1
|
Westerhausen R, Karlsson EM, Johnstone L, Carey DP. Corpus callosum morphology does not depend on hand preference or hemispheric dominance for language. Brain Res 2025; 1856:149574. [PMID: 40096939 DOI: 10.1016/j.brainres.2025.149574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/07/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
It is traditionally assumed that the corpus callosum has a pivotal role in supporting hemispheric lateralisation, which originated from a series of studies suggesting differences in callosal morphology in relation to handedness. However, recent systematic reviews document that the callosal differences are only inconsistently reported, and it has been speculated that these inconsistencies might arise from focussing on handedness alone, without considering other lateralized functional modules. To address this short-coming, the present pre-registered study was designed to re-examine possible effects on callosal morphology while considering hand preference in interaction with hemispheric dominance for language. It was predicted that only those individuals who write with the hand ipsilateral to their language dominant hemisphere, have an increased need for interhemispheric integration that is reflected in detectable alteration to callosal morphology. That is, individual writing with the left hand (LW) while being left hemispheric dominant for language (LLD) are predicted to have a larger or thicker corpus callosum than individuals in which hand motor and language production are controlled by the same hemisphere. We tested this prediction by comparing the corpus callosum between the three common groups that result when combing the preferred writing hand (LW vs. right writers, RW) and the hemisphere dominant for language processing. For this purpose, language dominance (LLD vs. right dominance, RLD) was determined using a verbal-fluency task in functional magnetic resonance (fMRI) that has been previously validated. The study included N = 220 participants of both sexes, of which 97 were classified as LW/LLD, 73 as RW/LLD, and 50 as LW/RLD. The morphology of the corpus callosum was assessed on T1-weighted structural MR images as midsagittal surface area (subdivided into the three subregions genu, truncus, posterior third) as well as regional thickness (at 100 measuring points). The statistical analyses did not reveal any evidence to support our predictions and our sample size provides sufficient test power to rule out comparatively small effects with reasonable confidence. Thus, the midsagittal corpus callosum appears not substantially affected by the supposed increased requirement for interhemispheric integration in LW/LLD as compared with RW/LLD and LW/RLD individuals.
Collapse
Affiliation(s)
| | - Emma M Karlsson
- Institute of Cognitive Neuroscience, School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Leah Johnstone
- Sport Psychology Group, UCFB, Manchester, United Kingdom
| | - David P Carey
- Institute of Cognitive Neuroscience, School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
2
|
Cano-Melle C, Villar-Rodríguez E, Baena-Pérez M, Parcet MA, Avila C. Effects of Lateralization of Language on Cognition Among Left-Handers. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2025; 6:nol_a_00165. [PMID: 40330321 PMCID: PMC12052379 DOI: 10.1162/nol_a_00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/13/2025] [Indexed: 05/08/2025]
Abstract
Atypical language lateralization is associated with a different organization of the entire brain. However, it remains unknown whether this cerebral organization is linked to differences in cognitive task performance. In this study, several neuropsychological tests requiring fast processing speed were administered to left-handed participants, classified based on their language lateralization: left language dominance (n = 48), bilateral (n = 15), and right language dominance (n = 23). A factor analysis was conducted to derive three cognitive function dimensions: reading, articulation, and verbal reasoning; spatial processing; and interference/inhibition. The results showed that right language dominance was associated with poorer overall performance, particularly on tasks related to spatial processing, reading, articulation, and verbal reasoning. We conclude that the atypical development of language lateralization is accompanied by lower cognitive skills in tasks requiring speed of processing and interhemispheric connectivity.
Collapse
Affiliation(s)
- Cristina Cano-Melle
- Neuropsychology and Functional Neuroimaging, Universitat Jaume I, Castellón de la Plana, Spain
| | | | - María Baena-Pérez
- Neuropsychology and Functional Neuroimaging, Universitat Jaume I, Castellón de la Plana, Spain
| | - María Antonia Parcet
- Neuropsychology and Functional Neuroimaging, Universitat Jaume I, Castellón de la Plana, Spain
| | - César Avila
- Neuropsychology and Functional Neuroimaging, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
3
|
Banjac S, Baciu M. Unveiling the hemispheric specialization of language: Organization and neuroplasticity. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:351-365. [PMID: 40074406 DOI: 10.1016/b978-0-443-15646-5.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The advancements in understanding hemispheric specialization of language (HSL) have been following two primary avenues: the development of neuroimaging techniques and the study of its reorganizations in patients with various neuropathologic conditions. Hence, the objectives of this chapter are twofold. First, to provide an overview of the key neuroimaging techniques employed to investigate HSL, along with the notable findings derived from them in the healthy population. Second, it focuses on the reorganization of HSL in physiologic (healthy aging) and pathologic (poststroke aphasia and temporal lobe epilepsy) conditions. The chapter emphasizes the importance of employing multimodal methodologies to comprehend the complex relationship between underlying HSL mechanisms affected by disease and resulting language impairments. Combining the neuroimaging techniques can help us understand how different characteristics of language networks combine into general mechanisms that support their plasticity. Nevertheless, it highlights the need for standardized HSL metrics, as the absence of such metrics poses challenges in synthesizing findings across studies. Additionally, while HSL findings are being accumulated, albeit multimodal, there is a lack of integration within a robust theoretical framework. In conclusion, there is a need for novel models acknowledging multimodal aspects of HSL while positioning it within the context of other cognitive functions.
