1
|
Winter B. The size and shape of sound: The role of articulation and acoustics in iconicity and crossmodal correspondencesa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:2636-2656. [PMID: 40202363 DOI: 10.1121/10.0036362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/14/2025] [Indexed: 04/10/2025]
Abstract
Onomatopoeias like hiss and peep are iconic because their forms resemble their meanings. Iconicity can also involve forms and meanings in different modalities, such as when people match the nonce words bouba and kiki to round and angular objects, and mil and mal to small and large ones, also known as "sound symbolism." This paper focuses on what specific analogies motivate such correspondences in spoken language: do people associate shapes and size with how phonemes sound (auditory), or how they are produced (articulatory)? Based on a synthesis of empirical evidence probing the cognitive mechanisms underlying different types of sound symbolism, this paper argues that analogies based on acoustics alone are often sufficient, rendering extant articulatory explanations for many iconic phenomena superfluous. This paper further suggests that different types of crossmodal iconicity in spoken language can fruitfully be understood as an extension of onomatopoeia: when speakers iconically depict such perceptual characteristics as size and shape, they mimic the acoustics that are correlated with these characteristics in the natural world.
Collapse
Affiliation(s)
- Bodo Winter
- Department of Linguistics and Communication, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
2
|
Brožová N, Vollmer L, Kampa B, Kayser C, Fels J. Cross-modal congruency modulates evidence accumulation, not decision thresholds. Front Neurosci 2025; 19:1513083. [PMID: 40052091 PMCID: PMC11882578 DOI: 10.3389/fnins.2025.1513083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/30/2025] [Indexed: 03/09/2025] Open
Abstract
Audiovisual cross-modal correspondences (CMCs) refer to the brain's inherent ability to subconsciously connect auditory and visual information. These correspondences reveal essential aspects of multisensory perception and influence behavioral performance, enhancing reaction times and accuracy. However, the impact of different types of CMCs-arising from statistical co-occurrences or shaped by semantic associations-on information processing and decision-making remains underexplored. This study utilizes the Implicit Association Test, where unisensory stimuli are sequentially presented and linked via CMCs within an experimental block by the specific response instructions (either congruent or incongruent). Behavioral data are integrated with EEG measurements through neurally informed drift-diffusion modeling to examine how neural activity across both auditory and visual trials is modulated by CMCs. Our findings reveal distinct neural components that differentiate between congruent and incongruent stimuli regardless of modality, offering new insights into the role of congruency in shaping multisensory perceptual decision-making. Two key neural stages were identified: an Early component enhancing sensory encoding in congruent trials and a Late component affecting evidence accumulation, particularly in incongruent trials. These results suggest that cross-modal congruency primarily influences the processing and accumulation of sensory information rather than altering decision thresholds.
Collapse
Affiliation(s)
- Natálie Brožová
- Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany
| | - Lukas Vollmer
- Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany
| | - Björn Kampa
- Systems Neurophysiology Department, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Christoph Kayser
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
| | - Janina Fels
- Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Indraccolo A, Del Gatto C, Pedale T, Santangelo V, Spence C, Brunetti R. Assessing the limits on size-pitch mapping reveals the interplay between top-down and bottom-up influences on relative crossmodal correspondences. PSYCHOLOGICAL RESEARCH 2025; 89:53. [PMID: 39960509 DOI: 10.1007/s00426-025-02082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/29/2025] [Indexed: 04/30/2025]
Abstract
Certain sensory dimensions, such as visual size and auditory pitch, are consistently associated, resulting in performance facilitation or inhibition. The mechanisms underlying these crossmodal correspondences are still the subject of debate: The relative or absolute nature of crossmodal mappings is connected to this debate, as an absolute mapping points to a bottom-up process, whereas a relative one is evidence of stronger top-down influences. Three experiments were conducted (including overall N = 207 participants), based on two different tasks, designed to explore a wide range of size-pitch crossmodal mappings. In Experiment 1, the participants were instructed to freely manipulate stimuli varing along a given dimension to 'match' the other. The results revealed evidence for a quasi-absolute mapping, but the correspondences shifted depending on the participants' auditory or visual attentional focus. In Experiment 2, the participants performed a visual speeded categorization task, involving a wide range of auditory task-irrelevant pitches, including the "preferred" ones, estimated on the basis of the results of Experiment 1. The results revealed a rather relative mapping, corroborating a top-down influence on the correspondence effect. Experiment 3 was designed to determine whether the relative mapping involved has boundary. The results confirmed that the larger the interval between pitches (i.e., more perceptually salient), the stronger the congruence effect, thus highlighting bottom-up facilitation. Taken together, these findings reveal that the size-pitch correspondences are sensitive to task-related top-down factors, as well as to stimulus-related bottom-up influences, ultimately revealing the adaptive nature of this kind of multisensory integration.
