1
|
Lopatynska-Mazurek M, Antolak A, Grochecki P, Gibula-Tarlowska E, Bodzon-Kulakowska A, Listos J, Kedzierska E, Suder P, Silberring J, Kotlinska JH. Rapamycin Improves Spatial Learning Deficits, Vulnerability to Alcohol Addiction and Altered Expression of the GluN2B Subunit of the NMDA Receptor in Adult Rats Exposed to Ethanol during the Neonatal Period. Biomolecules 2021; 11:biom11050650. [PMID: 33924998 PMCID: PMC8147055 DOI: 10.3390/biom11050650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/18/2022] Open
Abstract
Ethanol exposure during pregnancy alters the mammalian target of rapamycin (mTOR) signaling pathway in the fetal brain. Hence, in adult rats exposed to ethanol during the neonatal period, we investigated the influence of rapamycin, an mTOR Complex 1 (mTORC1) inhibitor, on deficits in spatial memory and reversal learning in the Barnes maze task, as well as the ethanol-induced rewarding effects (1.0 or 1.5 g/kg) using the conditioning place preference (CPP) paradigm. Rapamycin (3 and 10 mg/kg) was given before intragastric ethanol (5 g/kg/day) administration at postnatal day (PND)4–9 (an equivalent to the third trimester of human pregnancy). Spatial memory/reversal learning and rewarding ethanol effect were evaluated in adult (PND60–70) rats. Additionally, the impact of rapamycin pre-treatment on the expression of the GluN2B subunit of NMDA receptor in the brain was assessed in adult rats. Our results show that neonatal ethanol exposure induced deficits in spatial memory and reversal learning in adulthood, but the reversal learning outcome may have been due to spatial learning impairments rather than cognitive flexibility impairments. Furthermore, in adulthood the ethanol treated rats were also more sensitive to the rewarding effect of ethanol than the control group. Rapamycin prevented the neonatal effect of ethanol and normalized the GluN2B down-regulation in the hippocampus and the prefrontal cortex, as well as normalized this subunit’s up-regulation in the striatum of adult rats. Our results suggest that rapamycin and related drugs may hold promise as a preventive therapy for fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Malgorzata Lopatynska-Mazurek
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (M.L.-M.); (P.G.); (E.G.-T.); (J.L.); (E.K.)
| | - Anna Antolak
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Sciences and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Ave., 30-059 Krakow, Poland; (A.A.); (A.B.-K.); (P.S.); (J.S.)
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (M.L.-M.); (P.G.); (E.G.-T.); (J.L.); (E.K.)
| | - Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (M.L.-M.); (P.G.); (E.G.-T.); (J.L.); (E.K.)
| | - Anna Bodzon-Kulakowska
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Sciences and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Ave., 30-059 Krakow, Poland; (A.A.); (A.B.-K.); (P.S.); (J.S.)
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (M.L.-M.); (P.G.); (E.G.-T.); (J.L.); (E.K.)
| | - Ewa Kedzierska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (M.L.-M.); (P.G.); (E.G.-T.); (J.L.); (E.K.)
| | - Piotr Suder
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Sciences and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Ave., 30-059 Krakow, Poland; (A.A.); (A.B.-K.); (P.S.); (J.S.)
| | - Jerzy Silberring
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Sciences and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Ave., 30-059 Krakow, Poland; (A.A.); (A.B.-K.); (P.S.); (J.S.)
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (M.L.-M.); (P.G.); (E.G.-T.); (J.L.); (E.K.)
