1
|
Wang GH, Chou P, Hsueh SW, Yang YC, Kuo CC. Glutamate transmission rather than cellular pacemaking propels excitatory-inhibitory resonance for ictogenesis in amygdala. Neurobiol Dis 2020; 148:105188. [PMID: 33221531 DOI: 10.1016/j.nbd.2020.105188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/20/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
Epileptic seizures are automatic, excessive, and synchronized neuronal activities originating from many brain regions especially the amygdala, the allocortices and neocortices. This may reflect a shared principle for network organization and signaling in these telencephalic structures. In theory, the automaticity of epileptic discharges may stem from spontaneously active "oscillator" neurons equipped with intrinsic pacemaking conductances, or from a group of synaptically-connected collaborating "resonator" neurons. In the basolateral amygdalar (BLA) network of pyramidal-inhibitory (PN-IN) neuronal resonators, we demonstrated that rhythmogenic currents are provided by glutamatergic rather than the classic intrinsic or cellular pacemaking conductances (namely the h currents). The excitatory output of glutamatergic neurons such as PNs presumably propels a novel network-based "relay burst mode" of discharges especially in INs, which precondition PNs into a state prone to burst discharges and thus further glutamate release. Also, selective activation of unilateral PNs, but never INs, readily drives bilateral BLA networks into reverberating discharges which are fully synchronized with the behavioral manifestations of seizures (e.g. muscle contractions). Seizures originating in BLA and/or the other structures with similar PN-IN networks thus could be viewed as glutamate-triggered erroneous network oscillations that are normally responsible for information relay.
Collapse
Affiliation(s)
- Guan-Hsun Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Medical Education, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | - Ping Chou
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Wei Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan.
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Yang YC, Wang GH, Chuang AY, Hsueh SW. Perampanel reduces paroxysmal depolarizing shift and inhibitory synaptic input in excitatory neurons to inhibit epileptic network oscillations. Br J Pharmacol 2020; 177:5177-5194. [PMID: 32901915 DOI: 10.1111/bph.15253] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/10/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Perampanel is a newly approved anticonvulsant uniquely targeting AMPA receptors, which mediate the most abundant form of excitatory synaptic transmission in the brain. However, the network mechanism underlying the anti-epileptic effect of the AMPAergic inhibition remains to be explored. EXPERIMENTAL APPROACH The mechanism of perampanel action was studied with the basolateral amygdala network containing pyramidal-inhibitory neuronal resonators in seizure models of 4-aminopyridine (4-AP) and electrical kindling. KEY RESULTS Application of either 4-AP or electrical kindling to the basolateral amygdala readily induces AMPAergic transmission-dependent reverberating activities between pyramidal-inhibitory neuronal resonators, which are chiefly characterized by burst discharges in inhibitory neurons and corresponding recurrent inhibitory postsynaptic potentials in pyramidal neurons. Perampanel reduces post-kindling "paroxysmal depolarizing shift" especially in pyramidal neurons and, counterintuitively, eliminates burst activities in inhibitory neurons and inhibitory synaptic inputs onto excitatory pyramidal neurons to result in prevention of epileptiform discharges and seizure behaviours. Intriguingly, similar effects can be obtained with not only the AMPA receptor antagonist CNQX but also the GABAA receptor antagonist bicuculline, which is usually considered as a proconvulsant. CONCLUSION AND IMPLICATIONS Ictogenesis depends on the AMPA receptor-dependent recruitment of pyramidal-inhibitory neuronal network oscillations tuned by dynamic glutamatergic and GABAergic transmission. The anticonvulsant effect of perampanel then stems from disruption of the coordinated network activities rather than simply decreased neuronal excitability or excitatory transmission. Positive or negative modulation of epileptic network reverberations may be pro-ictogenic or anti-ictogenic, respectively, constituting a more applicable rationale for the therapy against seizures.