Collapse
Affiliation(s)
- Allegra Indraccolo
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, Università Europea di Roma, Rome, Italy
| | - Claudia Del Gatto
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, Università Europea di Roma, Rome, Italy
| | - Tiziana Pedale
- Functional Neuroimaging Laboratory, IRCCS Santa Lucia, Rome, Italy
| | - Valerio Santangelo
- Department of Philosophy, Social Sciences & Education, University of Perugia, Perugia, Italy
- Functional Neuroimaging Laboratory, IRCCS Santa Lucia, Rome, Italy
| | - Charles Spence
- Department of Experimental Psychology, Oxford University, Oxford, UK
| | - Riccardo Brunetti
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, Università Europea di Roma, Rome, Italy.
| |
Collapse
|
4
|
Gao D, Liang X, Ting Q, Nichols ES, Bai Z, Xu C, Cai M, Liu L. A meta-analysis of letter-sound integration: Assimilation and accommodation in the superior temporal gyrus. Hum Brain Mapp 2024; 45:e26713. [PMID: 39447213 PMCID: PMC11501095 DOI: 10.1002/hbm.26713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 10/26/2024] Open
Abstract
Despite being a relatively new cultural phenomenon, the ability to perform letter-sound integration is readily acquired even though it has not had time to evolve in the brain. Leading theories of how the brain accommodates literacy acquisition include the neural recycling hypothesis and the assimilation-accommodation hypothesis. The neural recycling hypothesis proposes that a new cultural skill is developed by "invading" preexisting neural structures to support a similar cognitive function, while the assimilation-accommodation hypothesis holds that a new cognitive skill relies on direct invocation of preexisting systems (assimilation) and adds brain areas based on task requirements (accommodation). Both theories agree that letter-sound integration may be achieved by reusing pre-existing functionally similar neural bases, but differ in their proposals of how this occurs. We examined the evidence for each hypothesis by systematically comparing the similarities and differences between letter-sound integration and two other types of preexisting and functionally similar audiovisual (AV) processes, namely object-sound and speech-sound integration, by performing an activation likelihood estimation (ALE) meta-analysis. All three types of AV integration recruited the left posterior superior temporal gyrus (STG), while speech-sound integration additionally activated the bilateral middle STG and letter-sound integration directly invoked the AV areas involved in speech-sound integration. These findings suggest that letter-sound integration may reuse the STG for speech-sound and object-sound integration through an assimilation-accommodation mechanism.
Collapse
Affiliation(s)
- Danqi Gao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Xitong Liang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Qi Ting
- Department of Brain Cognition and Intelligent MedicineBeijing University of Posts and TelecommunicationsBeijingChina
| | | | - Zilin Bai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Chaoying Xu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Mingnan Cai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| |
Collapse
|
5
|
Sun Y, Yao L, Fu Q. Crossmodal Correspondence Mediates Crossmodal Transfer from Visual to Auditory Stimuli in Category Learning. J Intell 2024; 12:80. [PMID: 39330459 PMCID: PMC11433196 DOI: 10.3390/jintelligence12090080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
This article investigated whether crossmodal correspondence, as a sensory translation phenomenon, can mediate crossmodal transfer from visual to auditory stimuli in category learning and whether multimodal category learning can influence the crossmodal correspondence between auditory and visual stimuli. Experiment 1 showed that the category knowledge acquired from elevation stimuli affected the categorization of pitch stimuli when there were robust crossmodal correspondence effects between elevation and size, indicating that crossmodal transfer occurred between elevation and pitch stimuli. Experiments 2 and 3 revealed that the size category knowledge could not be transferred to the categorization of pitches, but interestingly, size and pitch category learning determined the direction of the pitch-size correspondence, suggesting that the pitch-size correspondence was not stable and could be determined using multimodal category learning. Experiment 4 provided further evidence that there was no crossmodal transfer between size and pitch, due to the absence of a robust pitch-size correspondence. These results demonstrated that crossmodal transfer can occur between audio-visual stimuli with crossmodal correspondence, and multisensory category learning can change the corresponding relationship between audio-visual stimuli. These findings suggest that crossmodal transfer and crossmodal correspondence share similar abstract representations, which can be mediated by semantic content such as category labels.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; (Y.S.); (L.Y.)
- University of Chinese Academy of Sciences, Beijing 101408, China
- College of Humanities and Education, Inner Mongolia Medical University, Hohhot 010110, China
| | - Liansheng Yao
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; (Y.S.); (L.Y.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qiufang Fu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; (Y.S.); (L.Y.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
6
|
McEwan J, Kritikos A, Zeljko M. Involvement of the superior colliculi in crossmodal correspondences. Atten Percept Psychophys 2024; 86:931-941. [PMID: 38418807 PMCID: PMC11062976 DOI: 10.3758/s13414-024-02866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/02/2024]
Abstract
There is an increasing body of evidence suggesting that there are low-level perceptual processes involved in crossmodal correspondences. In this study, we investigate the involvement of the superior colliculi in three basic crossmodal correspondences: elevation/pitch, lightness/pitch, and size/pitch. Using a psychophysical design, we modulate visual input to the superior colliculus to test whether the superior colliculus is required for behavioural crossmodal congruency effects to manifest in an unspeeded multisensory discrimination task. In the elevation/pitch task, superior colliculus involvement is required for a behavioural elevation/pitch congruency effect to manifest in the task. In the lightness/pitch and size/pitch task, we observed a behavioural elevation/pitch congruency effect regardless of superior colliculus involvement. These results suggest that the elevation/pitch correspondence may be processed differently to other low-level crossmodal correspondences. The implications of a distributed model of crossmodal correspondence processing in the brain are discussed.