- Correspondence: ; Tel.: +48-81-4487255
| |
Collapse
|
2
|
Ieraci A, Herrera DG. Early Postnatal Ethanol Exposure in Mice Induces Sex-Dependent Memory Impairment and Reduction of Hippocampal NMDA-R2B Expression in Adulthood. Neuroscience 2019; 427:105-115. [PMID: 31874240 DOI: 10.1016/j.neuroscience.2019.11.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Drinking alcohol during pregnancy is particularly detrimental for the developing brain and may cause a broad spectrum of cognitive and behavioral impairments, collectively known as fetal alcohol spectrum disorder (FASD). While behavioral abnormalities and brain damage have been widely investigated in animal models of FASD, the sex differences in the vulnerability to perinatal ethanol exposure have received less consideration. Here we investigated the long-term behavioral and molecular effects of acute ethanol-binge like exposure during the early postnatal period (equivalent to the third trimester of human pregnancy) in adult male and female mice. CD1 mice received a single ethanol exposure on P7 and were analyzed starting from P60. We found that ethanol-exposed mice showed increased activity in the open field test and in the plus-maze test, regardless of the sex. Interestingly, only ethanol-exposed adult male mice exhibited memory impairment in the water maze and fear-conditioning tests. Remarkably, hippocampal levels of NMDA-R2B were reduced only in ethanol-exposed male, while total BDNF levels were increased in both male and female ethanol-exposed mice. Our data suggest a different susceptibility of early postnatal ethanol exposure in male and female CD1 mice.
Collapse
Affiliation(s)
- Alessandro Ieraci
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10065, USA.
| | - Daniel G Herrera
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
3
|
Sari Y, Weedman JM, Nkrumah-Abrokwah M. Neurotrophic peptides, ADNF-9 and NAP, prevent alcohol-induced apoptosis at midgestation in fetal brains of C57BL/6 mouse. J Mol Neurosci 2012; 49:150-6. [PMID: 23229836 DOI: 10.1007/s12031-012-9921-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/05/2012] [Indexed: 11/26/2022]
Abstract
Prenatal alcohol exposure is known to induce fetal brain growth deficits at different embryonic stages. We focused this study on investigating the neuroprotective effects against alcohol-induced apoptosis at midgestation using activity-dependent neurotrophic factor (ADNF)-9, a peptide (SALLRSIPA) derived from activity-dependent neurotrophic factor, and NAP, a peptide (NAPVSIPQ) derived from activity-dependent neuroprotective protein. We used an established fetal alcohol exposure mouse model. On embryonic day 7 (E7), weight-matched pregnant females were assigned to the following groups: (1) ethanol liquid diet (ALC) group with 25 % (4.49 %, v/v) ethanol-derived calories, (2) pair-fed (PF) control group, (3) ALC combined with i.p. injections (1.5 mg/kg) of ADNF-9 (ALC/ADNF-9) group, (4) ALC combined with i.p. injections (1.5 mg/kg) of NAP (ALC/NAP) group, (5) PF liquid diet combined with i.p. injections of ADNF-9 (PF/ADNF-9) group, and (6) PF liquid diet combined with i.p. injections of NAP (PF/NAP) group. On day 15 (E15), fetal brains were collected, weighed, and assayed for TdT-mediated dUTP nick end labeling (TUNEL) staining. ADNF-9 or NAP was administered daily from E7 to E15 alongside PF or ALC liquid diet exposure. Our results show that NAP and ADNF-9 significantly prevented alcohol-induced weight reduction of fetal brains. Apoptosis was determined by TUNEL staining; NAP or ADNF-9 administration alongside alcohol exposure significantly prevented alcohol-induced increase in TUNEL-positive cells in primordium of the cingulate cortex and ganglionic eminence. These findings may pave the path toward potential therapeutics against alcohol intoxication during pregnancy stages.
