1
|
de Chastelaine M, Srokova S, Monier S, Olivier JM, Rugg MD. Effects of age in the strategic control of recollected content as reflected by modulation of scene reinstatement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633416. [PMID: 39868207 PMCID: PMC11761656 DOI: 10.1101/2025.01.16.633416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
A previous study employing fMRI measures of retrieval-related cortical reinstatement reported that young, but not older, adults employ 'retrieval gating' to attenuate aspects of an episodic memory that are irrelevant to the retrieval goal. We examined whether the weak memories of the older adults in that study rendered goal-irrelevant memories insufficiently intrusive to motivate retrieval gating. Young and older participants studied words superimposed on rural or urban scenes, or on pixelated backgrounds. To strengthen memory for background information, word-image pairs were studied twice, initially centrally, and then in one of three locations. During scanning, one retrieval test probed memory for the test words' studied backgrounds and another test assessed memory for their location. Background memory performance was markedly higher than in the prior study. Retrieval gating was examined in two scene-selective regions of interest, the parahippocampal place area (PPA) and the medial place area (MPA). In the background task, robust retrieval-related scene reinstatement effects were identified in both age groups. These effects were attenuated ('gated') in the location task in the young age group only, replicating the prior finding. The results did not differ when the two groups were sub-sampled to match strength of scene reinstatement when scene information was goal relevant. The findings indicate that older adults' failure to gate goal-irrelevant scene information does not reflect age differences in memory strength and may instead reflect an age-related decline in top-down inhibitory control.
Collapse
|
2
|
Chareyron LJ, Chong WK, Banks T, Burgess N, Saunders RC, Vargha-Khadem F. Anatomo-functional changes in neural substrates of cognitive memory in developmental amnesia: Insights from automated and manual Magnetic Resonance Imaging examinations. Hippocampus 2024; 34:645-658. [PMID: 39268888 PMCID: PMC11489024 DOI: 10.1002/hipo.23638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Despite bilateral hippocampal damage dating to the perinatal or early childhood period and severely impaired episodic memory, patients with developmental amnesia continue to exhibit well-developed semantic memory across the developmental trajectory. Detailed information on the extent and focality of brain damage in these patients is needed to hypothesize about the neural substrate that supports their remarkable capacity for encoding and retrieval of semantic memory. In particular, we need to assess whether the residual hippocampal tissue is involved in this preservation, or whether the surrounding cortical areas reorganize to rescue aspects of these critical cognitive memory processes after early injury. We used voxel-based morphometry (VBM) analysis, automatic (FreeSurfer) and manual segmentation to characterize structural changes in the brain of an exceptionally large cohort of 23 patients with developmental amnesia in comparison with 32 control subjects. Both the VBM and the FreeSurfer analyses revealed severe structural alterations in the hippocampus and thalamus of patients with developmental amnesia. Milder damage was found in the amygdala, caudate, and parahippocampal gyrus. Manual segmentation demonstrated differences in the degree of atrophy of the hippocampal subregions in patients. The level of atrophy in CA-DG subregions and subicular complex was more than 40%, while the atrophy of the uncus was moderate (-24%). Anatomo-functional correlations were observed between the volumes of residual hippocampal subregions in patients and selective aspects of their cognitive performance, viz, intelligence, working memory, and verbal and visuospatial recall. Our findings suggest that in patients with developmental amnesia, cognitive processing is compromised as a function of the extent of atrophy in hippocampal subregions. More severe hippocampal damage may be more likely to promote structural and/or functional reorganization in areas connected to the hippocampus. In this hypothesis, different levels of hippocampal function may be rescued following this variable reorganization. Our findings document not only the extent, but also the limits of circuit reorganization occurring in the young brain after early bilateral hippocampal damage.