Collapse
Affiliation(s)
- Sonja Banjac
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Monica Baciu
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LPNC, Grenoble, France.
| |
Collapse
|
4
|
Bishop DVM, Woodhead ZVJ, Watkins KE. Approaches to Measuring Language Lateralisation: An Exploratory Study Comparing Two fMRI Methods and Functional Transcranial Doppler Ultrasound. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:409-431. [PMID: 38911461 PMCID: PMC11192441 DOI: 10.1162/nol_a_00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 06/25/2024]
Abstract
In this exploratory study we compare and contrast two methods for deriving a laterality index (LI) from functional magnetic resonance imaging (fMRI) data: the weighted bootstrapped mean from the LI Toolbox (toolbox method), and a novel method that uses subtraction of activations from homologous regions in left and right hemispheres to give an array of difference scores (mirror method). Data came from 31 individuals who had been selected to include a high proportion of people with atypical laterality when tested with functional transcranial Doppler ultrasound (fTCD). On two tasks, word generation and semantic matching, the mirror method generally gave better agreement with fTCD laterality than the toolbox method, both for individual regions of interest, and for a large region corresponding to the middle cerebral artery. LI estimates from this method had much smaller confidence intervals (CIs) than those from the toolbox method; with the mirror method, most participants were reliably lateralised to left or right, whereas with the toolbox method, a higher proportion were categorised as bilateral (i.e., the CI for the LI spanned zero). Reasons for discrepancies between fMRI methods are discussed: one issue is that the toolbox method averages the LI across a wide range of thresholds. Furthermore, examination of task-related t-statistic maps from the two hemispheres showed that language lateralisation is evident in regions characterised by deactivation, and so key information may be lost by ignoring voxel activations below zero, as is done with conventional estimates of the LI.
Collapse
Affiliation(s)
- Dorothy V. M. Bishop
- Wellcome Centre for Integrative Neuroimaging, Oxford, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Zoe V. J. Woodhead
- Wellcome Centre for Integrative Neuroimaging, Oxford, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Kate E. Watkins
- Wellcome Centre for Integrative Neuroimaging, Oxford, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Karlsson EM, Carey DP. Hemispheric asymmetry of hand and tool perception in left- and right-handers with known language dominance. Neuropsychologia 2024; 196:108837. [PMID: 38428518 DOI: 10.1016/j.neuropsychologia.2024.108837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/20/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Regions in the brain that are selective for images of hands and tools have been suggested to be lateralised to the left hemisphere of right-handed individuals. In left-handers, many functions related to tool use or tool pantomime may also depend more on the left hemisphere. This result seems surprising, given that the dominant hand of these individuals is controlled by the right hemisphere. One explanation is that the left hemisphere is dominant for speech and language in the majority of left-handers, suggesting a supraordinate control system for complex motor sequencing that is required for skilled tool use, as well as for speech. In the present study, we examine if this left-hemispheric specialisation extends to perception of hands and tools in left- and right-handed individuals. We, crucially, also include a group of left-handers with right-hemispheric language dominance to examine their asymmetry biases. The results suggest that tools lateralise to the left hemisphere in most right-handed individuals with left-hemispheric language dominance. Tools also lateralise to the language dominant hemisphere in right-hemispheric language dominant left-handers, but the result for left-hemispheric language dominant left-handers are more varied, and no clear bias towards one hemisphere is found. Hands did not show a group-level asymmetry pattern in any of the groups. These results suggest a more complex picture regarding hemispheric overlap of hand and tool representations, and that visual appearance of tools may be driven in part by both language dominance and the hemisphere which controls the motor-dominant hand.
