1
|
Chen M, Gao M, Ma J, Lee TMC. Intrinsic brain functional connectivity mediates the relationship between psychological resilience and cognitive decline in ageing. GeroScience 2025:10.1007/s11357-025-01529-5. [PMID: 39899190 DOI: 10.1007/s11357-025-01529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
Ageing individuals often experience cognitive decline and intrinsic functional connectivity (FC) changes. Psychological resilience, a personality trait that reflects the capacity to adapt and cope with age-related challenges, plays a key role in mitigating cognitive decline. In this study involving 101 older adults, we investigated how psychological resilience influences cognitive decline measured by processing speed. Particularly, we obtained resting-state functional magnetic resonance imaging (fMRI) to assess how intrinsic FC, represented by degree centrality, modulates the relationship between resilience and processing speed. Our results indicated while psychological resilience positively predicted processing speed, this relationship was mainly driven by education. Additionally, the degree centrality of both thalamus and caudate negatively correlated with processing speed and resilience. Notably, the degree centrality of both thalamus and caudate significantly mediated the relationship between resilience and processing speed. These findings suggest that psychological resilience could protect against age-related cognitive decline via its influence on FC in the thalamus and caudate, highlighting these areas as potential intervention targets for reducing cognitive decline in ageing people.
Collapse
Affiliation(s)
- Menglu Chen
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong SAR, China
| | - Mengxia Gao
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong SAR, China
| | - Junji Ma
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong SAR, China
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Mooraj Z, Salami A, Campbell KL, Dahl MJ, Kosciessa JQ, Nassar MR, Werkle-Bergner M, Craik FIM, Lindenberger U, Mayr U, Rajah MN, Raz N, Nyberg L, Garrett DD. Toward a functional future for the cognitive neuroscience of human aging. Neuron 2025; 113:154-183. [PMID: 39788085 DOI: 10.1016/j.neuron.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
The cognitive neuroscience of human aging seeks to identify neural mechanisms behind the commonalities and individual differences in age-related behavioral changes. This goal has been pursued predominantly through structural or "task-free" resting-state functional neuroimaging. The former has elucidated the material foundations of behavioral decline, and the latter has provided key insight into how functional brain networks change with age. Crucially, however, neither is able to capture brain activity representing specific cognitive processes as they occur. In contrast, task-based functional imaging allows a direct probe into how aging affects real-time brain-behavior associations in any cognitive domain, from perception to higher-order cognition. Here, we outline why task-based functional neuroimaging must move center stage to better understand the neural bases of cognitive aging. In turn, we sketch a multi-modal, behavior-first research framework that is built upon cognitive experimentation and emphasizes the importance of theory and longitudinal design.
Collapse
Affiliation(s)
- Zoya Mooraj
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK.
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet & Stockholm University, 17165 Stockholm, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Medical and Translational Biology, Umeå University, 90187 Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
| | - Karen L Campbell
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Julian Q Kosciessa
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, 6525 GD Nijmegen, the Netherlands
| | - Matthew R Nassar
- Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Fergus I M Craik
- Rotman Research Institute at Baycrest, Toronto, ON M6A 2E1, Canada
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK
| | - Ulrich Mayr
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| | - M Natasha Rajah
- Department of Psychiatry, McGill University Montreal, Montreal, QC H3A 1A1, Canada; Department of Psychology, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Naftali Raz
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Department of Psychology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Medical and Translational Biology, Umeå University, 90187 Umeå, Sweden; Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden
| | - Douglas D Garrett
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK.