Collapse
Affiliation(s)
- Loïc J. Chareyron
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, UK
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, 1015 Lausanne, Switzerland
| | - W.K. Kling Chong
- Developmental Imaging & Biophysics, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, UK
| | - Tina Banks
- Developmental Imaging & Biophysics, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, UK
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, WC1N 3AZ London, UK
| | - Richard C. Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Faraneh Vargha-Khadem
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, UK
| |
Collapse
|
3
|
Elward R, Limond J, Chareyron LJ, Ethapemi J, Vargha-Khadem F. Using recognition testing to support semantic learning in developmental amnesia. Neuropsychol Rehabil 2024; 34:1141-1160. [PMID: 37948582 PMCID: PMC11332405 DOI: 10.1080/09602011.2023.2275825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
ABSTRACTPatients with developmental amnesia (DA) have suffered hippocampal damage in infancy and subsequently shown poor episodic memory, but good semantic memory. It is not clear how patients with DA learn semantic information in the presence of episodic amnesia. However, patients with DA show good recognition memory and it is possible that semantic learning may be supported by recognition. Building on previous work, we compared two methods for supporting semantic learning in DA; recognition-learning and recall-learning. In each condition, a patient with DA (aged 8 years) was presented with semantic information in animated videos. After each presentation of a video, learning was supported by an immediate memory test. Two videos were paired with a cued recall test. Another two videos were paired with a multiple-choice test to enable recognition-based learning. The outcome measure was semantic recall performance after a short delay of 30 min and a long delay of one week. Results showed a benefit of recognition-learning compared to recall-learning on cued recall in the patient with DA (76% vs. 35%). This finding indicates that young people with severe hippocampal damage can utilize recognition to support semantic learning. This has implications for the support of school-aged children with episodic memory difficulties.
Collapse
Affiliation(s)
- Rachael Elward
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jennifer Limond
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Loïc J. Chareyron
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Janice Ethapemi
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Faraneh Vargha-Khadem
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust
| |
Collapse
|
4
|
Turk-Browne NB, Aslin RN. Infant neuroscience: how to measure brain activity in the youngest minds. Trends Neurosci 2024; 47:338-354. [PMID: 38570212 PMCID: PMC11956833 DOI: 10.1016/j.tins.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/08/2024] [Accepted: 02/09/2024] [Indexed: 04/05/2024]
Abstract
The functional properties of the infant brain are poorly understood. Recent advances in cognitive neuroscience are opening new avenues for measuring brain activity in human infants. These include novel uses of existing technologies such as electroencephalography (EEG) and magnetoencephalography (MEG), the availability of newer technologies including functional near-infrared spectroscopy (fNIRS) and optically pumped magnetometry (OPM), and innovative applications of functional magnetic resonance imaging (fMRI) in awake infants during cognitive tasks. In this review article we catalog these available non-invasive methods, discuss the challenges and opportunities encountered when applying them to human infants, and highlight the potential they may ultimately hold for advancing our understanding of the youngest minds.
Collapse
Affiliation(s)
- Nicholas B Turk-Browne
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| | - Richard N Aslin
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Chareyron LJ, Chong WKK, Banks T, Burgess N, Saunders RC, Vargha-Khadem F. Anatomo-functional changes in neural substrates of cognitive memory in developmental amnesia: Insights from automated and manual MRI examinations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.23.525152. [PMID: 36789443 PMCID: PMC9928053 DOI: 10.1101/2023.01.23.525152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite bilateral hippocampal damage dating to perinatal or early-childhood period, and severely-impaired episodic memory that unfolds in later childhood, patients with developmental amnesia continue to exhibit well-developed semantic memory across the developmental trajectory. Detailed information on the extent and focality of brain damage in these patients is needed to hypothesize about the neural substrate that supports their remarkable capacity for encoding and retrieval of semantic memory. In particular, we need to assess whether the residual hippocampal tissue is involved in this preservation, or whether the surrounding cortical areas reorganise to rescue aspects of these critical cognitive memory processes after early injury. We used voxel-based morphometry (VBM) analysis, automatic (FreeSurfer) and manual segmentation to characterize structural changes in the brain of an exceptionally large cohort of 23 patients with developmental amnesia in comparison with 32 control subjects. Both the VBM and the FreeSurfer analyses revealed severe structural alterations in the hippocampus and thalamus of patients with developmental amnesia. Milder damage was found in the amygdala, caudate and parahippocampal gyrus. Manual segmentation demonstrated differences in the degree of atrophy of the hippocampal subregions in patients. The level of atrophy in CA-DG subregions and subicular complex was more than 40% while the atrophy of the uncus was moderate (-23%). Anatomo-functional correlations were observed between the volumes of residual hippocampal subregions in patients and selective aspects of their cognitive performance viz, intelligence, working memory, and verbal and visuospatial recall. Our findings suggest that in patients with developmental amnesia, cognitive processing is compromised as a function of the extent of atrophy in hippocampal subregions, such that the greater the damage, the more likely it is that surrounding cortical areas will be recruited to rescue the putative functions of the damaged subregions. Our findings document for the first time not only the extent, but also the limits of circuit reorganization occurring in the young brain after early bilateral hippocampal damage.
