausanne, Avenue Pierre Decker 5, CH-1011 Lausanne, Switzerland
| |
Collapse
|
7
|
Perrin MA, Kantrowitz JT, Silipo G, Dias E, Jabado O, Javitt DC. Mismatch negativity (MMN) to spatial deviants and behavioral spatial discrimination ability in the etiology of auditory verbal hallucinations and thought disorder in schizophrenia. Schizophr Res 2018; 191:140-147. [PMID: 28532686 DOI: 10.1016/j.schres.2017.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 02/02/2023]
Abstract
UNLABELLED Persistent auditory verbal hallucinations (AVH) in schizophrenia are increasingly tied to dysfunction at the level of auditory cortex. AVH may reflect in part misattribution of internally generated thoughts to external spatial locations. Here, we investigated the association between persistent AVH and spatial localization abilities assessed both behaviorally and by mismatch negativity (MMN) to location deviants. METHODS Spatial- and tonal- discrimination abilities were assessed in patients (n=20) and controls (n=20) using free-field tones. MMN was assessed to spatial-location-, pitch- and duration-deviants. AVH and thought disorder were assessed using clinical evaluation. RESULTS As predicted, patients showed significant reductions in behavioral spatial-discrimination (p<0.0001) and tone-matching (p<0.001) ability, along with impaired MMN generation to location (p<0.03) and pitch (p<0.05) deviants. Hallucinating (AVH+) and non-hallucinating (AVH-) subjects showed similar deficits in location MMN to left-hemifield stimuli (p<0.0001 vs. control). By contrast, AVH- patients differed significantly from controls (p=0.009) and AVH+ patients (p=0.018) for MMN to right-lateral hemifield (left auditory cortex) stimuli, whereas AVH+ patients showed paradoxically preserved MMN generation (p=0.99 vs. controls). Severity of thought disorder correlated with impaired spatial discrimination, especially to right-hemifield stimuli (p=0.013), but did not correlate significantly with MMN or tone matching deficits. CONCLUSION These findings demonstrate a significant relationship between auditory cortical spatial localization abilities and AVH susceptibility, with relatively preserved function of left vs. right auditory cortex predisposing to more severe AVH, and support models that attribute persistent AVH to impaired source-monitoring. The findings suggest new approaches for therapeutic intervention for both AVH and thought disorder in schizophrenia.
Collapse
Affiliation(s)
- Megan A Perrin
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research, United States; Department of Clinical Neuropsychology, Queens College, United States; The Graduate Center, City University of New York, United States
| | - Joshua T Kantrowitz
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research, United States; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, United States
| | - Gail Silipo
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research, United States
| | - Elisa Dias
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research, United States
| | - Omar Jabado
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, United States
| | - Daniel C Javitt
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research, United States; Department of Psychiatry, Columbia College of Physicians and Surgeons, United States.
| |
Collapse
|
8
|
Tissieres I, Fornari E, Clarke S, Crottaz-Herbette S. Supramodal effect of rightward prismatic adaptation on spatial representations within the ventral attentional system. Brain Struct Funct 2017; 223:1459-1471. [PMID: 29151115 DOI: 10.1007/s00429-017-1572-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
Abstract
Rightward prismatic adaptation (R-PA) was shown to alleviate not only visuo-spatial but also auditory symptoms in neglect. The neural mechanisms underlying the effect of R-PA have been previously investigated in visual tasks, demonstrating a shift of hemispheric dominance for visuo-spatial attention from the right to the left hemisphere both in normal subjects and in patients. We have investigated whether the same neural mechanisms underlie the supramodal effect of R-PA on auditory attention. Normal subjects underwent a brief session of R-PA, which was preceded and followed by an fMRI evaluation during which subjects detected targets within the left, central and right space in the auditory or visual modality. R-PA-related changes in activation patterns were found bilaterally in the inferior parietal lobule. In either modality, the representation of the left, central and right space increased in the left IPL, whereas the representation of the right space decreased in the right IPL. Thus, a brief exposure to R-PA modulated the representation of the auditory and visual space within the ventral attentional system. This shift in hemispheric dominance for auditory spatial attention offers a parsimonious explanation for the previously reported effects of R-PA on auditory symptoms in neglect.
Collapse
Affiliation(s)
- Isabel Tissieres
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Av. Pierre-Decker 5, 1011, Lausanne, Switzerland
| | - Eleonora Fornari
- CIBM (Centre d'Imagerie Biomédicale), Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, 1011, Lausanne, Switzerland
| | - Stephanie Clarke
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Av. Pierre-Decker 5, 1011, Lausanne, Switzerland
| | - Sonia Crottaz-Herbette
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Av. Pierre-Decker 5, 1011, Lausanne, Switzerland.
| |
Collapse
|