1
|
Clark CM, Clark RM, Hoyle JA, Dickson TC. Pathogenic or protective? Neuropeptide Y in amyotrophic lateral sclerosis. J Neurochem 2020; 156:273-289. [PMID: 32654149 DOI: 10.1111/jnc.15125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) is an endogenous peptide of the central and enteric nervous systems which has gained significant interest as a potential neuroprotective agent for treatment of neurodegenerative disease. Amyotrophic lateral sclerosis (ALS) is an aggressive and fatal neurodegenerative disease characterized by motor deficits and motor neuron loss. In ALS, recent evidence from ALS patients and animal models has indicated that NPY may have a role in the disease pathogenesis. Increased NPY levels were found to correlate with disease progression in ALS patients. Similarly, NPY expression is increased in the motor cortex of ALS mice by end stages of the disease. Although the functional consequence of increased NPY levels in ALS is currently unknown, NPY has been shown to exert a diverse range of neuroprotective roles in other neurodegenerative diseases; through modulation of potassium channel activity, increased production of neurotrophins, inhibition of endoplasmic reticulum stress and autophagy, reduction of excitotoxicity, oxidative stress, neuroinflammation and hyperexcitability. Several of these mechanisms and signalling pathways are heavily implicated in the pathogenesis of ALS. Therefore, in this review, we discuss possible effects of NPY and NPY-receptor signalling in the ALS disease context, as determining NPY's contribution to, or impact on, ALS disease mechanisms will be essential for future studies investigating the NPY system as a therapeutic strategy in this devastating disease.
Collapse
Affiliation(s)
- Courtney M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rosemary M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Joshua A Hoyle
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
2
|
Traub RD, Moeller F, Rosch R, Baldeweg T, Whittington MA, Hall SP. Seizure initiation in infantile spasms vs. focal seizures: proposed common cellular mechanisms. Rev Neurosci 2020; 31:181-200. [PMID: 31525161 DOI: 10.1515/revneuro-2019-0030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/01/2019] [Indexed: 11/15/2022]
Abstract
Infantile spasms (IS) and seizures with focal onset have different clinical expressions, even when electroencephalography (EEG) associated with IS has some degree of focality. Oddly, identical pathology (with, however, age-dependent expression) can lead to IS in one patient vs. focal seizures in another or even in the same, albeit older, patient. We therefore investigated whether the cellular mechanisms underlying seizure initiation are similar in the two instances: spasms vs. focal. We noted that in-common EEG features can include (i) a background of waves at alpha to delta frequencies; (ii) a period of flattening, lasting about a second or more - the electrodecrement (ED); and (iii) often an interval of very fast oscillations (VFO; ~70 Hz or faster) preceding, or at the beginning of, the ED. With IS, VFO temporally coincides with the motor spasm. What is different between the two conditions is this: with IS, the ED reverts to recurring slow waves, as occurring before the ED, whereas with focal seizures the ED instead evolves into an electrographic seizure, containing high-amplitude synchronized bursts, having superimposed VFO. We used in vitro data to help understand these patterns, as such data suggest cellular mechanisms for delta waves, for VFO, for seizure-related burst complexes containing VFO, and, more recently, for the ED. We propose a unifying mechanistic hypothesis - emphasizing the importance of brain pH - to explain the commonalities and differences of EEG signals in IS versus focal seizures.
Collapse
Affiliation(s)
- Roger D Traub
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Friederike Moeller
- Department of Clinical Neurophysiology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Richard Rosch
- MRC Centre for Neurodevelopmental Disorders, King's College London, New Hunt's House, London SE1 1UL, UK
| | - Torsten Baldeweg
- Institute of Child Health, University College London, 30 Guildford Street, London WC1N 1EH, UK
| | | | - Stephen P Hall
- Hull York Medical School, University of York, Heslington YO10 5DD, UK
| |
Collapse
|
3
|
Spatial and temporal immunoreactivity in the rat brain using an affinity purified polyclonal antibody to DNSP-11. J Chem Neuroanat 2019; 100:101664. [PMID: 31394198 DOI: 10.1016/j.jchemneu.2019.101664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/30/2019] [Accepted: 08/03/2019] [Indexed: 01/21/2023]
Abstract
DNSP-11 antibody signal was investigated in perfusion fixated Fischer 344 rat brains by immunohistochemistry with a custom, affinity purified polyclonal antibody. The DNSP-11-antibody signal was differentially localized from the mature GDNF protein both spatially and temporally. In the mesencephalon of post-natal day 10 animals, when GDNF is maximally expressed, DNSP-11 and GDNF antibody immunoreactivities co-localize extensively but not exclusively. In adult 3-month-old animals, GDNF expression is markedly reduced while the DNSP-11 signal remains intense. DNSP-11-antibody signal was present in the 3-month-old rat brain with signal in the substantia nigra, ventral tegmental area, dentate gyrus of the hippocampus, with the strongest signal observed in the locus ceruleus where GDNF is not expressed. While amino acid sequence homologues such as NPY and Tfg do exist, binding patterns reported in the literature of do not recapitulate the immunoreactive patterns observed for the DNSP-11-antibody signal.