Collapse
Affiliation(s)
- John McEwan
- School of Psychology, The University of Queensland, St. Lucia, Queensland, 4072, Australia.
| | - Ada Kritikos
- School of Psychology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Mick Zeljko
- School of Psychology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
7
|
Alwashmi K, Meyer G, Rowe F, Ward R. Enhancing learning outcomes through multisensory integration: A fMRI study of audio-visual training in virtual reality. Neuroimage 2024; 285:120483. [PMID: 38048921 DOI: 10.1016/j.neuroimage.2023.120483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
The integration of information from different sensory modalities is a fundamental process that enhances perception and performance in real and virtual environments (VR). Understanding these mechanisms, especially during learning tasks that exploit novel multisensory cue combinations provides opportunities for the development of new rehabilitative interventions. This study aimed to investigate how functional brain changes support behavioural performance improvements during an audio-visual (AV) learning task. Twenty healthy participants underwent a 30 min daily VR training for four weeks. The task was an AV adaptation of a 'scanning training' paradigm that is commonly used in hemianopia rehabilitation. Functional magnetic resonance imaging (fMRI) and performance data were collected at baseline, after two and four weeks of training, and four weeks post-training. We show that behavioural performance, operationalised as mean reaction time reduction in VR, significantly improves. In separate tests in a controlled laboratory environment, we showed that the behavioural performance gains in the VR training environment transferred to a significant mean RT reduction for the trained AV voluntary task on a computer screen. Enhancements were observed in both the visual-only and AV conditions, with the latter demonstrating a faster response time supported by the presence of audio cues. The behavioural learning effect also transfers to two additional tasks that were tested: a visual search task and an involuntary visual task. Our fMRI results reveal an increase in functional activation (BOLD signal) in multisensory brain regions involved in early-stage AV processing: the thalamus, the caudal inferior parietal lobe and cerebellum. These functional changes were only observed for the trained, multisensory, task and not for unimodal visual stimulation. Functional activation changes in the thalamus were significantly correlated to behavioural performance improvements. This study demonstrates that incorporating spatial auditory cues to voluntary visual training in VR leads to augmented brain activation changes in multisensory integration, resulting in measurable performance gains across tasks. The findings highlight the potential of VR-based multisensory training as an effective method for enhancing cognitive function and as a potentially valuable tool in rehabilitative programmes.
Collapse
Affiliation(s)
- Kholoud Alwashmi
- Faculty of Health and Life Sciences, University of Liverpool, United Kingdom; Department of Radiology, Princess Nourah bint Abdulrahman University, Saudi Arabia.
| | - Georg Meyer
- Digital Innovation Facility, University of Liverpool, United Kingdom
| | - Fiona Rowe
- Institute of Population Health, University of Liverpool, United Kingdom
| | - Ryan Ward
- Digital Innovation Facility, University of Liverpool, United Kingdom; School Computer Science and Mathematics, Liverpool John Moores University, United Kingdom
| |
Collapse
|
8
|
Sasaki K, Kadowaki S, Iwasaki J, Pijanowska M, Okamoto H. Cognitive neural responses in the semantic comprehension of sound symbolic words and pseudowords. Front Hum Neurosci 2023; 17:1208572. [PMID: 37900724 PMCID: PMC10603230 DOI: 10.3389/fnhum.2023.1208572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Sound symbolism is the phenomenon of sounds having non-arbitrary meaning, and it has been demonstrated that pseudowords with sound symbolic elements have similar meaning to lexical words. It is unclear how the impression given by the sound symbolic elements is semantically processed, in contrast to lexical words with definite meanings. In event-related potential (ERP) studies, phonological mapping negativity (PMN) and N400 are often used as measures of phonological and semantic processing, respectively. Therefore, in this study, we analyze PMN and N400 to clarify the differences between existing sound symbolic words (onomatopoeia or ideophones) and pseudowords in terms of semantic and phonological processing. Methods An existing sound symbolic word and pseudowords were presented as an auditory stimulus in combination with a picture of an event, and PMN and N400 were measured while the subjects determined whether the sound stimuli and pictures match or mismatch. Results In both the existing word and pseudoword tasks, the amplitude of PMN and N400 increased when the picture of an event and the speech sound did not match. Additionally, compared to the existing words, the pseudowords elicited a greater amplitude for PMN and N400. In addition, PMN latency was delayed in the mismatch condition relative to the match condition for both existing sound symbolic words and pseudowords. Discussion We concluded that established sound symbolic words and sound symbolic pseudowords undergo similar semantic processing. This finding suggests that sound symbolism pseudowords are not judged on a simple impression level (e.g., spiky/round) or activated by other words with similar spellings (phonological structures) in the lexicon, but are judged on a similar contextual basis as actual words.