Collapse
Affiliation(s)
- Emma M Karlsson
- Institute of Cognitive Neuroscience, School of Psychology and Sport Science, Bangor University, Bangor, UK; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.
| | - David P Carey
- Institute of Cognitive Neuroscience, School of Psychology and Sport Science, Bangor University, Bangor, UK
| |
Collapse
|
6
|
Gerrits R. Variability in Hemispheric Functional Segregation Phenotypes: A Review and General Mechanistic Model. Neuropsychol Rev 2024; 34:27-40. [PMID: 36576683 DOI: 10.1007/s11065-022-09575-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 12/29/2022]
Abstract
Many functions of the human brain are organized asymmetrically and are subject to strong population biases. Some tasks, like speaking and making complex hand movements, exhibit left hemispheric dominance, whereas others, such as spatial processing and recognizing faces, favor the right hemisphere. While pattern of preference implies the existence of a stereotypical way of distributing functions between the hemispheres, an ever-increasing body of evidence indicates that not everyone follows this pattern of hemispheric functional segregation. On the contrary, the review conducted in this article shows that departures from the standard hemispheric division of labor are routinely observed and assume many distinct forms, each having a different prevalence rate. One of the key challenges in human neuroscience is to model this variability. By integrating well-established and recently emerged ideas about the mechanisms that underlie functional lateralization, the current article proposes a general mechanistic model that explains the observed distribution of segregation phenotypes and generates new testable hypotheses.
Collapse
Affiliation(s)
- Robin Gerrits
- Department of Experimental Psychology, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Przybylski L, Kroliczak G. The functional organization of skilled actions in the adextral and atypical brain. Neuropsychologia 2023; 191:108735. [PMID: 37984793 DOI: 10.1016/j.neuropsychologia.2023.108735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/21/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
When planning functional grasps of tools, right-handed individuals (dextrals) show mostly left-lateralized neural activity in the praxis representation network (PRN), regardless of the used hand. Here we studied whether or not similar cerebral asymmetries are evident in non-righthanded individuals (adextrals). Sixty two participants, 28 righthanders and 34 non-righthanders (21 lefthanders, 13 mixedhanders), planned functional grasps of tools vs. grasps of control objects, and subsequently performed their pantomimed executions, in an event-related functional magnetic resonance imaging (fMRI) project. Both hands were tested, separately in two different sessions, counterbalanced across participants. After accounting for non-functional components of the prospective grasp, planning functional grasps of tools was associated with greater engagement of the same, left-hemisphere occipito-temporal, parietal and frontal areas of PRN, regardless of hand and handedness. Only when the analyses involved signal changes referenced to resting baseline intervals, differences between adextrals and dextrals emerged. Whereas in the left hemisphere the neural activity was equivalent in both groups (except for the occipito-temporo-parietal junction), its increases in the right occipito-temporal cortex, medial intraparietal sulcus (area MIP), the supramarginal gyrus (area PFt/PF), and middle frontal gyrus (area p9-46v) were significantly greater in adextrals. The inverse contrast was empty. Notably, when individuals with atypical and typical hemispheric phenotypes were directly compared, planning functional (vs. control) grasps invoked, instead, significant clusters located nearly exclusively in the left hemisphere of the typical phenotype. Previous studies interpret similar right-sided vs. left-sided increases in neural activity for skilled actions as handedness dependent, i.e., located in the hemisphere dominant for manual skills. Yet, none of the effects observed here can be purely handedness dependent because there were mixed-handed individuals among adextrals, and numerous mixed-handed and left-handed individuals possess the typical phenotype. Thus, our results clearly show that hand dominance has limited power in driving the cerebral organization of motor cognitive functions.
Collapse
Affiliation(s)
- Lukasz Przybylski
- Action & Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Gregory Kroliczak
- Action & Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland; Cognitive Neuroscience Center, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
8
|
Coutanche MN, Sauter J, Akpan E, Buckser R, Vincent A, Caulfield MK. Novel approaches to functional lateralization: Assessing information in activity patterns across hemispheres and more accurately identifying structural homologues. Neuropsychologia 2023; 190:108684. [PMID: 37741550 DOI: 10.1016/j.neuropsychologia.2023.108684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/16/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Functional lateralization is typically measured by comparing activation levels across the right and left hemispheres of the brain. Significant additional information, however, exists within distributed multi-voxel patterns of activity - a format not detectable by traditional activation-based analysis of functional magnetic resonance imaging (fMRI) data. We introduce and test two methods -one anatomical, one functional- that allow hemispheric information asymmetries to be detected. We first introduce and apply a novel tool that draws on brain 'surface fingerprints' to pair every location in one hemisphere with its hemispheric homologue. We use anatomical data to show that this approach is more accurate than the common distance-from-midline method for comparing bilateral regions. Next, we introduce a complementary analysis method that quantifies multivariate laterality in functional data. This new 'multivariate Laterality Index' (mLI) reflects both quantitative and qualitative information-differences across homologous activity patterns. We apply the technique here to functional data collected as participants viewed faces and non-faces. Using the previously generated surface fingerprints to pair-up homologous searchlights in each hemisphere, we use the novel multivariate laterality technique to identify face-information asymmetries across right and left counterparts of the fusiform gyrus, inferior temporal gyrus, superior parietal lobule, and early visual areas. The typical location of the fusiform face area has greater information asymmetry for faces than for shapes. More generally, we argue that the field should consider an information-based approach to lateralization.