| |
Collapse
|
3
|
Corriveau-Lecavalier N, Adams JN, Fischer L, Molloy EN, Maass A. Cerebral hyperactivation across the Alzheimer's disease pathological cascade. Brain Commun 2024; 6:fcae376. [PMID: 39513091 PMCID: PMC11542485 DOI: 10.1093/braincomms/fcae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Neuronal dysfunction in specific brain regions or across distributed brain networks is a known feature of Alzheimer's disease. An often reported finding in the early stage of the disease is the presence of increased functional MRI (fMRI) blood oxygenation level-dependent signal under task conditions relative to cognitively normal controls, a phenomenon known as 'hyperactivation'. However, research in the past decades yielded complex, sometimes conflicting results. The magnitude and topology of fMRI hyperactivation patterns have been found to vary across the preclinical and clinical spectrum of Alzheimer's disease, including concomitant 'hypoactivation' in some cases. These incongruences are likely due to a range of factors, including the disease stage at which the cohort is examined, the brain areas or networks studied and the fMRI paradigm utilized to evoke these functional abnormalities. Additionally, a perennial question pertains to the nature of hyperactivation in the context of Alzheimer's disease. Some propose it reflects compensatory mechanisms to sustain cognitive performance, while others suggest it is linked to the pathological disruption of a highly regulated homeostatic cycle that contributes to, or even drives, disease progression. Providing a coherent narrative for these empirical and conceptual discrepancies is paramount to develop disease models, understand the synergy between hyperactivation and the Alzheimer's disease pathological cascade and tailor effective interventions. We first provide a comprehensive overview of functional brain changes spanning the course from normal ageing to the clinical spectrum of Alzheimer's disease. We then highlight evidence supporting a close relationship between fMRI hyperactivation and in vivo markers of Alzheimer's pathology. We primarily focus on task-based fMRI studies in humans, but also consider studies using different functional imaging techniques and animal models. We then discuss the potential mechanisms underlying hyperactivation in the context of Alzheimer's disease and provide a testable framework bridging hyperactivation, ageing, cognition and the Alzheimer's disease pathological cascade. We conclude with a discussion of future challenges and opportunities to advance our understanding of the fundamental disease mechanisms of Alzheimer's disease, and the promising development of therapeutic interventions incorporating or aimed at hyperactivation and large-scale functional systems.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55902 USA
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine 92697, CA, USA
| | - Larissa Fischer
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
| | - Eóin N Molloy
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Division of Nuclear Medicine, Department of Radiology & Nuclear Medicine, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Institute for Biology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
4
|
Imperio CM, Chua EF. Lack of effects of online HD-tDCS over the left or right DLPFC in an associative memory and metamemory monitoring task. PLoS One 2024; 19:e0300779. [PMID: 38848375 PMCID: PMC11161112 DOI: 10.1371/journal.pone.0300779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/20/2024] [Indexed: 06/09/2024] Open
Abstract
Neuroimaging studies have shown that activity in the prefrontal cortex correlates with two critical aspects of normal memory functioning: retrieval of episodic memories and subjective "feelings-of-knowing" about our memory. Brain stimulation can be used to test the causal role of the prefrontal cortex in these processes, and whether the role differs for the left versus right prefrontal cortex. We compared the effects of online High-Definition transcranial Direct Current Stimulation (HD-tDCS) over the left or right dorsolateral prefrontal cortex (DLPFC) compared to sham during a proverb-name associative memory and feeling-of-knowing task. There were no significant effects of HD-tDCS on either associative recognition or feeling-of-knowing performance, with Bayesian analyses showing moderate support for the null hypotheses. Despite past work showing effects of HD-tDCS on other memory and feeling-of-knowing tasks, and neuroimaging showing effects with similar tasks, these findings add to the literature of non-significant effects with tDCS. This work highlights the need to better understand factors that determine the effectiveness of tDCS, especially if tDCS is to have a successful future as a clinical intervention.
Collapse
Affiliation(s)
- Casey M Imperio
- The Graduate Center of the City University of New York, New York, New York, United States of America
| | - Elizabeth F Chua
- The Graduate Center of the City University of New York, New York, New York, United States of America
- Brooklyn College of the City University of New York, New York, New York, United States of America
| |
Collapse
|
5
|
Craik FI. Memory, aging and the brain: Old findings and current issues. AGING BRAIN 2023; 4:100096. [PMID: 37701730 PMCID: PMC10494262 DOI: 10.1016/j.nbas.2023.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
In this article I reprise some selected findings and issues from my previous behavioural work on age-related differences in memory, and relate them to current work on the neural correlates of encoding, retrieval and representation. In particular, I describe the case study of a woman who had persistent experiences of erroneous recollection. I also describe the results of a study showing a double dissociation of implicit and explicit memory in younger and older adults. Finally, I assess recent work on loss of specificity in older adults' encoding and retrieval processes of episodic events. In all cases I attempt to relate these older findings to current ideas and empirical results in the area of memory, aging, and the brain.