Collapse
Affiliation(s)
- Kaori Sasaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, Narita, Japan
| | - Seiichi Kadowaki
- Graduate School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Junya Iwasaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, Narita, Japan
| | - Marta Pijanowska
- Office of Medical Education, International University of Health and Welfare, School of Medicine, Narita, Japan
- Graduate School of Humanities and Sociology, University of Tokyo, Tokyo, Japan
| | - Hidehiko Okamoto
- Graduate School of Medicine, International University of Health and Welfare, Narita, Japan
| |
Collapse
|
9
|
Li S, Zhang T, Zu G, Wang A, Zhang M. Electrophysiological evidence of crossmodal correspondence between auditory pitch and visual elevation affecting inhibition of return. Brain Cogn 2023; 171:106075. [PMID: 37625284 DOI: 10.1016/j.bandc.2023.106075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
Inhibition of return (IOR) has proved to be weakened by audiovisual integration because of the increased perceptual salience of targets. Although other audiovisual interactions, such as crossmodal correspondence, have also been shown to facilitate attentional processes, to the best of our knowledge, no study has investigated the interaction between crossmodal correspondence and IOR. The present study employed Posner's spatial cueing paradigm and manipulated the cue validity, crossmodal correspondence congruency and time interval of auditory and visual stimuli (AV interval) to explore the effect of crossmodal correspondence on the IOR effect. The behavioral results showed a reduced IOR effect under the correspondence congruency condition in contrast to the correspondence incongruency condition at the AV interval of 200 ms, whereas at an AV interval of 80 ms, the decreased IOR effect under crossmodal correspondence congruency was eliminated. The electrophysiological results showed a reduced amplitude difference in P2 between valid and invalid cue conditions when the crossmodal correspondence effect decreased the IOR effect. The present study provided the first evidence of the weakened effect of the crossmodal correspondence effect on the IOR effect, which could be eliminated by audiovisual integration.
Collapse
Affiliation(s)
- Shuqi Li
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China
| | - Tianyang Zhang
- School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Guangyao Zu
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China
| | - Aijun Wang
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China.
| | - Ming Zhang
- Department of Psychology, Suzhou University of Science and Technology, Suzhou, China; Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.
| |
Collapse
|
10
|
Di Pietro SV, Karipidis II, Pleisch G, Brem S. Neurodevelopmental trajectories of letter and speech sound processing from preschool to the end of elementary school. Dev Cogn Neurosci 2023; 61:101255. [PMID: 37196374 DOI: 10.1016/j.dcn.2023.101255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/20/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
Learning to read alphabetic languages starts with learning letter-speech-sound associations. How this process changes brain function during development is still largely unknown. We followed 102 children with varying reading skills in a mixed-longitudinal/cross-sectional design from the prereading stage to the end of elementary school over five time points (n = 46 with two and more time points, of which n = 16 fully-longitudinal) to investigate the neural trajectories of letter and speech sound processing using fMRI. Children were presented with letters and speech sounds visually, auditorily, and audiovisually in kindergarten (6.7yo), at the middle (7.3yo) and end of first grade (7.6yo), and in second (8.4yo) and fifth grades (11.5yo). Activation of the ventral occipitotemporal cortex for visual and audiovisual processing followed a complex trajectory, with two peaks in first and fifth grades. The superior temporal gyrus (STG) showed an inverted U-shaped trajectory for audiovisual letter processing, a development that in poor readers was attenuated in middle STG and absent in posterior STG. Finally, the trajectories for letter-speech-sound integration were modulated by reading skills and showed differing directionality in the congruency effect depending on the time point. This unprecedented study captures the development of letter processing across elementary school and its neural trajectories in children with varying reading skills.
Collapse
Affiliation(s)
- S V Di Pietro
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | - I I Karipidis
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - G Pleisch
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland
| | - S Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Sciortino P, Kayser C. Steady state visual evoked potentials reveal a signature of the pitch-size crossmodal association in visual cortex. Neuroimage 2023; 273:120093. [PMID: 37028733 DOI: 10.1016/j.neuroimage.2023.120093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Crossmodal correspondences describe our tendency to associate sensory features from different modalities with each other, such as the pitch of a sound with the size of a visual object. While such crossmodal correspondences (or associations) are described in many behavioural studies their neurophysiological correlates remain unclear. Under the current working model of multisensory perception both a low- and a high-level account seem plausible. That is, the neurophysiological processes shaping these associations could commence in low-level sensory regions, or may predominantly emerge in high-level association regions of semantic and object identification networks. We exploited steady-state visual evoked potentials (SSVEP) to directly probe this question, focusing on the associations between pitch and the visual features of size, hue or chromatic saturation. We found that SSVEPs over occipital regions are sensitive to the congruency between pitch and size, and a source analysis pointed to an origin around primary visual cortices. We speculate that this signature of the pitch-size association in low-level visual cortices reflects the successful pairing of congruent visual and acoustic object properties and may contribute to establishing causal relations between multisensory objects. Besides this, our study also provides a paradigm can be exploited to study other crossmodal associations involving visual stimuli in the future.