Collapse
|
6
|
Bevandić J, Chareyron LJ, Bachevalier J, Cacucci F, Genzel L, Newcombe NS, Vargha-Khadem F, Ólafsdóttir HF. Episodic memory development: Bridging animal and human research. Neuron 2024; 112:1060-1080. [PMID: 38359826 PMCID: PMC11129319 DOI: 10.1016/j.neuron.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
Human episodic memory is not functionally evident until about 2 years of age and continues to develop into the school years. Behavioral studies have elucidated this developmental timeline and its constituent processes. In tandem, lesion and neurophysiological studies in non-human primates and rodents have identified key neural substrates and circuit mechanisms that may underlie episodic memory development. Despite this progress, collaborative efforts between psychologists and neuroscientists remain limited, hindering progress. Here, we seek to bridge human and non-human episodic memory development research by offering a comparative review of studies using humans, non-human primates, and rodents. We highlight critical theoretical and methodological issues that limit cross-fertilization and propose a common research framework, adaptable to different species, that may facilitate cross-species research endeavors.
Collapse
Affiliation(s)
- Juraj Bevandić
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Loïc J Chareyron
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK; Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Jocelyne Bachevalier
- Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Department of Psychology, Emory University, Atlanta, GA, USA.
| | - Francesca Cacucci
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Nora S Newcombe
- Department of Psychology, Temple University, Philadelphia, PA, USA.
| | - Faraneh Vargha-Khadem
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK.
| | - H Freyja Ólafsdóttir
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Fischer M, Moscovitch M, Fukuda K, Alain C. Ready for action! When the brain learns, yet memory-biased action does not follow. Neuropsychologia 2023; 189:108660. [PMID: 37604333 DOI: 10.1016/j.neuropsychologia.2023.108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/23/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
Does memory prepare us to act? Long-term memory can facilitate signal detection, though the degree of benefit varies and can even be absent. To dissociate between learning and behavioral expression of learning, we used high-density electroencephalography (EEG) to assess memory retrieval and response processing. At learning, participants heard everyday sounds. Half of these sound clips were paired with an above-threshold lateralized tone, such that it was possible to form incidental associations between the sound clip and the location of the tone. Importantly, attention was directed to either the sound clip (Experiment 1) or the tone (Experiment 2). Participants then completed a novel detection task that separated cued retrieval from response processing. At retrieval, we observed a striking brain-behavior dissociation. Learning was observed neurally in both experiments. Behaviorally, however, signal detection was only facilitated in Experiment 2, for which there was an accompanying explicit memory for tone presence. Further, implicit neural memory for tone location correlated with the degree of response preparation, but not response execution. Together, the findings suggest 1) that attention at learning affects memory-biased action and 2) that memory prepared action via both explicit and implicit associative memory, with the latter triggering response preparation.
Collapse
Affiliation(s)
- Manda Fischer
- Department of Psychology, University of Toronto, Toronto, Canada; Department of Psychology, Rotman Research Institute at Baycrest Hospital, Toronto, Canada.
| | - Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, Canada; Department of Psychology, Rotman Research Institute at Baycrest Hospital, Toronto, Canada.
| | - Keisuke Fukuda
- Department of Psychology, University of Toronto, Toronto, Canada.
| | - Claude Alain
- Department of Psychology, University of Toronto, Toronto, Canada; Department of Psychology, Rotman Research Institute at Baycrest Hospital, Toronto, Canada.