Collapse
Affiliation(s)
- Marc N Coutanche
- Department of Psychology, University of Pittsburgh, PA, 15260, USA; Learning Research & Development Center, University of Pittsburgh, PA, 15260, USA; Brain Institute, University of Pittsburgh, PA, 15260, USA.
| | - Jake Sauter
- State University of New York at Oswego, Oswego, NY, USA
| | - Essang Akpan
- Department of Psychology, University of Pittsburgh, PA, 15260, USA; Learning Research & Development Center, University of Pittsburgh, PA, 15260, USA
| | - Rae Buckser
- Department of Psychology, University of Pittsburgh, PA, 15260, USA; Learning Research & Development Center, University of Pittsburgh, PA, 15260, USA
| | - Augusta Vincent
- Department of Psychology, University of Pittsburgh, PA, 15260, USA; Learning Research & Development Center, University of Pittsburgh, PA, 15260, USA
| | | |
Collapse
|
9
|
Irani ZA, Sheridan AMC, Badcock NA, Fox A. Assessing non-right-handedness and atypical cerebral lateralisation as predictors of paediatric mental health difficulties. Eur J Neurosci 2023; 58:4195-4210. [PMID: 37821770 DOI: 10.1111/ejn.16162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Research utilising handedness as a proxy for atypical language lateralisation has invoked the latter to explain increased mental health difficulties in left-/mixed-handed children. The current study investigated unique associations between handedness and language lateralisation, handedness and mental health, and language lateralisation and mental health, in children, to elucidate the role of cerebral lateralisation in paediatric mental health. Participants were N = 64 (34 females [52%]; MAge = 8.56 years; SDAge = 1.33; aged 6-12 years) typically developing children. Hand preference was assessed via a reaching task, language lateralisation was assessed using functional transcranial Doppler ultrasonography (fTCD) during an expressive language task, and mental health was assessed with the Strengths and Difficulties Questionnaire. As hypothesised, leftward hand preference predicted increased general mental health issues in children, with a strong relationship noted between leftward hand preference and the emotional symptoms subscale. Contrary to expectation, no relationship was found between direction of language lateralisation and general mental health issues, although exploratory analyses of subscales showed rightward lateralisation to predict conduct problems. Hand preference and direction of language lateralisation were also not significantly associated. The relatively weak relationship between manual and language laterality coupled with discrepancy regarding the predictive scope of each phenotype (i.e., hand preference predicts overall mental health, whereas language laterality predicts only conduct problems) suggests independent developmental pathways for these phenotypes. The role of manual laterality in paediatric mental health warrants further investigation utilising a neuroimaging method with higher spatial resolution.
Collapse
Affiliation(s)
- Zubin A Irani
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - Andrew M C Sheridan
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - Nicholas A Badcock
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - Allison Fox
- School of Psychological Science, University of Western Australia, Perth, Australia
| |
Collapse
|
10
|
Karlsson EM, Hugdahl K, Hirnstein M, Carey DP. Analysis of distributions reveals real differences on dichotic listening scores between left- and right-handers. Cereb Cortex Commun 2023; 4:tgad009. [PMID: 37342803 PMCID: PMC10262840 DOI: 10.1093/texcom/tgad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
About 95% of right-handers and 70% of left-handers have a left-hemispheric specialization for language. Dichotic listening is often used as an indirect measure of this language asymmetry. However, while it reliably produces a right-ear advantage (REA), corresponding to the left-hemispheric specialization of language, it paradoxically often fails to obtain statistical evidence of mean differences between left- and right-handers. We hypothesized that non-normality of the underlying distributions might be in part responsible for the similarities in means. Here, we compare the mean ear advantage scores, and also contrast the distributions at multiple quantiles, in two large independent samples (Ns = 1,358 and 1,042) of right-handers and left-handers. Right-handers had an increased mean REA, and a larger proportion had an REA than in the left-handers. We also found that more left-handers are represented in the left-eared end of the distribution. These data suggest that subtle shifts in the distributions of DL scores for right- and left-handers may be at least partially responsible for the unreliability of significantly reduced mean REA in left-handers.
Collapse
Affiliation(s)
- Emma M Karlsson
- Institute of Cognitive Neuroscience, School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Marco Hirnstein
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - David P Carey
- Corresponding author: David P. Carey, School of Human and Behavioural Sciences, Bangor University, Bangor LL57 2AS, UK.