Collapse
|
4
|
Diaz-delCastillo M, Woldbye DP, Heegaard AM. Neuropeptide Y and its Involvement in Chronic Pain. Neuroscience 2018; 387:162-169. [DOI: 10.1016/j.neuroscience.2017.08.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022]
|
5
|
Köles L, Kató E, Hanuska A, Zádori ZS, Al-Khrasani M, Zelles T, Rubini P, Illes P. Modulation of excitatory neurotransmission by neuronal/glial signalling molecules: interplay between purinergic and glutamatergic systems. Purinergic Signal 2015; 12:1-24. [PMID: 26542977 DOI: 10.1007/s11302-015-9480-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/26/2015] [Indexed: 12/29/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter of the central nervous system (CNS), released both from neurons and glial cells. Acting via ionotropic (NMDA, AMPA, kainate) and metabotropic glutamate receptors, it is critically involved in essential regulatory functions. Disturbances of glutamatergic neurotransmission can be detected in cognitive and neurodegenerative disorders. This paper summarizes the present knowledge on the modulation of glutamate-mediated responses in the CNS. Emphasis will be put on NMDA receptor channels, which are essential executive and integrative elements of the glutamatergic system. This receptor is crucial for proper functioning of neuronal circuits; its hypofunction or overactivation can result in neuronal disturbances and neurotoxicity. Somewhat surprisingly, NMDA receptors are not widely targeted by pharmacotherapy in clinics; their robust activation or inhibition seems to be desirable only in exceptional cases. However, their fine-tuning might provide a promising manipulation to optimize the activity of the glutamatergic system and to restore proper CNS function. This orchestration utilizes several neuromodulators. Besides the classical ones such as dopamine, novel candidates emerged in the last two decades. The purinergic system is a promising possibility to optimize the activity of the glutamatergic system. It exerts not only direct and indirect influences on NMDA receptors but, by modulating glutamatergic transmission, also plays an important role in glia-neuron communication. These purinergic functions will be illustrated mostly by depicting the modulatory role of the purinergic system on glutamatergic transmission in the prefrontal cortex, a CNS area important for attention, memory and learning.
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| | - Erzsébet Kató
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Adrienn Hanuska
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Patrizia Rubini
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany
| | - Peter Illes
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|
6
|
Martins J, Elvas F, Brudzewsky D, Martins T, Kolomiets B, Tralhão P, Gøtzsche CR, Cavadas C, Castelo-Branco M, Woldbye DPD, Picaud S, Santiago AR, Ambrósio AF. Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro. ASN Neuro 2015; 7:7/4/1759091415598292. [PMID: 26311075 PMCID: PMC4552225 DOI: 10.1177/1759091415598292] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuropeptide Y (NPY) is expressed in mammalian retina but the location and potential modulatory effects of NPY receptor activation remain largely unknown. Retinal ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly glaucoma. Using purified RGCs and ex vivo rat retinal preparations, we have measured RGC intracellular free calcium concentration ([Ca2+]i) and RGC spiking activity, respectively. We found that NPY attenuated the increase in the [Ca2+]i triggered by glutamate mainly via Y1 receptor activation. Moreover, (Leu31, Pro34)−NPY, a Y1/Y5 receptor agonist, increased the initial burst response of OFF-type RGCs, although no effect was observed on RGC spontaneous spiking activity. The Y1 receptor activation was also able to directly modulate RGC responses by attenuating the NMDA-induced increase in RGC spiking activity. These results suggest that Y1 receptor activation, at the level of inner or outer plexiform layers, leads to modulation of RGC receptive field properties. Using in vitro cultures of rat retinal explants exposed to NMDA, we found that NPY pretreatment prevented NMDA-induced cell death. However, in an animal model of retinal ischemia-reperfusion injury, pretreatment with NPY or (Leu31, Pro34)−NPY was not able to prevent apoptosis or rescue RGCs. In conclusion, we found modulatory effects of NPY application that for the first time were detected at the level of RGCs. However, further studies are needed to evaluate whether NPY neuroprotective actions detected in retinal explants can be translated into animal models of retinal degenerative diseases.