Collapse
|
12
|
Scheliga S, Kellermann T, Lampert A, Rolke R, Spehr M, Habel U. Neural correlates of multisensory integration in the human brain: an ALE meta-analysis. Rev Neurosci 2023; 34:223-245. [PMID: 36084305 DOI: 10.1515/revneuro-2022-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/22/2022] [Indexed: 02/07/2023]
Abstract
Previous fMRI research identified superior temporal sulcus as central integration area for audiovisual stimuli. However, less is known about a general multisensory integration network across senses. Therefore, we conducted activation likelihood estimation meta-analysis with multiple sensory modalities to identify a common brain network. We included 49 studies covering all Aristotelian senses i.e., auditory, visual, tactile, gustatory, and olfactory stimuli. Analysis revealed significant activation in bilateral superior temporal gyrus, middle temporal gyrus, thalamus, right insula, and left inferior frontal gyrus. We assume these regions to be part of a general multisensory integration network comprising different functional roles. Here, thalamus operate as first subcortical relay projecting sensory information to higher cortical integration centers in superior temporal gyrus/sulcus while conflict-processing brain regions as insula and inferior frontal gyrus facilitate integration of incongruent information. We additionally performed meta-analytic connectivity modelling and found each brain region showed co-activations within the identified multisensory integration network. Therefore, by including multiple sensory modalities in our meta-analysis the results may provide evidence for a common brain network that supports different functional roles for multisensory integration.
Collapse
Affiliation(s)
- Sebastian Scheliga
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thilo Kellermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.,JARA-Institute Brain Structure Function Relationship, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Roman Rolke
- Department of Palliative Medicine, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Marc Spehr
- Department of Chemosensation, RWTH Aachen University, Institute for Biology, Worringerweg 3, 52074 Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.,JARA-Institute Brain Structure Function Relationship, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
13
|
Induction Mechanism of Auditory-Assisted Vision for Target Search Localization in Mixed Reality (MR) Environments. AEROSPACE 2022. [DOI: 10.3390/aerospace9070340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In MR (mixed reality) environments, visual searches are often used for search and localization missions. There are some problems with search and localization technologies, such as a limited field of view and information overload. They are unable to satisfy the need for the rapid and precise location of specific flying objects in a group of air and space targets under modern air and space situational requirements. They lead to inefficient interactions throughout the mission process. A human being’s decision and judgment will be affected by inefficient interactions. Based on this problem, we carried out a multimodal optimization study on the use of an auditory-assisted visual search for localization in an MR environment. In the spatial–spherical coordinate system, the target flight object position is uniquely determined by the height h, distance r, and azimuth θ. Therefore, there is an urgent need to study the cross-modal connections between the auditory elements and these three coordinates based on a visual search. In this paper, an experiment was designed to study the correlation between auditory intuitive perception and vision and the cognitive induction mechanism. The experiment included the three cross-modal mappings of pitch–height, volume–distance, and vocal tract alternation–spatial direction. The research conclusions are as follows: (1) Visual cognition is induced by high, medium, and low pitches to be biased towards the high, medium, and low spatial regions of the visual space. (2) Visual cognition is induced by loud, medium, and low volumes to be biased towards the near, middle, and far spatial regions of the visual space. (3) Based on the HRTF application, the vocal track alternation scheme is expected to significantly improve the efficiency of visual interactions. Visual cognition is induced by left short sounds, right short sounds, left short and long sounds, and right short and long sounds to be biased towards the left, right, left-rear, and right-rear directions of visual space. (4) The cognitive load of search and localization technologies is significantly reduced by incorporating auditory factors. In addition, the efficiency and effect of the accurate search and positioning of space-flying objects have been greatly improved. The above findings can be applied to the research on various types of target search and localization technologies in an MR environment and can provide a theoretical basis for the subsequent study of spatial information perception and cognitive induction mechanisms in an MR environment with visual–auditory coupling.
Collapse
|
14
|
Liang J, Li Y, Zhang Z, Luo W. Sound gaps boost emotional audiovisual integration independent of attention: Evidence from an ERP study. Biol Psychol 2021; 168:108246. [PMID: 34968556 DOI: 10.1016/j.biopsycho.2021.108246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 11/02/2022]
Abstract
The emotion discrimination paradigm was adopted to study the effect of interrupted sound on visual emotional processing under different attentional states. There were two experiments: Experiment 1: judging facial expressions (explicit task), Experiment 2: judging the position of a bar (implicit task). In Experiment 1, ERP results showed that there was a sound gap accelerating the effect of P1 present only under neutral faces. In Experiment 2, the accelerating effect (P1) existed regardless of the emotional condition. Combining two experiments, P1 findings suggest that sound gap enhances bottom-up attention. The N170 and late positive component (LPC) were found to be regulated by emotion face in both experiments, with fear over the neutral. Comparing the two experiments, the explicit task induced a larger LPC than the implicit task. Overall, sound gaps boosted the audiovisual integration by bottom-up attention in early integration, while cognitive expectations led to top-down attention in late stages.
Collapse
Affiliation(s)
- Junyu Liang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian 116029, Liaoning Province, China
| | - Yuchen Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian 116029, Liaoning Province, China
| | - Zhao Zhang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China; Institute of Psychology, Weifang Medical University, Weifang 216053, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian 116029, Liaoning Province, China
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian 116029, Liaoning Province, China.