Collapse
Affiliation(s)
- Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Guan-Hsun Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Ai-Yu Chuang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Wei Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
3
|
McDonald AJ, Mott DD. Functional neuroanatomy of amygdalohippocampal interconnections and their role in learning and memory. J Neurosci Res 2016; 95:797-820. [PMID: 26876924 DOI: 10.1002/jnr.23709] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 01/31/2023]
Abstract
The amygdalar nuclear complex and hippocampal/parahippocampal region are key components of the limbic system that play a critical role in emotional learning and memory. This Review discusses what is currently known about the neuroanatomy and neurotransmitters involved in amygdalo-hippocampal interconnections, their functional roles in learning and memory, and their involvement in mnemonic dysfunctions associated with neuropsychiatric and neurological diseases. Tract tracing studies have shown that the interconnections between discrete amygdalar nuclei and distinct layers of individual hippocampal/parahippocampal regions are robust and complex. Although it is well established that glutamatergic pyramidal cells in the amygdala and hippocampal region are the major players mediating interconnections between these regions, recent studies suggest that long-range GABAergic projection neurons are also involved. Whereas neuroanatomical studies indicate that the amygdala only has direct interconnections with the ventral hippocampal region, electrophysiological studies and behavioral studies investigating fear conditioning and extinction, as well as amygdalar modulation of hippocampal-dependent mnemonic functions, suggest that the amygdala interacts with dorsal hippocampal regions via relays in the parahippocampal cortices. Possible pathways for these indirect interconnections, based on evidence from previous tract tracing studies, are discussed in this Review. Finally, memory disorders associated with dysfunction or damage to the amygdala, hippocampal region, and/or their interconnections are discussed in relation to Alzheimer's disease, posttraumatic stress disorder (PTSD), and temporal lobe epilepsy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| | - David D Mott
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
4
|
Graebenitz S, Lesting J, Sosulina L, Seidenbecher T, Pape HC. Alteration of NMDA receptor-mediated synaptic interactions in the lateral amygdala associated with seizure activity in a mouse model of chronic temporal lobe epilepsy. Epilepsia 2010; 51:1754-62. [DOI: 10.1111/j.1528-1167.2010.02561.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Aroniadou-Anderjaska V, Fritsch B, Qashu F, Braga MFM. Pathology and pathophysiology of the amygdala in epileptogenesis and epilepsy. Epilepsy Res 2008; 78:102-16. [PMID: 18226499 PMCID: PMC2272535 DOI: 10.1016/j.eplepsyres.2007.11.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/20/2007] [Accepted: 11/30/2007] [Indexed: 11/20/2022]
Abstract
Acute brain insults, such as traumatic brain injury, status epilepticus, or stroke are common etiologies for the development of epilepsy, including temporal lobe epilepsy (TLE), which is often refractory to drug therapy. The mechanisms by which a brain injury can lead to epilepsy are poorly understood. It is well recognized that excessive glutamatergic activity plays a major role in the initial pathological and pathophysiological damage. This initial damage is followed by a latent period, during which there is no seizure activity, yet a number of pathophysiological and structural alterations are taking place in key brain regions, that culminate in the expression of epilepsy. The process by which affected/injured neurons that have survived the acute insult, along with well-preserved neurons are progressively forming hyperexcitable, epileptic neuronal networks has been termed epileptogenesis. Understanding the mechanisms of epileptogenesis is crucial for the development of therapeutic interventions that will prevent the manifestation of epilepsy after a brain injury, or reduce its severity. The amygdala, a temporal lobe structure that is most well known for its central role in emotional behavior, also plays a key role in epileptogenesis and epilepsy. In this article, we review the current knowledge on the pathology of the amygdala associated with epileptogenesis and/or epilepsy in TLE patients, and in animal models of TLE. In addition, because a derangement in the balance between glutamatergic and GABAergic synaptic transmission is a salient feature of hyperexcitable, epileptic neuronal circuits, we also review the information available on the role of the glutamatergic and GABAergic systems in epileptogenesis and epilepsy in the amygdala.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
6
|
Benini R, Avoli M. Altered Inhibition in Lateral Amygdala Networks in a Rat Model of Temporal Lobe Epilepsy. J Neurophysiol 2006; 95:2143-54. [PMID: 16381802 DOI: 10.1152/jn.01217.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clinical and experimental evidence indicates that the amygdala is involved in limbic seizures observed in patients with temporal lobe epilepsy. Here, we used simultaneous field and intracellular recordings from horizontal brain slices obtained from pilocarpine-treated rats and age-matched nonepileptic controls (NECs) to shed light on the electrophysiological changes that occur within the lateral nucleus (LA) of the amygdala. No significant differences in LA neuronal intrinsic properties were observed between pilocarpine-treated and NEC tissue. However, spontaneous field activity could be recorded in the LA of 21% of pilocarpine-treated slices but never from NECs. At the intracellular level, this network activity was characterized by robust neuronal firing and was abolished by glutamatergic antagonists. In addition, we could identify in all pilocarpine-treated LA neurons: 1) large amplitude depolarizing postsynaptic potentials (PSPs) and 2) a lower incidence of spontaneous hyperpolarizing PSPs as compared with NECs. Single-shock stimulation of LA networks in the presence of glutamatergic antagonists revealed a biphasic inhibitory PSP (IPSP) in both NECs and pilocarpine-treated tissue. The reversal potential of the early GABAA receptor–mediated component, but not of the late GABAB receptor–mediated component, was significantly more depolarized in pilocarpine-treated slices. Furthermore, the peak conductance of both fast and late IPSP components had significantly lower values in pilocarpine-treated LA cells. Finally, paired-pulse stimulation protocols in the presence of glutamatergic antagonists revealed a less pronounced depression of the second IPSP in pilocarpine-treated slices compared with NECs. Altogether, these findings suggest that alterations in both pre- and postsynaptic inhibitory mechanisms contribute to synaptic hyperexcitability of LA networks in epileptic rats.