Collapse
Affiliation(s)
- João Martins
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal
| | - Filipe Elvas
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal AIBILI, 3000-548 Coimbra, Portugal
| | - Dan Brudzewsky
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal AIBILI, 3000-548 Coimbra, Portugal
| | - Tânia Martins
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal AIBILI, 3000-548 Coimbra, Portugal
| | - Bogdan Kolomiets
- Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, UMR_S968, 75012 Paris, France
| | - Pedro Tralhão
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal
| | - Casper R Gøtzsche
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Cláudia Cavadas
- CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal
| | - David P D Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Serge Picaud
- Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, UMR_S968, 75012 Paris, France
| | - Ana R Santiago
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal AIBILI, 3000-548 Coimbra, Portugal Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - António F Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal AIBILI, 3000-548 Coimbra, Portugal Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
7
|
Dong C, Zhao W, Li W, Lv P, Dong X. Anti-epileptic effects of neuropeptide Y gene transfection into the rat brain. Neural Regen Res 2014; 8:1307-15. [PMID: 25206425 PMCID: PMC4107651 DOI: 10.3969/j.issn.1673-5374.2013.14.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 04/24/2013] [Indexed: 02/04/2023] Open
Abstract
Neuropeptide Y gene transfection into normal rat brain tissue can provide gene overexpression, which can attenuate the severity of kainic acid-induced seizures. In this study, a recombinant adeno-associated virus carrying the neuropeptide Y gene was transfected into brain tissue of rats with kainic acid-induced epilepsy through stereotactic methods. Following these transfections, we verified overexpression of the neuropeptide Y gene in the epileptic brain. Electroencephalograms showed that seizure severity was significantly inhibited and seizure latency was significantly prolonged up to 4 weeks after gene transfection. Moreover, quantitative fluorescent PCR and western blot assays revealed that the mRNA and protein expression of the N-methyl-D-aspartate receptor subunits NR1, NR2A, and NR2B was inhibited in the hippocampus of epileptic rats. These findings indicate that neuropeptide Y may inhibit seizures via down-regulation of the functional expression of N-methyl-D-aspartate receptors.
Collapse
Affiliation(s)
- Changzheng Dong
- Faculty of Graduate Studies, Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Wenqing Zhao
- Faculty of Graduate Studies, Hebei Medical University, Shijiazhuang 050051, Hebei Province, China ; Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Wenling Li
- Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Peiyuan Lv
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Xiufang Dong
- Department of Neurology, First Hospital of Xingtai, Xingtai 054000, Hebei Province, China
| |
Collapse
|
8
|
Xu X, Guo F, He Q, Cai X, Min D, Wang Q, Wang S, Tian L, Cai J, Zhao Y. Altered expression of neuropeptide Y, Y1 and Y2 receptors, but not Y5 receptor, within hippocampus and temporal lobe cortex of tremor rats. Neuropeptides 2014; 48:97-105. [PMID: 24444822 DOI: 10.1016/j.npep.2013.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/18/2013] [Accepted: 12/22/2013] [Indexed: 01/24/2023]
Abstract
As an endogenous inhibitor of glutamate-mediated synaptic transmission in mammalian central nervous system, neuropeptide Y (NPY) plays a crucial role in regulating homeostasis of neuron excitability. Loss of balance between excitatory and inhibitory neurotransmission is thought to be a chief mechanism of epileptogenesis. The abnormal expression of NPY and its receptors observed following seizures have been demonstrated to be related to the production of epilepsy. The tremor rat (TRM) is a hereditary epileptic animal model. So far, there is no report concerning whether NPY and its receptors may be involved in TRM pathogenesis. In this study, we focused on the expression of NPY and its three receptor subtypes: Y1R, Y2R and Y5R in the TRM brain. We first found the expression of NPY in TRM hippocampus and temporal lobe cortex was increased compared with control (Wistar) rats. The mRNA and protein expression of Y1R was down-regulated in hippocampus but up-regulated in temporal lobe cortex, whereas Y2R expression was significantly increased in both areas. There was no significant change of Y5R expression in either area. The immunohistochemistry data showed that Y1R, Y2R, Y5R were present throughout CA1, CA3, dentate gyrus (DG) and the entorhinal cortex which is included in the temporal lobe cortex of TRM. In conclusion, our results showed the altered expression of NPY, Y1R and Y2R but not Y5R in hippocampus and temporal lobe cortex of TRM brain. This abnormal expression may be associated with the generation of epileptiform activity and provide a candidate target for treatment of genetic epilepsy.