| |
Collapse
|
11
|
Bestelmeyer PEG, Mühl C. Neural dissociation of the acoustic and cognitive representation of voice identity. Neuroimage 2022; 263:119647. [PMID: 36162634 DOI: 10.1016/j.neuroimage.2022.119647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/18/2022] [Accepted: 09/22/2022] [Indexed: 10/31/2022] Open
Abstract
Recognising a speaker's identity by the sound of their voice is important for successful interaction. The skill depends on our ability to discriminate minute variations in the acoustics of the vocal signal. Performance on voice identity assessments varies widely across the population. The neural underpinnings of this ability and its individual differences, however, remain poorly understood. Here we provide critical tests of a theoretical framework for the neural processing stages of voice identity and address how individual differences in identity discrimination mediate activation in this neural network. We scanned 40 individuals on an fMRI adaptation task involving voices drawn from morphed continua between two personally familiar identities. Analyses dissociated neuronal effects induced by repetition of acoustically similar morphs from those induced by a switch in perceived identity. Activation in temporal voice-sensitive areas decreased with acoustic similarity between consecutive stimuli. This repetition suppression effect was mediated by the performance on an independent voice assessment and this result highlights an important functional role of adaptive coding in voice expertise. Bilateral anterior insulae and medial frontal gyri responded to a switch in perceived voice identity compared to an acoustically equidistant switch within identity. Our results support a multistep model of voice identity perception.
Collapse
Affiliation(s)
| | - Constanze Mühl
- Institute of Cognitive Neuroscience, Bangor University, UK
| |
Collapse
|
12
|
Parker AJ, Woodhead ZV, Carey DP, Groen MA, Gutierrez-Sigut E, Hodgson J, Hudson J, Karlsson EM, MacSweeney M, Payne H, Simpson N, Thompson PA, Watkins KE, Egan C, Grant JH, Harte S, Hudson BT, Sablik M, Badcock NA, Bishop DV. Inconsistent language lateralisation – Testing the dissociable language laterality hypothesis using behaviour and lateralised cerebral blood flow. Cortex 2022; 154:105-134. [DOI: 10.1016/j.cortex.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
|
13
|
Thome I, García Alanis JC, Volk J, Vogelbacher C, Steinsträter O, Jansen A. Let's face it: The lateralization of the face perception network as measured with fMRI is not clearly right dominant. Neuroimage 2022; 263:119587. [PMID: 36031183 DOI: 10.1016/j.neuroimage.2022.119587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
The neural face perception network is distributed across both hemispheres. However, the dominant role in humans is virtually unanimously attributed to the right hemisphere. Interestingly, there are, to our knowledge, no imaging studies that systematically describe the distribution of hemispheric lateralization in the core system of face perception across subjects in large cohorts so far. To address this, we determined the hemispheric lateralization of all core system regions (i.e., occipital face area (OFA), fusiform face area (FFA), posterior superior temporal sulcus (pSTS)) in 108 healthy subjects using functional magnetic resonance imaging (fMRI). We were particularly interested in the variability of hemispheric lateralization across subjects and explored how many subjects can be classified as right-dominant based on the fMRI activation pattern. We further assessed lateralization differences between different regions of the core system and analyzed the influence of handedness and sex on the lateralization with a generalized mixed effects regression model. As expected, brain activity was on average stronger in right-hemispheric brain regions than in their left-hemispheric homologues. This asymmetry was, however, only weakly pronounced in comparison to other lateralized brain functions (such as language and spatial attention) and strongly varied between individuals. Only half of the subjects in the present study could be classified as right-hemispheric dominant. Additionally, we did not detect significant lateralization differences between core system regions. Our data did also not support a general leftward shift of hemispheric lateralization in left-handers. Only the interaction of handedness and sex in the FFA revealed that specifically left-handed men were significantly more left-lateralized compared to right-handed males. In essence, our fMRI data did not support a clear right-hemispheric dominance of the face perception network. Our findings thus ultimately question the dogma that the face perception network - as measured with fMRI - can be characterized as "typically right lateralized".
Collapse
Affiliation(s)
- Ina Thome
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany.
| | - José C García Alanis
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany; Clinical Child and Adolescent Psychology, Department of Psychology, University of Marburg, Marburg, Germany; Analysis and Modeling of Complex Data Lab, Institute of Psychology, University of Mainz, Mainz, Germany
| | - Jannika Volk
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Christoph Vogelbacher
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Olaf Steinsträter
- Core-Facility BrainImaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany; Core-Facility BrainImaging, Faculty of Medicine, University of Marburg, Marburg, Germany.
| |
Collapse
|
14
|
Papadatou-Pastou M, Sampanis P, Koumzis I, Stefanopoulou S, Sousani D, Tsigkou A, Badcock NA. Cerebral laterality of writing in right- and left- handers: A functional transcranial Doppler ultrasound study. Eur J Neurosci 2022; 56:3921-3937. [PMID: 35636946 DOI: 10.1111/ejn.15723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/20/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022]
Abstract
The cerebral lateralization of written language has received very limited research attention in comparison to the wealth of studies on the cerebral lateralization of oral language. The purpose of the present study was to further our understanding of written language lateralization, by elucidating the relative contribution of language and motor functions. We compared written word generation with a task that has equivalent visuomotor demands but does not include language: the repeated drawing of symbols. We assessed cerebral laterality using functional transcranial Doppler ultrasound (fTCD), a non-invasive, perfusion-sensitive neuroimaging technique in 23 left- and 31 right-handed participants. Findings suggest that the linguistic aspect of written word generation recruited more left-hemispheric areas during writing, in right-handers compared to left-handers. This difference could be explained by greater variability in cerebral laterality patterns within left-handers or the possibility that the areas subserving language in left-handers are broader than in right-handers. Another explanation is that the attentional demands of the more novel symbol copying task (compared to writing) contributed more right-hemispheric activation in right-handers, but this could not be captured in left-handers due to ceiling effects. Future work could investigate such attentional demands using both simple and complex stimuli in the copying condition.