Collapse
Affiliation(s)
- Fergus I.M. Craik
- Rotman Research Institute, Baycrest Academy, 3560 Bathurst St., Toronto, ON M6A 2E1, Canada
| |
Collapse
|
6
|
Silcox JW, Mickey B, Payne BR. Disruption to left inferior frontal cortex modulates semantic prediction effects in reading and subsequent memory: Evidence from simultaneous TMS-EEG. Psychophysiology 2023; 60:e14312. [PMID: 37203307 DOI: 10.1111/psyp.14312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 05/20/2023]
Abstract
Readers use prior context to predict features of upcoming words. When predictions are accurate, this increases the efficiency of comprehension. However, little is known about the fate of predictable and unpredictable words in memory or the neural systems governing these processes. Several theories suggest that the speech production system, including the left inferior frontal cortex (LIFC), is recruited for prediction but evidence that LIFC plays a causal role is lacking. We first examined the effects of predictability on memory and then tested the role of posterior LIFC using transcranial magnetic stimulation (TMS). In Experiment 1, participants read category cues, followed by a predictable, unpredictable, or incongruent target word for later recall. We observed a predictability benefit to memory, with predictable words remembered better than unpredictable words. In Experiment 2, participants performed the same task with electroencephalography (EEG) while undergoing event-related TMS over posterior LIFC using a protocol known to disrupt speech production, or over the right hemisphere homologue as an active control site. Under control stimulation, predictable words were better recalled than unpredictable words, replicating Experiment 1. This predictability benefit to memory was eliminated under LIFC stimulation. Moreover, while an a priori ROI-based analysis did not yield evidence for a reduction in the N400 predictability effect, mass-univariate analyses did suggest that the N400 predictability effect was reduced in spatial and temporal extent under LIFC stimulation. Collectively, these results provide causal evidence that the LIFC is recruited for prediction during silent reading, consistent with prediction-through-production accounts.
Collapse
Affiliation(s)
- Jack W Silcox
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
| | - Brian Mickey
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, Utah, USA
- Neuroscience Program, University of Utah, Salt Lake City, Utah, USA
| | - Brennan R Payne
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
- Neuroscience Program, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Pedersen R, Johansson J, Salami A. Dopamine D1-signaling modulates maintenance of functional network segregation in aging. AGING BRAIN 2023; 3:100079. [PMID: 37408790 PMCID: PMC10318303 DOI: 10.1016/j.nbas.2023.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/21/2023] [Accepted: 05/24/2023] [Indexed: 07/07/2023] Open
Abstract
Past research has shown that as individuals age, there are decreases in within-network connectivity and increases in between-network connectivity, a pattern known as functional dedifferentiation. While the mechanisms behind reduced network segregation are not fully understood, evidence suggests that age-related differences in the dopamine (DA) system may play a key role. The DA D1-receptor (D1DR) is the most abundant and age-sensitive receptor subtype in the dopaminergic system, known to modulate synaptic activity and enhance the specificity of the neuronal signals. In this study from the DyNAMiC project (N = 180, 20-79y), we set out to investigate the interplay among age, functional connectivity, and dopamine D1DR availability. Using a novel application of multivariate Partial Least squares (PLS), we found that older age, and lower D1DR availability, were simultaneously associated with a pattern of decreased within-network and increased between-network connectivity. Individuals who expressed greater distinctiveness of large-scale networks exhibited more efficient working memory. In line with the maintenance hypotheses, we found that older individuals with greater D1DR in caudate exhibited less dedifferentiation of the connectome, and greater working memory, compared to their age-matched counterparts with less D1DR. These findings suggest that dopaminergic neurotransmission plays an important role in functional dedifferentiation in aging with consequences for working memory function at older age.
Collapse
Affiliation(s)
- Robin Pedersen
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Jarkko Johansson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Alireza Salami
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Parkin A, Parker A, Dagnall N. Effects of saccadic eye movements on episodic & semantic memory fluency in older and younger participants. Memory 2023; 31:34-46. [PMID: 36131611 DOI: 10.1080/09658211.2022.2122997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Research has demonstrated that performing a sequence of saccadic horizontal eye movements prior to retrieval facilitates performance on tests of episodic memory. This has been observed in both laboratory tasks of retention and autobiographical memory. To date, the work has centred on performance in younger individuals. This paper extends previous investigations by examining the effects of saccadic eye movements in older persons. Autobiographical episodic and semantic memory fluency was assessed in younger (age range 18-35, mean = 22.50), and older (age range 55-87, mean = 70.35) participants following saccadic (vs. fixation control) manipulations. The main effects of eye movements and age were found for episodic autobiographical memory (greater fluency after eye movements and in younger participants). Semantic autobiographical memory showed a main effect of age (greater fluency in younger participants), whereas general semantic memory showed no effect of age or eye movement. These findings indicate that saccadic horizontal eye movements can enhance episodic personal memory in older individuals. This has implications as a technique to improve autobiographical recollection in the elderly and as an adjunct in reminiscence therapy.