Collapse
Affiliation(s)
- Xiaoxue Xu
- Biochip Center, College of Basic Medicine, China Medical University, Shenyang 110001, China; Department of Neurology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Qun He
- Biochip Center, College of Basic Medicine, China Medical University, Shenyang 110001, China
| | - Xinze Cai
- Central Lab, The First Hospital of China Medical University, Shenyang 110001, China
| | - Dongyu Min
- Experiment Center of Traditional Chinese Medicine, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Qianhui Wang
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Shaocheng Wang
- Biochip Center, College of Basic Medicine, China Medical University, Shenyang 110001, China
| | - Liu Tian
- Biochip Center, College of Basic Medicine, China Medical University, Shenyang 110001, China
| | - Jiqun Cai
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Yujie Zhao
- Biochip Center, College of Basic Medicine, China Medical University, Shenyang 110001, China.
| |
Collapse
|
9
|
Neuropeptide Y increases in vivo hippocampal extracellular glutamate levels through Y1 receptor activation. Neurosci Lett 2012; 510:143-7. [DOI: 10.1016/j.neulet.2012.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/20/2011] [Accepted: 01/09/2012] [Indexed: 01/19/2023]
|
10
|
Ferreira R, Santos T, Cortes L, Cochaud S, Agasse F, Silva AP, Xapelli S, Malva JO. Neuropeptide Y inhibits interleukin-1 beta-induced microglia motility. J Neurochem 2011; 120:93-105. [DOI: 10.1111/j.1471-4159.2011.07541.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Sun J, Moenter SM. Progesterone treatment inhibits and dihydrotestosterone (DHT) treatment potentiates voltage-gated calcium currents in gonadotropin-releasing hormone (GnRH) neurons. Endocrinology 2010; 151:5349-58. [PMID: 20739401 PMCID: PMC2954728 DOI: 10.1210/en.2010-0385] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
GnRH neurons are central regulators of fertility, and their activity is modulated by steroid feedback. In normal females, GnRH secretion is regulated by estradiol and progesterone (P). Excess androgens present in hyperandrogenemic fertility disorders may disrupt communication of negative feedback signals from P and/or independently stimulate GnRH release. Voltage-gated calcium channels (VGCCs) are important in regulating excitability and hormone release. Estradiol alters VGCCs in a time-of-day-dependent manner. To further elucidate ovarian steroid modulation of GnRH neuron VGCCs, we studied the effects of dihydrotestosterone (DHT) and P. Adult mice were ovariectomized (OVX) or OVX and treated with implants containing DHT (OVXD), estradiol (OVXE), estradiol and DHT (OVXED), estradiol and P (OVXEP), or estradiol, DHT, and P (OVXEDP). Macroscopic calcium current (I(Ca)) was recorded in the morning or afternoon 8-12 d after surgery using whole-cell voltage-clamp. I(Ca) was increased in afternoon vs. morning in GnRH neurons from OVXE mice but this increase was abolished in cells from OVXEP mice. I(Ca) in cells from OVXD mice was increased regardless of time of day; there was no additional effect in OVXED mice. P reduced N-type and DHT potentiated N- and R-type VGCCs; P blocked the DHT potentiation of N-type-mediated current. These data suggest P and DHT have opposing actions on VGCCs in GnRH neurons, but in the presence of both steroids, P dominates. VGCCs are targets of ovarian steroid feedback modulation of GnRH neuron activity and, more specifically, a potential mechanism whereby androgens could activate GnRH neuronal function.