Collapse
Affiliation(s)
- Marietta Papadatou-Pastou
- School of Education, National and Kapodistrian University of Athens, Athens, Greece.,Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Panagiotis Sampanis
- Psychology Department, School of Social Sciences, Birmingham City University, The Curzon Building, Birmingham, United Kingdom
| | - Ioannis Koumzis
- School of Education, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia Stefanopoulou
- School of Education, National and Kapodistrian University of Athens, Athens, Greece
| | - Dionysia Sousani
- School of Education, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina Tsigkou
- School of Education, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicholas A Badcock
- School of Psychological Science, University of Western Australia,, Crawley, Western Australia, Australia.,Department of Cognitive Science, ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, 16 University Avenue, North Ryde, New South Wales, Australia
| |
Collapse
|
15
|
Deemyad T. Lateralized Changes in Language Associated Auditory and Somatosensory Cortices in Autism. Front Syst Neurosci 2022; 16:787448. [PMID: 35300070 PMCID: PMC8923120 DOI: 10.3389/fnsys.2022.787448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Lateralized specialization of the two cerebral hemispheres is a fundamental structural hallmark of the human brain and underlies many cognitive functions and behavioral abilities. In typical developing individuals the influence of handedness on performance of various sensory modalities and the cortical processing has been well recognized. Increasing evidence suggests that several neurodevelopmental and psychiatric disorders such as bipolar disorder, schizophrenia, and autism spectrum disorders (ASD) are associated with abnormal patterns of cerebral lateralization. Individuals with ASD exhibit abnormal structural and functional lateralization of circuits subserving motor, auditory, somatosensory, visual face processing, and language-related functions. Furthermore, a high prevalence of atypical handedness has been reported in ASD individuals. While the hemispheric dominance is also related to functions other than handedness, there is a clear relationship between handedness and language-related cortical dominance. This minireview summarizes these recent findings on asymmetry in somatosensory and auditory cortical structures associated with language processing in ASD. I will also discuss the importance of cortical dominance and interhemispheric disruption of balance between excitatory and inhibitory synapses as pathophysiological mechanisms in ASD.
Collapse
Affiliation(s)
- Tara Deemyad
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Kong X, Postema MC, Guadalupe T, de Kovel C, Boedhoe PSW, Hoogman M, Mathias SR, van Rooij D, Schijven D, Glahn DC, Medland SE, Jahanshad N, Thomopoulos SI, Turner JA, Buitelaar J, van Erp TGM, Franke B, Fisher SE, van den Heuvel OA, Schmaal L, Thompson PM, Francks C. Mapping brain asymmetry in health and disease through the ENIGMA consortium. Hum Brain Mapp 2022; 43:167-181. [PMID: 32420672 PMCID: PMC8675409 DOI: 10.1002/hbm.25033] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/18/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
Left-right asymmetry of the human brain is one of its cardinal features, and also a complex, multivariate trait. Decades of research have suggested that brain asymmetry may be altered in psychiatric disorders. However, findings have been inconsistent and often based on small sample sizes. There are also open questions surrounding which structures are asymmetrical on average in the healthy population, and how variability in brain asymmetry relates to basic biological variables such as age and sex. Over the last 4 years, the ENIGMA-Laterality Working Group has published six studies of gray matter morphological asymmetry based on total sample sizes from roughly 3,500 to 17,000 individuals, which were between one and two orders of magnitude larger than those published in previous decades. A population-level mapping of average asymmetry was achieved, including an intriguing fronto-occipital gradient of cortical thickness asymmetry in healthy brains. ENIGMA's multi-dataset approach also supported an empirical illustration of reproducibility of hemispheric differences across datasets. Effect sizes were estimated for gray matter asymmetry based on large, international, samples in relation to age, sex, handedness, and brain volume, as well as for three psychiatric disorders: autism spectrum disorder was associated with subtly reduced asymmetry of cortical thickness at regions spread widely over the cortex; pediatric obsessive-compulsive disorder was associated with altered subcortical asymmetry; major depressive disorder was not significantly associated with changes of asymmetry. Ongoing studies are examining brain asymmetry in other disorders. Moreover, a groundwork has been laid for possibly identifying shared genetic contributions to brain asymmetry and disorders.