| |
Collapse
|
15
|
Neurocomputational mechanisms underlying cross-modal associations and their influence on perceptual decisions. Neuroimage 2021; 247:118841. [PMID: 34952232 PMCID: PMC9127393 DOI: 10.1016/j.neuroimage.2021.118841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/07/2021] [Accepted: 12/19/2021] [Indexed: 12/02/2022] Open
Abstract
When exposed to complementary features of information across sensory modalities, our brains formulate cross-modal associations between features of stimuli presented separately to multiple modalities. For example, auditory pitch-visual size associations map high-pitch tones with small-size visual objects, and low-pitch tones with large-size visual objects. Preferential, or congruent, cross-modal associations have been shown to affect behavioural performance, i.e. choice accuracy and reaction time (RT) across multisensory decision-making paradigms. However, the neural mechanisms underpinning such influences in perceptual decision formation remain unclear. Here, we sought to identify when perceptual improvements from associative congruency emerge in the brain during decision formation. In particular, we asked whether such improvements represent ‘early’ sensory processing benefits, or ‘late’ post-sensory changes in decision dynamics. Using a modified version of the Implicit Association Test (IAT), coupled with electroencephalography (EEG), we measured the neural activity underlying the effect of auditory stimulus-driven pitch-size associations on perceptual decision formation. Behavioural results showed that participants responded significantly faster during trials when auditory pitch was congruent, rather than incongruent, with its associative visual size counterpart. We used multivariate Linear Discriminant Analysis (LDA) to characterise the spatiotemporal dynamics of EEG activity underpinning IAT performance. We found an ‘Early’ component (∼100–110 ms post-stimulus onset) coinciding with the time of maximal discrimination of the auditory stimuli, and a ‘Late’ component (∼330–340 ms post-stimulus onset) underlying IAT performance. To characterise the functional role of these components in decision formation, we incorporated a neurally-informed Hierarchical Drift Diffusion Model (HDDM), revealing that the Late component decreases response caution, requiring less sensory evidence to be accumulated, whereas the Early component increased the duration of sensory-encoding processes for incongruent trials. Overall, our results provide a mechanistic insight into the contribution of ‘early’ sensory processing, as well as ‘late’ post-sensory neural representations of associative congruency to perceptual decision formation.
Collapse
|
16
|
McCormick K, Lacey S, Stilla R, Nygaard LC, Sathian K. Neural Basis of the Sound-Symbolic Crossmodal Correspondence Between Auditory Pseudowords and Visual Shapes. Multisens Res 2021; 35:29-78. [PMID: 34384048 PMCID: PMC9196751 DOI: 10.1163/22134808-bja10060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/17/2021] [Indexed: 11/19/2022]
Abstract
Sound symbolism refers to the association between the sounds of words and their meanings, often studied using the crossmodal correspondence between auditory pseudowords, e.g., 'takete' or 'maluma', and pointed or rounded visual shapes, respectively. In a functional magnetic resonance imaging study, participants were presented with pseudoword-shape pairs that were sound-symbolically congruent or incongruent. We found no significant congruency effects in the blood oxygenation level-dependent (BOLD) signal when participants were attending to visual shapes. During attention to auditory pseudowords, however, we observed greater BOLD activity for incongruent compared to congruent audiovisual pairs bilaterally in the intraparietal sulcus and supramarginal gyrus, and in the left middle frontal gyrus. We compared this activity to independent functional contrasts designed to test competing explanations of sound symbolism, but found no evidence for mediation via language, and only limited evidence for accounts based on multisensory integration and a general magnitude system. Instead, we suggest that the observed incongruency effects are likely to reflect phonological processing and/or multisensory attention. These findings advance our understanding of sound-to-meaning mapping in the brain.
Collapse
Affiliation(s)
- Kelly McCormick
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Simon Lacey
- Department of Neurology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
- Department of Neural and Behavioral Sciences, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
| | - Randall Stilla
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Lynne C. Nygaard
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - K. Sathian
- Department of Neurology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
- Department of Neural and Behavioral Sciences, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
- Department of Psychology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
| |
Collapse
|
17
|
Dozio N, Maggioni E, Pittera D, Gallace A, Obrist M. May I Smell Your Attention: Exploration of Smell and Sound for Visuospatial Attention in Virtual Reality. Front Psychol 2021; 12:671470. [PMID: 34366990 PMCID: PMC8339311 DOI: 10.3389/fpsyg.2021.671470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/21/2021] [Indexed: 11/14/2022] Open
Abstract
When interacting with technology, attention is mainly driven by audiovisual and increasingly haptic stimulation. Olfactory stimuli are widely neglected, although the sense of smell influences many of our daily life choices, affects our behavior, and can catch and direct our attention. In this study, we investigated the effect of smell and sound on visuospatial attention in a virtual environment. We implemented the Bells Test, an established neuropsychological test to assess attentional and visuospatial disorders, in virtual reality (VR). We conducted an experiment with 24 participants comparing the performance of users under three experimental conditions (smell, sound, and smell and sound). The results show that multisensory stimuli play a key role in driving the attention of the participants and highlight asymmetries in directing spatial attention. We discuss the relevance of the results within and beyond human-computer interaction (HCI), particularly with regard to the opportunity of using VR for rehabilitation and assessment procedures for patients with spatial attention deficits.