Collapse
Affiliation(s)
- Jianli Sun
- Department of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
12
|
Olling JD, Ulrichsen J, Correll M, Woldbye DPD. Gene expression in the neuropeptide Y system during ethanol withdrawal kindling in rats. Alcohol Clin Exp Res 2009; 34:462-70. [PMID: 20028355 DOI: 10.1111/j.1530-0277.2009.01110.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Multiple episodes of ethanol intoxication and withdrawal result in progressive, irreversible intensification of the withdrawal reaction, a process termed "ethanol withdrawal kindling." Previous studies show that a single episode of chronic ethanol intoxication and withdrawal causes prominent changes in neuropeptide Y (NPY) and its receptors that have been implicated in regulating withdrawal hyperexcitability. This study for the first time examined the NPY system during ethanol withdrawal kindling. METHODS Ethanol withdrawal kindling was studied in rats receiving 16 episodes of 2 days of chronic ethanol intoxication by intragastric intubations followed by 5 days withdrawal. The study included 6 groups: 4 multiple withdrawal episode (MW) groups [peak withdrawal plus (MW+)/minus (MW-) seizures, 3-day (MW3d), and 1-month (MW1mth) withdrawal], a single withdrawal episode group (SW), and an isocalorically fed control group. Gene expression of NPY and its receptors Y1, Y2, and Y5 was studied in the hippocampal dentate gyrus (DG) and CA3/CA1, as well as piriform cortex (PirCx), and neocortex (NeoCx). RESULTS MW+/- as well as SW groups showed decreased NPY gene expression in all hippocampal areas compared with controls, but, in the DG and CA3, decreases were significantly smaller in the MW- group compared with the SW group. In the MW+/- and SW groups, Y1, Y2, and Y5 mRNA levels were decreased in most brain areas compared with controls; however, decreases in Y1 and Y5 mRNA were augmented in the MW+/- groups compared with the SW group. The MW+ group differed from the MW- group in the PirCx, where Y2 gene expression was significantly higher. CONCLUSION Multiple withdrawal episodes reversibly decreased NPY and NPY receptor mRNA levels at peak withdrawal, with smaller decreases in NPY mRNA levels and augmented decreases in Y1/Y5 mRNA levels compared with a SW episode. Multiple withdrawal-induced seizures increased the Y2 mRNA levels in PirCx. These complex changes in NPY system gene expression could play a role in the ethanol withdrawal kindling process.
Collapse
Affiliation(s)
- Janne D Olling
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen & University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | | | | |
Collapse
|
13
|
Alvaro AR, Rosmaninho-Salgado J, Ambrósio AF, Cavadas C. Neuropeptide Y inhibits [Ca2+]i changes in rat retinal neurons through NPY Y1, Y4, and Y5 receptors. J Neurochem 2009; 109:1508-15. [PMID: 19344373 DOI: 10.1111/j.1471-4159.2009.06079.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuropeptide Y (NPY) and NPY receptors are widely distributed in the CNS, including the retina, but the role of NPY in the retina is largely unknown. The aim of this study was to investigate whether NPY modulates intracellular calcium concentration ([Ca(2+)](i)) changes in retinal neurons and identify the NPY receptors involved. As NPY decreased the [Ca(2+)](i) amplitudes evoked by 30 mM KCl in only 50% of neurons analyzed, we divided them in two populations: NPY-non-responsive neurons (Delta2/Delta1 > or = 0.80) and NPY-responsive neurons (Delta2/Delta1 < 0.80), being the Delta2/Delta1 the ratio between the amplitude of [Ca(2+)](i) increase evoked by the second (Delta2) and the first (Delta1) stimuli of KCl. The NPY Y(1)/Y(5), Y(4), and Y(5) receptor agonists (100 nM), but not the Y(2) receptor agonist (300 nM), inhibited the [Ca(2+)](i) increase induced by KCl. In addition, the inhibitory effect of NPY on evoked-[Ca(2+)](i) changes was reduced in the presence of the Y(1) or the Y(5) receptor antagonists. In conclusion, NPY inhibits KCl-evoked [Ca(2+)](i) increase in retinal neurons through the activation of NPY Y(1), Y(4), and Y(5) receptors. This effect may be viewed as a potential neuroprotective mechanism of NPY against retinal neurodegeneration.