Collapse
Affiliation(s)
- Youssef Sari
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | | | | |
Collapse
|
4
|
Sari Y, Weedman JM, Ge S. Activity-dependent neurotrophic factor-derived peptide prevents alcohol-induced apoptosis, in part, through Bcl2 and c-Jun N-terminal kinase signaling pathways in fetal brain of C57BL/6 mouse. Neuroscience 2011; 202:465-73. [PMID: 22178609 DOI: 10.1016/j.neuroscience.2011.11.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/28/2011] [Accepted: 11/28/2011] [Indexed: 12/16/2022]
Abstract
Fetal alcohol exposure is known to induce alteration in fetal brain development. In this study, we focused on neuroprotection against the effects of alcohol exposure using ADNF-9, a peptide derived from activity-dependent neurotrophic factor. We used a mouse model of fetal alcohol exposure to identify the intracellular mechanisms underlying the neuroprotective effects of ADNF-9. On embryonic day 7 (E7), weight-matched pregnant females were assigned to the following groups: (1) ethanol liquid diet (ALC) of 25% (4.49%, v/v) ethanol-derived calories; (2) pair-fed control (PF); (3) ALC combined with administration (i.p.) of ADNF-9 (ALC/ADNF-9); and (4) pair-fed combined with administration (i.p.) of ADNF-9 (PF/ADNF-9). On E13, fetal brains were collected, weighed, and apoptosis was determined using TdT-mediated dUTP nick-end labeling (TUNEL) assay. Bcl2 protein and phospho-c-Jun N-terminal kinase (JNK) levels were determined using Western blot and enzyme immunometric assay, respectively. ADNF-9 administration significantly prevented alcohol-induced reductions in fetal brain weight. In addition, ADNF-9 prevented an alcohol-induced increase in cell death in the primordium of the cerebral cortex and ganglionic eminence. Western blot analysis of the mitochondrial protein fractions revealed that ADNF-9 administration prevented an alcohol-induced reduction in the Bcl2 level. Moreover, an analysis of the proteins in the upstream signaling pathway revealed that ADNF-9 downregulated the phosphorylation of JNK. These data indicate that the mitochondrial Bcl2 pathway and JNK upstream signaling pathway are the intracellular targets of ADNF-9. The neuroprotective mechanism of action of ADNF-9 provides a direction for potential therapeutics against alcohol-induced neural damage involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Y Sari
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave. Toledo, OH 43614, USA.
| | | | | |
Collapse
|
5
|
Proctor WR, Dobelis P, Moritz AT, Wu PH. Chronic nicotine treatment differentially modifies acute nicotine and alcohol actions on GABA(A) and glutamate receptors in hippocampal brain slices. Br J Pharmacol 2011; 162:1351-63. [PMID: 21133888 PMCID: PMC3058167 DOI: 10.1111/j.1476-5381.2010.01141.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 11/02/2010] [Accepted: 11/04/2010] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Tobacco and alcohol are often co-abused producing interactive effects in the brain. Although nicotine enhances memory while ethanol impairs it, variable cognitive changes have been reported from concomitant use. This study was designed to determine how nicotine and alcohol interact at synaptic sites to modulate neuronal processes. EXPERIMENTAL APPROACH Acute effects of nicotine, ethanol, and both drugs on synaptic excitatory glutamatergic and inhibitory GABAergic transmission were measured using whole-cell recording in hippocampal CA1 pyramidal neurons from brain slices of mice on control or nicotine-containing diets. KEY RESULTS Acute nicotine (50 nM) enhanced both GABAergic and glutamatergic synaptic transmission; potentiated GABA(A) receptor currents via activation of α7* and α4β2* nAChRs, and increased N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor currents through α7* receptors. While ethanol (80 mM) also increased GABA(A) currents, it inhibited NMDA currents. Although ethanol had no effect on AMPA currents, it blocked nicotine-induced increases in NMDA and AMPA currents. Following chronic nicotine treatment, acute nicotine or ethanol did not affect NMDA currents, while the effects of GABAergic responses were not altered. CONCLUSIONS AND IMPLICATIONS Acute ethanol ingestion selectively attenuated nicotine enhancement of excitatory glutamatergic NMDA and AMPA receptor function, suggesting an overall reduction in excitatory output from the hippocampus. It also indicated that ethanol could decrease the beneficial effects of nicotine on memory performance. In addition, chronic nicotine treatment produced tolerance to the effects of nicotine and cross-tolerance to the effects of ethanol on glutamatergic activity, leading to a potential increase in the use of these drugs.