Collapse
Affiliation(s)
- Adam Parkin
- Department of Psychology, Manchester Metropolitan University, Manchester, United Kingdom
| | - Andrew Parker
- Department of Psychology, Manchester Metropolitan University, Manchester, United Kingdom
| | - Neil Dagnall
- Department of Psychology, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
9
|
Zhang Y. Individual prediction of hemispheric similarity of functional connectivity during normal aging. Front Psychiatry 2022; 13:1016807. [PMID: 36226096 PMCID: PMC9548650 DOI: 10.3389/fpsyt.2022.1016807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
In the aging process of normal people, the functional activity pattern of brain is in constant change, and the change of brain runs through the whole life cycle, which plays a crucial role in the track of individual development. In recent years, some studies had been carried out on the brain functional activity pattern during individual aging process from different perspectives, which provided an opportunity for the problem we want to study. In this study, we used the resting-state functional magnetic resonance imaging (rs-fMRI) data from Cambridge Center for Aging and Neuroscience (Cam-CAN) database with large sample and long lifespan, and computed the functional connectivity (FC) values for each individual. Based on these values, the hemispheric similarity of functional connectivity (HSFC) obtained by Pearson correlation was used as the starting point of this study. We evaluated the ability of individual recognition of HSFC in the process of aging, as well as the variation trend with aging process. The results showed that HSFC could be used to identify individuals effectively, and it could reflect the change rule in the process of aging. In addition, we observed a series of results at the sub-module level and find that the recognition rate in the sub-module was different from each other, as well as the trend with age. Finally, as a validation, we repeated the main results by human brainnetome atlas (BNA) template and without global signal regression, found that had a good robustness. This also provides a new clue to hemispherical change patterns during normal aging.
Collapse
Affiliation(s)
- Yingteng Zhang
- Department of Mathematics, Taizhou University, Taizhou, China
| |
Collapse
|
10
|
Johansson J, Wåhlin A, Lundquist A, Brandmaier AM, Lindenberger U, Nyberg L. Model of brain maintenance reveals specific change-change association between medial-temporal lobe integrity and episodic memory. AGING BRAIN 2022; 2:100027. [PMID: 36908884 PMCID: PMC9999442 DOI: 10.1016/j.nbas.2021.100027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/15/2022] Open
Abstract
Brain maintenance has been identified as a major determinant of successful memory aging. However, the extent to which brain maintenance in support of successful memory aging is specific to memory-related brain regions or forms part of a brain-wide phenomenon is unresolved. Here, we used longitudinal brain-wide gray matter MRI volumes in 262 healthy participants aged 55 to 80 years at baseline to investigate separable dimensions of brain atrophy, and explored the links of these dimensions to different dimensions of cognitive change. We statistically adjusted for common causes of change in both brain and cognition to reveal a potentially unique signature of brain maintenance related to successful memory aging. Critically, medial temporal lobe (MTL)/hippocampal change and episodic memory change were characterized by unique, residual variance beyond general factors of change in brain and cognition, and a reliable association between these two residualized variables was established (r = 0.36, p < 0.01). The present study is the first to provide solid evidence for a specific association between changes in (MTL)/hippocampus and episodic memory in normal human aging. We conclude that hippocampus-specific brain maintenance relates to the specific preservation of episodic memory in old age, in line with the notion that brain maintenance operates at both general and domain-specific levels.
Collapse
Affiliation(s)
- Jarkko Johansson
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden.,Department of Statistics, USBE, Umeå University, S-90187 Umeå, Sweden
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, D-14195 Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin Germany and London, UK
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, D-14195 Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin Germany and London, UK
| | - Lars Nyberg
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden.,Wallenberg Center for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Hartwigsen G, Bengio Y, Bzdok D. How does hemispheric specialization contribute to human-defining cognition? Neuron 2021; 109:2075-2090. [PMID: 34004139 PMCID: PMC8273110 DOI: 10.1016/j.neuron.2021.04.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
Uniquely human cognitive faculties arise from flexible interplay between specific local neural modules, with hemispheric asymmetries in functional specialization. Here, we discuss how these computational design principles provide a scaffold that enables some of the most advanced cognitive operations, such as semantic understanding of world structure, logical reasoning, and communication via language. We draw parallels to dual-processing theories of cognition by placing a focus on Kahneman's System 1 and System 2. We propose integration of these ideas with the global workspace theory to explain dynamic relay of information products between both systems. Deepening the current understanding of how neurocognitive asymmetry makes humans special can ignite the next wave of neuroscience-inspired artificial intelligence.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Lise Meitner Research Group Cognition and Plasticity, Leipzig, Germany.