Collapse
Affiliation(s)
- Xiang‐Zhen Kong
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Merel C. Postema
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Tulio Guadalupe
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Carolien de Kovel
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Premika S. W. Boedhoe
- Department of Psychiatry, Amsterdam NeuroscienceAmsterdam University Medical Center, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical CenterVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Martine Hoogman
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
| | - Samuel R. Mathias
- Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Daan van Rooij
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
| | - Dick Schijven
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - David C. Glahn
- Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Olin Neuropsychiatry Research CenterInstitute of Living, Hartford HospitalHartfordConnecticutUSA
| | - Sarah E. Medland
- Psychiatric GeneticsQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics InstituteKeck School of Medicine of the University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics InstituteKeck School of Medicine of the University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Jessica A. Turner
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
- Department of Psychology and NeuroscienceGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jan Buitelaar
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
- Karakter Child and Adolescent PsychiatryNijmegenThe Netherlands
| | - Theo G. M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
- Center for the Neurobiology of Learning and MemoryUniversity of California IrvineIrvineCaliforniaUSA
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Simon E. Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenThe Netherlands
| | - Odile A. van den Heuvel
- Department of Psychiatry, Amsterdam NeuroscienceAmsterdam University Medical Center, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical CenterVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental HealthParkvilleVictoriaAustralia
- Centre for Youth Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Paul M. Thompson
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| | - Clyde Francks
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
17
|
Johnstone LT, Karlsson EM, Carey DP. Left-Handers Are Less Lateralized Than Right-Handers for Both Left and Right Hemispheric Functions. Cereb Cortex 2021; 31:3780-3787. [PMID: 33884412 PMCID: PMC8824548 DOI: 10.1093/cercor/bhab048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/25/2021] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Many neuroscientific techniques have revealed that more left- than right-handers will have unusual cerebral asymmetries for language. After the original emphasis on frequency in the aphasia and epilepsy literatures, most neuropsychology, and neuroimaging efforts rely on estimates of central tendency to compare these two handedness groups on any given measure of asymmetry. The inevitable reduction in mean lateralization in the left-handed group is often postulated as being due to reversed asymmetry in a small subset of them, but it could also be due to a reduced asymmetry in many of the left-handers. These two possibilities have hugely different theoretical interpretations. Using functional magnetic resonance imaging localizer paradigms, we matched left- and right-handers for hemispheric dominance across four functions (verbal fluency, face perception, body perception, and scene perception). We then compared the degree of dominance between the two handedness groups for each of these four measures, conducting t-tests on the mean laterality indices. The results demonstrate that left-handers with typical cerebral asymmetries are less lateralized for language, faces, and bodies than their right-handed counterparts. These results are difficult to reconcile with current theories of language asymmetry or of handedness.
Collapse
Affiliation(s)
- Leah T Johnstone
- School of Psychology, Perception, Action and Memory Research Group, Bangor Imaging Group, Bangor University, Bangor, LL59 2AS, UK.,Sport Psychology Group, UCFB, Manchester, M11 3FF, UK
| | - Emma M Karlsson
- School of Psychology, Perception, Action and Memory Research Group, Bangor Imaging Group, Bangor University, Bangor, LL59 2AS, UK
| | - David P Carey
- School of Psychology, Perception, Action and Memory Research Group, Bangor Imaging Group, Bangor University, Bangor, LL59 2AS, UK
| |
Collapse
|
18
|
Handedness Development: A Model for Investigating the Development of Hemispheric Specialization and Interhemispheric Coordination. Symmetry (Basel) 2021. [DOI: 10.3390/sym13060992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The author presents his perspective on the character of science, development, and handedness and relates these to his investigations of the early development of handedness. After presenting some ideas on what hemispheric specialization of function might mean for neural processing and how handedness should be assessed, the neuroscience of control of the arms/hands and interhemispheric communication and coordination are examined for how developmental processes can affect these mechanisms. The author’s work on the development of early handedness is reviewed and placed within a context of cascading events in which different forms of handedness emerge from earlier forms but not in a deterministic manner. This approach supports a continuous rather than categorical distribution of handedness and accounts for the predominance of right-handedness while maintaining a minority of left-handedness. Finally, the relation of the development of handedness to the development of several language and cognitive skills is examined.