| |
Collapse
|
8
|
Frisoni M, Selvaggio A, Tosoni A, Sestieri C. Long-term memory for movie details: selective decay for verbal information at one week. Memory 2023; 31:1232-1243. [PMID: 37655937 DOI: 10.1080/09658211.2023.2253568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
Mnemonic representations of complex events are multidimensional, incorporating information about objects and characters, their interactions and their spatial-temporal context. The present study investigated the degree to which detailed verbal information (i.e., dialogues), as well as semantic and spatiotemporal (i.e., "what", "where", and "when") elements of episodic memories for movies, are forgotten over the course of a week. Moreover, we tested whether the amount of dimension-specific forgetting differed as a function of the participant's age. In a mixed design, younger and middle-aged participants were asked to watch a ∼90 min movie and provide yes/no answers to detailed questions about different dimensions of the presented material after 1, 3 days, and 1 week. The results indicate that memory decay mainly affects the verbal dimension, both in terms of response accuracy and confidence. Instead, detailed information about objects/characters' features and spatiotemporal context seems to be relatively preserved, despite a general decrease in response confidence. Furthermore, younger adults were in general more accurate and confident than middle-aged participants, although, again, the verbal dimension exhibited a significant age-related difference. We propose that this selective forgetting depends on the progressive advantage of visual compared to auditory/verbal information in memory for complex events.
Collapse
Affiliation(s)
- Matteo Frisoni
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC) and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alessia Selvaggio
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC) and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Annalisa Tosoni
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC) and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC) and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
9
|
Pauley C, Kobelt M, Werkle-Bergner M, Sander MC. Age differences in neural distinctiveness during memory encoding, retrieval, and reinstatement. Cereb Cortex 2023; 33:9489-9503. [PMID: 37365853 PMCID: PMC10431749 DOI: 10.1093/cercor/bhad219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Robust evidence points to mnemonic deficits in older adults related to dedifferentiated, i.e. less distinct, neural responses during memory encoding. However, less is known about retrieval-related dedifferentiation and its role in age-related memory decline. In this study, younger and older adults were scanned both while incidentally learning face and house stimuli and while completing a surprise recognition memory test. Using pattern similarity searchlight analyses, we looked for indicators of neural dedifferentiation during encoding, retrieval, and encoding-retrieval reinstatement. Our findings revealed age-related reductions in neural distinctiveness during all memory phases in visual processing regions. Interindividual differences in retrieval- and reinstatement-related distinctiveness were strongly associated with distinctiveness during memory encoding. Both item- and category-level distinctiveness predicted trial-wise mnemonic outcomes. We further demonstrated that the degree of neural distinctiveness during encoding tracked interindividual variability in memory performance better than both retrieval- and reinstatement-related distinctiveness. All in all, we contribute to meager existing evidence for age-related neural dedifferentiation during memory retrieval. We show that neural distinctiveness during retrieval is likely tied to recapitulation of encoding-related perceptual and mnemonic processes.
Collapse
Affiliation(s)
- Claire Pauley
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany
| | - Malte Kobelt
- Department of Neuropsychology, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Myriam C Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| |
Collapse
|
10
|
Neural reactivation and judgements of vividness reveal separable contributions to mnemonic representation. Neuroimage 2022; 255:119205. [PMID: 35427774 DOI: 10.1016/j.neuroimage.2022.119205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
Mnemonic representations vary in fidelity, sharpness, and strength-qualities that can be examined using both introspective judgements of mental states and objective measures of brain activity. Subjective and objective measures are both valid ways of "reading out" the content of someone's internal mnemonic states, each with different strengths and weaknesses. St-Laurent and colleagues (2015) compared the neural correlates of memory vividness ratings with patterns of neural reactivation evoked during memory recall and found considerable overlap between the two, suggesting a common neural basis underlying these different markers of representational quality. Here we extended this work with meta-analytic methods by pooling together four neuroimaging datasets in order to contrast the neural substrates of neural reactivation and those of vividness judgements. While reactivation and vividness judgements correlated positively with one another and were associated with common univariate activity in the dorsal attention network and anterior hippocampus, some notable differences were also observed. Vividness judgments were tied to stronger activation in the striatum and dorsal attention network, together with activity suppression in default mode network nodes. We also observed a trend for reactivation to be more closely associated with early visual cortex activity. A mediation analysis found support for the hypothesis that neural reactivation is necessary for memory vividness, with activity in the anterior hippocampus associated with greater reactivation. Our results suggest that neural reactivation and vividness judgements reflect common mnemonic processes but differ in the extent to which they engage effortful, attentional processes. Additionally, the similarity between reactivation and vividness appears to arise, partly, through hippocampal engagement during memory retrieval.