Collapse
Affiliation(s)
- Nicolò Dozio
- Politecnico di Milano, Department of Mechanical Engineering, Milan, Italy
- Sussex Computer-Human Interaction Lab, Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Emanuela Maggioni
- Sussex Computer-Human Interaction Lab, Department of Informatics, University of Sussex, Brighton, United Kingdom
- Department of Computer Science, University College London, London, United Kingdom
| | - Dario Pittera
- Sussex Computer-Human Interaction Lab, Department of Informatics, University of Sussex, Brighton, United Kingdom
- Ultraleap Ltd., Bristol, United Kingdom
| | - Alberto Gallace
- Mind and Behavior Technological Center - MibTec, University of Milano-Bicocca, Milan, Italy
| | - Marianna Obrist
- Sussex Computer-Human Interaction Lab, Department of Informatics, University of Sussex, Brighton, United Kingdom
- Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
18
|
Kwak Y, Nam H, Kim HW, Kim CY. Cross-Modal Correspondence Between Speech Sound and Visual Shape Influencing Perceptual Representation of Shape: the Role of Articulation and Pitch. Multisens Res 2020; 33:569-598. [PMID: 32083558 DOI: 10.1163/22134808-20191330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/21/2019] [Indexed: 11/19/2022]
Abstract
Cross-modal correspondence is the tendency to systematically map stimulus features across sensory modalities. The current study explored cross-modal correspondence between speech sound and shape (Experiment 1), and whether such association can influence shape representation (Experiment 2). For the purpose of closely examining the role of the two factors - articulation and pitch - combined in speech acoustics, we generated two sets of 25 vowel stimuli - pitch-varying and pitch-constant sets. Both sets were generated by manipulating articulation - frontness and height of the tongue body's positions - but differed in terms of whether pitch varied among the sounds within the same set. In Experiment 1, participants made a forced choice between a round and a spiky shape to indicate the shape better associated with each sound. Results showed that shape choice was modulated according to both articulation and pitch, and we therefore concluded that both factors play significant roles in sound-shape correspondence. In Experiment 2, participants reported their subjective experience of shape accompanied by vowel sounds by adjusting an ambiguous shape in the response display. We found that sound-shape correspondence exerts an effect on shape representation by modulating audiovisual interaction, but only in the case of pitch-varying sounds. Therefore, pitch information within vowel acoustics plays the leading role in sound-shape correspondence influencing shape representation. Taken together, our results suggest the importance of teasing apart the roles of articulation and pitch for understanding sound-shape correspondence.
Collapse
Affiliation(s)
- Yuna Kwak
- 1Department of Psychology, Korea University, Seoul 02841, Korea
| | - Hosung Nam
- 2Department of English Language and Literature, Korea University, Seoul 02841, Korea.,3Haskins Laboratories, New Haven, CT 06511, USA
| | - Hyun-Woong Kim
- 1Department of Psychology, Korea University, Seoul 02841, Korea
| | - Chai-Youn Kim
- 1Department of Psychology, Korea University, Seoul 02841, Korea
| |
Collapse
|
19
|
Lacey S, Nguyen J, Schneider P, Sathian K. Crossmodal Visuospatial Effects on Auditory Perception of Musical Contour. Multisens Res 2020; 34:113-127. [PMID: 33706275 DOI: 10.1163/22134808-bja10034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/08/2020] [Indexed: 11/19/2022]
Abstract
The crossmodal correspondence between auditory pitch and visuospatial elevation (in which high- and low-pitched tones are associated with high and low spatial elevation respectively) has been proposed as the basis for Western musical notation. One implication of this is that music perception engages visuospatial processes and may not be exclusively auditory. Here, we investigated how music perception is influenced by concurrent visual stimuli. Participants listened to unfamiliar five-note musical phrases with four kinds of pitch contour (rising, falling, rising-falling, or falling-rising), accompanied by incidental visual contours that were either congruent (e.g., auditory rising/visual rising) or incongruent (e.g., auditory rising/visual falling) and judged whether the final note of the musical phrase was higher or lower in pitch than the first. Response times for the auditory judgment were significantly slower for incongruent compared to congruent trials, i.e., there was a congruency effect, even though the visual contours were incidental to the auditory task. These results suggest that music perception, although generally regarded as an auditory experience, may actually be multisensory in nature.
Collapse
Affiliation(s)
- Simon Lacey
- 1Department of Neurology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA.,2Department of Neural and Behavioral Sciences, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
| | - James Nguyen
- 1Department of Neurology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
| | - Peter Schneider
- 3Department of Neuroradiology, Heidelberg Medical School, Heidelberg, Germany.,4Department of Neurology, Heidelberg Medical School, Heidelberg, Germany
| | - K Sathian
- 1Department of Neurology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA.,2Department of Neural and Behavioral Sciences, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA.,5Department of Psychology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
| |
Collapse
|
20
|
Li Y, Seger C, Chen Q, Mo L. Left Inferior Frontal Gyrus Integrates Multisensory Information in Category Learning. Cereb Cortex 2020; 30:4410-4423. [DOI: 10.1093/cercor/bhaa029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/31/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Humans are able to categorize things they encounter in the world (e.g., a cat) by integrating multisensory information from the auditory and visual modalities with ease and speed. However, how the brain learns multisensory categories remains elusive. The present study used functional magnetic resonance imaging to investigate, for the first time, the neural mechanisms underpinning multisensory information-integration (II) category learning. A sensory-modality-general network, including the left insula, right inferior frontal gyrus (IFG), supplementary motor area, left precentral gyrus, bilateral parietal cortex, and right caudate and globus pallidus, was recruited for II categorization, regardless of whether the information came from a single modality or from multiple modalities. Putamen activity was higher in correct categorization than incorrect categorization. Critically, the left IFG and left body and tail of the caudate were activated in multisensory II categorization but not in unisensory II categorization, which suggests this network plays a specific role in integrating multisensory information during category learning. The present results extend our understanding of the role of the left IFG in multisensory processing from the linguistic domain to a broader role in audiovisual learning.