Collapse
|
19
|
Kroliczak G, Buchwald M, Kleka P, Klichowski M, Potok W, Nowik AM, Randerath J, Piper BJ. Manual praxis and language-production networks, and their links to handedness. Cortex 2021; 140:110-127. [PMID: 33975084 DOI: 10.1016/j.cortex.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
While Liepmann was one of the first researchers to consider a relationship between skilled manual actions (praxis) and language for tasks performed "freely from memory", his primary focus was on the relations between the organization of praxis and left-hemisphere dominance. Subsequent attempts to apply his apraxia model to all cases he studied - including his first patient, a "non-pure right-hander" treated as an exception - left the praxis-handedness issue unresolved. Modern neuropsychological and recent neuroimaging evidence either showed closer associations of praxis and language, than between handedness and any of these two functions, or focused on their dissociations. Yet, present-day developments in neuroimaging and statistics allow us to overcome the limitations of the earlier work on praxis-language-handedness links, and to better quantify their interrelationships. Using functional magnetic resonance imaging (fMRI), we studied tool use pantomimes and subvocal word generation in 125 participants, including righthanders (NRH = 52), ambidextrous individuals (mixedhanders; NMH = 31), and lefthanders (NLH = 42). Laterality indices were calculated both in two critical cytoarchitectonic maps, and 180 multi-modal parcellations of the human cerebral cortex, using voxel count and signal intensity, and the most relevant regions of interest and their networks were further analyzed. We found that atypical organization of praxis was present in all handedness groups (RH = 25.0%, MH = 22.6%; LH = 45.2%), and was about two and a half times as common as atypical organization of language (RH = 3.8%; MH = 6.5%; LH = 26.2%), contingent on ROI selection/LI-calculation method. Despite strong associations of praxis and language, regardless of handedness and typicality, dissociations of atypically represented praxis from typical left-lateralized language were common (~20% of cases), whereas the inverse dissociations of atypically represented language from typical left-lateralized praxis were very rare (in ~2.5% of all cases). The consequences of the existence of such different phenotypes for theoretical accounts of manual praxis, and its links to language and handedness are modeled and discussed.
Collapse
Affiliation(s)
- Gregory Kroliczak
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland; Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland.
| | - Mikolaj Buchwald
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland
| | - Pawel Kleka
- Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Michal Klichowski
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland; Faculty of Educational Studies, Adam Mickiewicz University, Poznan, Poland
| | - Weronika Potok
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Agnieszka M Nowik
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland; Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Jennifer Randerath
- University of Konstanz, Konstanz, Germany; Lurija Institute for Rehabilitation Sciences and Health Research at the University of Konstanz, Konstanz, Germany
| | - Brian J Piper
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| |
Collapse
|
20
|
Jacobs S, Mercuri G, Holtzer R. Assessing within-task verbal fluency performance: the utility of individual time intervals in predicting incident mild cognitive impairment. AGING NEUROPSYCHOLOGY AND COGNITION 2020; 28:733-747. [PMID: 32901518 DOI: 10.1080/13825585.2020.1817306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The current study aimed to determine whether word generation performance on individual within-task 20-second time intervals predicted conversion to Mild Cognitive Impairment (MCI) status. Longitudinal data (Mean follow-up=2.95±1.64 years) was collected from cognitively-healthy community-dwelling older adults (N=344; %female=56.1). Performance on letter and semantic fluency tasks was divided into three consecutive within-task 20-second intervals. Incident MCI status (n=50) was determined via established diagnostic case conference. Fully adjusted Cox proportional-hazards regression models revealed that greater word production on semantic fluency across all time intervals significantly predicted a reduced risk of incident MCI [0-20 seconds (HR=0.906, p=0.002), 21-40 seconds (HR=0.904, p=0.02), and 41-60 seconds (HR=0.892, p=0.017)]. Conversely, on letter fluency, greater word production within the 41-60 second time interval only was significantly associated with reduced risk of incident MCI (HR=0.886, p=0.002). Overall, the clinical use of within-interval performance is supported given evidence of predictive sensitivity and ease of administration.
Collapse
Affiliation(s)
- Sydney Jacobs
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Giulia Mercuri
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA.,Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
21
|
Mirrored brain organization: Statistical anomaly or reversal of hemispheric functional segregation bias? Proc Natl Acad Sci U S A 2020; 117:14057-14065. [PMID: 32513702 DOI: 10.1073/pnas.2002981117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Humans demonstrate a prototypical hemispheric functional segregation pattern, with language and praxis lateralizing to the left hemisphere and spatial attention, face recognition, and emotional prosody to the right hemisphere. In this study, we used fMRI to determine laterality for all five functions in each participant. Crucially, we recruited a sample of left-handers preselected for atypical (right) language dominance (n = 24), which allowed us to characterize hemispheric asymmetry of the other functions and compare their functional segregation pattern with that of left-handers showing typical language dominance (n = 39). Our results revealed that most participants with left language dominance display the prototypical pattern of functional hemispheric segregation (44%) or deviate from this pattern in only one function (35%). Similarly, the vast majority of right language dominant participants demonstrated a completely mirrored brain organization (50%) or a reversal for all but one cognitive function (32%). Participants deviating by more than one function from the standard segregation pattern showed poorer cognitive performance, in line with an oft-presumed biological advantage of hemispheric functional segregation.
Collapse
|