Collapse
|
11
|
Ross TW, Easton A. The Hippocampal Horizon: Constructing and Segmenting Experience for Episodic Memory. Neurosci Biobehav Rev 2021; 132:181-196. [PMID: 34826509 DOI: 10.1016/j.neubiorev.2021.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022]
Abstract
How do we recollect specific events that have occurred during continuous ongoing experience? There is converging evidence from non-human animals that spatially modulated cellular activity of the hippocampal formation supports the construction of ongoing events. On the other hand, recent human oriented event cognition models have outlined that our experience is segmented into discrete units, and that such segmentation can operate on shorter or longer timescales. Here, we describe a unification of how these dynamic physiological mechanisms of the hippocampus relate to ongoing externally and internally driven event segmentation, facilitating the demarcation of specific moments during experience. Our cross-species interdisciplinary approach offers a novel perspective in the way we construct and remember specific events, leading to the generation of many new hypotheses for future research.
Collapse
Affiliation(s)
- T W Ross
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, United Kingdom; Centre for Learning and Memory Processes, Durham University, United Kingdom.
| | - A Easton
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, United Kingdom; Centre for Learning and Memory Processes, Durham University, United Kingdom
| |
Collapse
|
12
|
Simons JS, Ritchey M, Fernyhough C. Brain Mechanisms Underlying the Subjective Experience of Remembering. Annu Rev Psychol 2021; 73:159-186. [PMID: 34587777 DOI: 10.1146/annurev-psych-030221-025439] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to remember events in vivid, multisensory detail is a significant part of human experience, allowing us to relive previous encounters and providing us with the store of memories that shape our identity. Recent research has sought to understand the subjective experience of remembering, that is, what it feels like to have a memory. Such remembering involves reactivating sensory-perceptual features of an event and the thoughts and feelings we had when the event occurred, integrating them into a conscious first-person experience. It allows us to reflect on the content of our memories and to understand and make judgments about them, such as distinguishing events that actually occurred from those we might have imagined or been told about. In this review, we consider recent evidence from functional neuroimaging in healthy participants and studies of neurological and psychiatric conditions, which is shedding new light on how we subjectively experience remembering. Expected final online publication date for the Annual Review of Psychology, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom;
| | - Maureen Ritchey
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Charles Fernyhough
- Department of Psychology, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
13
|
Norman Y, Raccah O, Liu S, Parvizi J, Malach R. Hippocampal ripples and their coordinated dialogue with the default mode network during recent and remote recollection. Neuron 2021; 109:2767-2780.e5. [PMID: 34297916 DOI: 10.1016/j.neuron.2021.06.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/13/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
Hippocampal ripples are prominent synchronization events generated by hippocampal neuronal assemblies. To date, ripples have been primarily associated with navigational memory in rodents and short-term episodic recollections in humans. Here, we uncover different profiles of ripple activity in the human hippocampus during the retrieval of recent and remote autobiographical events and semantic facts. We found that the ripple rate increased significantly before reported recall compared to control conditions. Patterns of ripple activity across multiple hippocampal sites demonstrated remarkable specificity for memory type. Intriguingly, these ripple patterns revealed a semantization dimension, in which patterns associated with autobiographical contents become similar to those of semantic memory as a function of memory age. Finally, widely distributed sites across the neocortex exhibited ripple-coupled activations during recollection, with the strongest activation found within the default mode network. Our results thus reveal a key role for hippocampal ripples in orchestrating hippocampal-cortical communication across large-scale networks involved in conscious recollection.
Collapse
Affiliation(s)
- Yitzhak Norman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Omri Raccah
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Su Liu
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Rafael Malach
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|