Collapse
|
6
|
Reversal of alcohol-induced learning deficits in the young adult in a model of fetal alcohol syndrome. Obstet Gynecol 2010; 115:350-356. [PMID: 20093910 DOI: 10.1097/aog.0b013e3181cb59da] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate whether treatment with neuroprotective peptides to young adult mice prenatally exposed to alcohol reverses alcohol-induced learning deficits in a mouse model of fetal alcohol syndrome, whether the mechanism involves the N-methyl-d-aspartate (NMDA) and gamma-aminobutyric acid type A (GABAA) receptors, and whether it is related to glial cells. METHODS C57Bl6/J mice were treated with alcohol (0.03 ml/g) or placebo on gestational day 8. On day 40, male mice exposed to alcohol in utero were treated daily for 10 days with D-NAPVSIPQ and D-SALLRSIPA (n=20) or placebo (n=13); and control offspring were treated with placebo (n=46), with the treatment blinded. Learning evaluation began after 3 days using the Morris watermaze and the T-maze. The hippocampus, cortex, and cerebellum were isolated. Expression of NR2A, NR2B, GABAAbeta3, GABAAalpha5, vasoactive intestinal peptide (VIP), activity-dependent neuroprotective protein, and glial fibrillary acidic protein was measured using calibrator-normalized relative real-time polymerase chain reaction. Statistical analysis included analysis of variance and Fisher's protected least significant difference. RESULTS Treatment with D-NAPVSIPQ and D-SALLRSIPA reversed the alcohol-induced learning deficit in both learning tests as well as the NR2A and NR2B down-regulation in the hippocampus and the up-regulation of NR2A in the cortex and NR2B in the cortex and cerebellum (all P<.05). No significant differences were found in GABAA expression. Moreover, the peptides changed activity-dependent neuroprotective protein expression in the cortex (P=.016) but not the down-regulation of VIP (P=.883), probably because the peptides are downstream from VIP. CONCLUSION Alcohol-induced learning deficit was reversed and expression of NR2A and NR2B was restored in the hippocampus and cortex of young adult mice treated with D-NAPVSIPQ and D-SALLRSIPA. Given the role of NMDA receptors in learning, this may explain in part the mechanism of prevention of alcohol-induced learning deficits by D-NAPVSIPQ and D-SALLRSIPA.
Collapse
|
7
|
Puglia MP, Valenzuela CF. Ethanol acutely inhibits ionotropic glutamate receptor-mediated responses and long-term potentiation in the developing CA1 hippocampus. Alcohol Clin Exp Res 2010; 34:594-606. [PMID: 20102565 DOI: 10.1111/j.1530-0277.2009.01128.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Developmental ethanol (EtOH) exposure damages the hippocampus, causing long-lasting alterations in learning and memory. Alterations in glutamatergic synaptic transmission and plasticity may play a role in the mechanism of action of EtOH. This signaling is fundamental for synaptogenesis, which occurs during the third trimester of human pregnancy (first 12 days of life in rats). METHODS Acute coronal brain slices were prepared from 7- to 9-day-old rats. Extracellular and patch-clamp electrophysiological recording techniques were used to characterize the acute effects of EtOH on alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR)- and N-methyl-D-aspartate receptor (NMDAR)-mediated responses and long-term potentiation (LTP) in the CA1 hippocampal region. RESULTS Ethanol (40 and 80 mM) inhibited AMPAR- and NMDAR-mediated field excitatory postsynaptic potentials (fEPSPs). EtOH (80 mM) also reduced AMPAR-mediated fEPSPs in the presence of an inhibitor of Ca2+ permeable AMPARs. The effect of 80 mM EtOH on NMDAR-mediated fEPSPs was significantly greater in the presence of Mg2+. EtOH (80 mM) neither affected the paired-pulse ratio of AMPAR-mediated fEPSPs nor the presynaptic volley. The paired-pulse ratio of AMPAR-mediated excitatory postsynaptic currents was not affected either, and the amplitude of these currents was inhibited to a lesser extent than that of fEPSPs. EtOH (80 mM) inhibited LTP of AMPAR-mediated fEPSPs. CONCLUSIONS Acute EtOH exposure during the third-trimester equivalent of human pregnancy inhibits hippocampal glutamatergic transmission and LTP induction, which could alter synapse refinement and ultimately contribute to the pathophysiology of fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Michael P Puglia
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131-0001, USA
| | | |
Collapse
|
8
|