Collapse
Affiliation(s)
- You Li
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, Guangdong, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Carol Seger
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, Guangdong, China
- Department of Psychology, Colorado State University, Fort Collins, CO 80521 USA
| | - Qi Chen
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Lei Mo
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, Guangdong, China
| |
Collapse
|
21
|
Tsai CG, Li CW. Is It Speech or Song? Effect of Melody Priming on Pitch Perception of Modified Mandarin Speech. Brain Sci 2019; 9:brainsci9100286. [PMID: 31652522 PMCID: PMC6826721 DOI: 10.3390/brainsci9100286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/22/2023] Open
Abstract
Tonal languages make use of pitch variation for distinguishing lexical semantics, and their melodic richness seems comparable to that of music. The present study investigated a novel priming effect of melody on the pitch processing of Mandarin speech. When a spoken Mandarin utterance is preceded by a musical melody, which mimics the melody of the utterance, the listener is likely to perceive this utterance as song. We used functional magnetic resonance imaging to examine the neural substrates of this speech-to-song transformation. Pitch contours of spoken utterances were modified so that these utterances can be perceived as either speech or song. When modified speech (target) was preceded by a musical melody (prime) that mimics the speech melody, a task of judging the melodic similarity between the target and prime was associated with increased activity in the inferior frontal gyrus (IFG) and superior/middle temporal gyrus (STG/MTG) during target perception. We suggest that the pars triangularis of the right IFG may allocate attentional resources to the multi-modal processing of speech melody, and the STG/MTG may integrate the phonological and musical (melodic) information of this stimulus. These results are discussed in relation to subvocal rehearsal, a speech-to-song illusion, and song perception.
Collapse
Affiliation(s)
- Chen-Gia Tsai
- Graduate Institute of Musicology, National Taiwan University, Taipei 106, Taiwan.
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 106, Taiwan.
| | - Chia-Wei Li
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| |
Collapse
|
22
|
Peiffer-Smadja N, Cohen L. The cerebral bases of the bouba-kiki effect. Neuroimage 2019; 186:679-689. [PMID: 30503933 DOI: 10.1016/j.neuroimage.2018.11.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 11/30/2022] Open
Abstract
The crossmodal correspondence between some speech sounds and some geometrical shapes, known as the bouba-kiki (BK) effect, constitutes a remarkable exception to the general arbitrariness of the links between word meaning and word sounds. We have analyzed the association of shapes and sounds in order to determine whether it occurs at a perceptual or at a decisional level, and whether it takes place in sensory cortices or in supramodal regions. First, using an Implicit Association Test (IAT), we have shown that the BK effect may occur without participants making any explicit decision relative to sound-shape associations. Second, looking for the brain correlates of implicit BK matching, we have found that intermodal matching influences activations in both auditory and visual sensory cortices. Moreover, we found stronger prefrontal activation to mismatching than to matching stimuli, presumably reflecting a modulation of executive processes by crossmodal correspondence. Thus, through its roots in the physiology of object categorization and crossmodal matching, the BK effect provides a unique insight into some non-linguistic components of word formation.
Collapse
Affiliation(s)
- Nathan Peiffer-Smadja
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - Laurent Cohen
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France; Département de Neurologie 1, Hôpital de la Pitié Salpêtrière, AP-HP, F-75013, Paris, France.
| |
Collapse
|
23
|
Spence C. On the Relative Nature of (Pitch-Based) Crossmodal Correspondences. Multisens Res 2019; 32:235-265. [DOI: 10.1163/22134808-20191407] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/21/2019] [Indexed: 11/19/2022]
Abstract
Abstract
This review deals with the question of the relative vs absolute nature of crossmodal correspondences, with a specific focus on those correspondences involving the auditory dimension of pitch. Crossmodal correspondences have been defined as the often-surprising crossmodal associations that people experience between features, attributes, or dimensions of experience in different sensory modalities, when either physically present, or else merely imagined. In the literature, crossmodal correspondences have often been contrasted with synaesthesia in that the former are frequently said to be relative phenomena (e.g., it is the higher-pitched of two sounds that is matched with the smaller of two visual stimuli, say, rather than there being a specific one-to-one crossmodal mapping between a particular pitch of sound and size of object). By contrast, in the case of synaesthesia, the idiosyncratic mapping between inducer and concurrent tends to be absolute (e.g., it is a particular sonic inducer that elicits a specific colour concurrent). However, a closer analysis of the literature soon reveals that the distinction between relative and absolute in the case of crossmodal correspondences may not be as clear-cut as some commentators would have us believe. Furthermore, it is important to note that the relative vs absolute question may receive different answers depending on the particular (class of) correspondence under empirical investigation.
Collapse
Affiliation(s)
- Charles Spence
- Crossmodal Research Laboratory, Oxford University, Oxford, UK
| |
Collapse
|