| | - Yoshua Bengio
- Mila, Montreal, QC, Canada; University of Montreal, Montreal, QC, Canada
| | - Danilo Bzdok
- Mila, Montreal, QC, Canada; Montreal Neurological Institute, McConnell Brain Imaging Centre, Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, Faculty of Medicine, and School of Computer Science, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
The ironic effect of older adults' increased task motivation: Implications for neurocognitive aging. Psychon Bull Rev 2021; 28:1743-1754. [PMID: 34173190 DOI: 10.3758/s13423-021-01963-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 11/08/2022]
Abstract
Recent work suggests that most older adults who volunteer to take part in cognitive experiments are more motivated to do well than are undergraduate students. This empirical evidence is echoed by the impressions of cognitive aging researchers. We surveyed a large group (N = 88) of researchers asking about their perceptions of younger and older adults' motivation to take part in lab-based research. Not only were older adults seen as more motivated than younger adults, but researchers thought that the two groups participate for different reasons: younger adults to obtain course credit or monetary compensation, older adults to get a sense of their cognitive health, to further science, and out of curiosity. However, older adults' greater motivation to do well on cognitive tasks may leave them vulnerable to stereotype threat, the phenomenon by which individuals underperform when they are put in a position to either confirm or deny a negative stereotype about their group. In this opinion piece, we argue that most cognitive experiments, not just those designed to measure stereotype threat, likely induce some form of performance-related anxiety in older adults. This anxiety likely leads to greater task-related interference, or thoughts about how one is doing on the task, resulting in poorer performance. We discuss some of the potential implications for our understanding of neurocognitive aging.
Collapse
|
13
|
Nyberg L, Boraxbekk CJ, Sörman DE, Hansson P, Herlitz A, Kauppi K, Ljungberg JK, Lövheim H, Lundquist A, Adolfsson AN, Oudin A, Pudas S, Rönnlund M, Stiernstedt M, Sundström A, Adolfsson R. Biological and environmental predictors of heterogeneity in neurocognitive ageing: Evidence from Betula and other longitudinal studies. Ageing Res Rev 2020; 64:101184. [PMID: 32992046 DOI: 10.1016/j.arr.2020.101184] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Individual differences in cognitive performance increase with advancing age, reflecting marked cognitive changes in some individuals along with little or no change in others. Genetic and lifestyle factors are assumed to influence cognitive performance in ageing by affecting the magnitude and extent of age-related brain changes (i.e., brain maintenance or atrophy), as well as the ability to recruit compensatory processes. The purpose of this review is to present findings from the Betula study and other longitudinal studies, with a focus on clarifying the role of key biological and environmental factors assumed to underlie individual differences in brain and cognitive ageing. We discuss the vital importance of sampling, analytic methods, consideration of non-ignorable dropout, and related issues for valid conclusions on factors that influence healthy neurocognitive ageing.
Collapse
Affiliation(s)
- Lars Nyberg
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden.
| | - Carl-Johan Boraxbekk
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Daniel Eriksson Sörman
- Department of Human Work Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Patrik Hansson
- Department of Psychology, Umeå University, S-90187 Umeå, Sweden
| | - Agneta Herlitz
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Karolina Kauppi
- Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jessica K Ljungberg
- Department of Human Work Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Hugo Lövheim
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Statistics, USBE, Umeå University, 901 87 Umeå, Sweden
| | | | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, S-90187 Umeå, Sweden; Environment Society and Health, Occupational and Environmental Medicine, Lund University
| | - Sara Pudas
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | | | - Mikael Stiernstedt
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | - Anna Sundström
- Department of Psychology, Umeå University, S-90187 Umeå, Sweden; Centre for Demographic and Ageing Research (CEDAR), Umeå University, Umeå, S-90187, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
14
|
Unmasking the relevance of hemispheric asymmetries—Break on through (to the other side). Prog Neurobiol 2020; 192:101823. [DOI: 10.1016/j.pneurobio.2020.101823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
|