Collapse
Affiliation(s)
- Ruba Benini
- Montreal Neurological Institute and Department of Neurology, McGill University, Montreal, Canada
| | | |
Collapse
|
7
|
Penschuck S, Bastlund JF, Jensen HS, Stensbol TB, Egebjerg J, Watson WP. Changes in KCNQ2 immunoreactivity in the amygdala in two rat models of temporal lobe epilepsy. ACTA ACUST UNITED AC 2005; 141:66-73. [PMID: 16154661 DOI: 10.1016/j.molbrainres.2005.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 07/11/2005] [Accepted: 08/03/2005] [Indexed: 11/29/2022]
Abstract
Potassium channels containing the KCNQ2 subunit play an important role in the regulation of neuronal excitability and therefore have been implicated in epilepsy. This study describes the expression of KCNQ2 subunit immunoreactivity in the basolateral amygdala in two rat models of temporal lobe epilepsy, (1) amygdala kindling and (2) spontaneously epileptic rats after status epilepticus induced by hippocampal electrical stimulation. KCNQ2 subunit immunoreactivity was assessed with a commercial antibody raised against a C-terminal part of the KCNQ2 protein. We show that KCNQ2 subunit immunoreactivity is upregulated in the basolateral amygdala in both models and that generalized seizures are required to induce this upregulation. We hypothesize that the upregulation of potassium channels containing the KCNQ2 subunit might represent a mechanism to counteract seizures in experimental temporal lobe epilepsy.
Collapse
Affiliation(s)
- Silke Penschuck
- H. Lundbeck A/S, Department of Neuropharmacology, Ottiliavej 9, DK-2500 Valby, Denmark.
| | | | | | | | | | | |
Collapse
|
8
|
Kemppainen S, Pitkänen A. Damage to the amygdalo-hippocampal projection in temporal lobe epilepsy: A tract-tracing study in chronic epileptic rats. Neuroscience 2004; 126:485-501. [PMID: 15207366 DOI: 10.1016/j.neuroscience.2004.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2004] [Indexed: 10/26/2022]
Abstract
Both the amygdala and hippocampus are damaged in drug-resistant temporal lobe epilepsy (TLE), suggesting that amygdalo-hippocampal interconnectivity is compromised in TLE. Therefore, we examined one of the major projections from the amygdala to the hippocampus, the projection from the amygdala to the CA1 subfield of the hippocampus/subiculum border region, and assessed whether it is preserved in rats with spontaneous seizures. Male Wistar rats were injected with kainic acid (9 mg/kg, i.p.) to induce chronic epilepsy. The occurrence of spontaneous seizures was monitored 5 or 15 weeks later by video-recording the rats for up to 5 days. Saline-injected animals served as controls. Thereafter, the retrograde tracer Fluoro-gold was injected into the border region of the temporal CA1/subiculum. Rats were perfused for histology 1-2 weeks later and sections were immunohistochemically processed to detect Fluoro-gold-positive cells. Comparison of the labeling in control and epileptic tissue indicated that a large cluster of retrogradely labeled cells in the parvicellular division of the basal nucleus was well preserved in epilepsy, even when the neuronal damage in the amygdala was substantial. Another large cluster of retrogradely labeled cells in the lateral division of the amygdalo-hippocampal area, the posterior cortical nucleus (part of the vomeronasal amygdala), and the periamygdaloid cortex (part of the olfactory amygdala), however, had disappeared in epileptic brain in parallel to severe neuronal loss in these nuclei. These data demonstrate that a projection from the parvicellular division of the basal nucleus to the temporal CA1/subiculum region is resistant to status epilepticus-induced neuronal damage and provides a candidate pathway by which seizure activity can spread and propagate from the amygdala to the hippocampal formation.
Collapse
Affiliation(s)
- S Kemppainen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
| | | |
Collapse
|