Toso L, Johnson A, Bissell S, Roberson R, Abebe D, Spong CY. Understanding the mechanism of learning enhancement: NMDA and GABA receptor expression. Am J Obstet Gynecol 2007; 197:267.e1-4. [PMID: 17826414 PMCID: PMC2001299 DOI: 10.1016/j.ajog.2007.05.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 04/24/2007] [Accepted: 05/31/2007] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The administration of neurotrophic peptides NAPVSIPQ (NAP) + SALLRSIPA (SAL) to aged mice resulted in significant learning enhancement. N-methyl-D-aspartate (NMDA) and gamma-aminobutyric acid (GABA) receptors are fundamental for learning because they are the major modulators of the long-term potentiation, the electrophysiologic mechanism for learning. Also, these receptors have been shown to be involved in NAP + SAL prevention of learning deficit in a mouse model for fetal alcohol syndrome, when administered prenatally during development. Our objective was to test whether NMDA and GABA receptors contribute to the learning enhancement that is induced by the peptides after adult administration. STUDY DESIGN Aged (14.5 months) male mice were treated for 10 consecutive days with placebo or D-NAP + D-SAL (20 microg, by gavage). At the end of the treatment, brains were harvested. Calibrator-normalized relative real-time polymerase chain reaction was performed with primers for GABA-(A)beta3, GABA-(A)alpha5, and the NMDA receptor subunits NR2A and NR2B, with GAPDH standardization. Statistical analysis included analysis of variance, with a probability value that was considered significant at <.05. RESULTS Five control brains and 6 brains from animals that were treated with NAP + SAL were collected. There was no difference in GABA-(A)beta3, GABA-(A)alpha5, NR2A, and NR2B subunits after adult administration of NAP + SAL, as compared with the controls (P > .05). CONCLUSION Postnatal treatment with NAP + SAL induced learning enhancement in aged mice with a mechanism that does not involve alteration in NMDA and GABA receptor expression. Thus, the mechanism of learning enhancement might be different for a developing fetus than an adult or in the absence of a perturbing agent.
Collapse
Affiliation(s)
- Laura Toso
- Unit on Perinatal and Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Chiba T, Nishimoto I, Aiso S, Matsuoka M. Neuroprotection against neurodegenerative diseases. Mol Neurobiol 2007. [DOI: 10.1007/bf02700624] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Roberto M, Treistman SN, Pietrzykowski AZ, Weiner J, Galindo R, Mameli M, Valenzuela F, Zhu PJ, Lovinger D, Zhang TA, Hendricson AH, Morrisett R, Siggins GR. Actions of acute and chronic ethanol on presynaptic terminals. Alcohol Clin Exp Res 2006; 30:222-32. [PMID: 16441271 PMCID: PMC4115792 DOI: 10.1111/j.1530-0277.2006.00030.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article presents the proceedings of a symposium entitled "The Tipsy Terminal: Presynaptic Effects of Ethanol" (held at the annual meeting of the Research Society on Alcoholism, in Santa Barbara, CA, June 27, 2005). The objective of this symposium was to focus on a cellular site of ethanol action underrepresented in the alcohol literature, but quickly becoming a "hot" topic. The chairs of the session were Marisa Roberto and George Robert Siggins. Our speakers were chosen on the basis of the diverse electrophysiological and other methods used to discern the effects of acute and chronic ethanol on presynaptic terminals and on the basis of significant insights that their data provide for understanding ethanol actions on neurons in general, as mechanisms underlying problematic behavioral effects of alcohol. The 5 presenters drew from their recent studies examining the effects of acute and chronic ethanol using a range of sophisticated methods from electrophysiological analysis of paired-pulse facilitation and spontaneous and miniature synaptic currents (Drs. Weiner, Valenzuela, Zhu, and Morrisett), to direct recording of ion channel activity and peptide release from acutely isolated synaptic terminals (Dr. Treistman), to direct microscopic observation of vesicular release (Dr. Morrisett). They showed that ethanol administration could both increase and decrease the probability of release of different transmitters from synaptic terminals. The effects of ethanol on synaptic terminals could often be correlated with important behavioral or developmental actions of alcohol. These and other novel findings suggest that future analyses of synaptic effects of ethanol should attempt to ascertain, in multiple brain regions, the role of presynaptic terminals, relevant presynaptic receptors and signal transduction linkages, exocytotic mechanisms, and their involvement in alcohol's behavioral actions. Such studies could lead to new treatment strategies for alcohol intoxication, alcohol abuse, and alcoholism.
Collapse
Affiliation(s)
- Marisa Roberto
- Molecular and Integrative Neuroscience Department, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|