Collapse
Affiliation(s)
- Ana Rita Alvaro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | |
Collapse
|
14
|
Deli L, Wittmann G, Kalló I, Lechan RM, Watanabe M, Liposits Z, Fekete C. Type 1 cannabinoid receptor-containing axons innervate hypophysiotropic thyrotropin-releasing hormone-synthesizing neurons. Endocrinology 2009; 150:98-103. [PMID: 18818298 PMCID: PMC2630898 DOI: 10.1210/en.2008-0330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 09/15/2008] [Indexed: 11/19/2022]
Abstract
Hypophysiotropic TRH-synthesizing neurons of the hypothalamic paraventricular nucleus (PVN) have a critical role in the regulation of the energy homeostasis through control of the hypothalamic-pituitary-thyroid axis. Recently, endocannabinoids have been shown to exert inhibitory effects on TRH neurons via the type 1 cannabinoid receptor (CB1). To understand the anatomical basis for this regulatory mechanism, we determined whether CB1 is contained in axons innervating hypophysiotropic TRH neurons using a recently developed antiserum against the C-terminal portion of mouse CB1. CB1-immunoreactive axons densely innervated the parvicellular subdivisions of the PVN where the hypophysiotropic TRH neurons are located. By double-labeling immunocytochemistry, CB1-immunoreactive varicosities were observed in juxtaposition to the vast majority of TRH neurons in the PVN. At the ultrastructural level, CB1-immunoreactivity was observed in the preterminal portion of axons establishing both symmetric and asymmetric synaptic specializations with the perikarya and dendrites of TRH neurons in the PVN. These data demonstrate that CB1 is abundantly present in axons that are in synaptic association with hypophysiotropic TRH neurons, indicating an important role for endocannabinoids in the regulation of the hypothalamic-pituitary-thyroid axis. The presence of both symmetric and asymmetric type CB1 synapses on TRH neurons in the PVN suggests that endocannabinoids may influence both excitatory and inhibitory inputs of these neurons.
Collapse
Affiliation(s)
- Levente Deli
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony Street, Budapest 1083, Hungary
| | | | | | | | | | | | | |
Collapse
|
15
|
Kokavec A. Is decreased appetite for food a physiological consequence of alcohol consumption? Appetite 2008; 51:233-43. [DOI: 10.1016/j.appet.2008.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 03/02/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
|
16
|
Abstract
Presynaptic receptors for four families of neuropeptides will be discussed: opioids, neuropeptide Y, adrenocorticotropic hormone (ACTH), and orexins. Presynaptic receptors for the opioids (micro, delta, kappa, and ORL(1)) and neuropeptide Y (Y(2)) inhibit transmitter release from a variety of neurones, both in the peripheral and central nervous systems. These receptors, which were also identified in human tissue, are coupled to G(i/o) proteins and block voltage-dependent Ca(2+) channels, activate voltage-dependent K(+) channels, and/or interfere with the vesicle release machinery. Presynaptic receptors for ACTH (MC(2) receptors) have so far been identified almost exclusively in cardiovascular tissues from rabbits, where they facilitate noradrenaline release; they are coupled to G(s) protein and act via stimulation of adenylyl cyclase. Presynaptic receptors for orexins (most probably OX(2) receptors) have so far almost exclusively been identified in the rat and mouse brain, where they facilitate the release of glutamate and gamma-aminobutyric acid (GABA); they are most probably linked to G(q) and directly activate the vesicle release machinery or act via a transduction mechanism upstream of the release process. Agonists and antagonists at opioid receptors owe at least part of their therapeutic effects to actions on presynaptic receptors. Therapeutic drugs targeting neuropeptide Y and orexin receptors and presynaptic ACTH receptors so far are not available.
Collapse
MESH Headings
- Animals
- Humans
- Neuropeptides/metabolism
- Orexin Receptors
- Receptors, Corticotropin/drug effects
- Receptors, Corticotropin/metabolism
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Neuropeptide/drug effects
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide Y/drug effects
- Receptors, Neuropeptide Y/metabolism
- Receptors, Opioid/drug effects
- Receptors, Opioid/metabolism
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/metabolism
Collapse
Affiliation(s)
- E Schlicker
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität, Reuterstrasse 2b, 53113 Bonn, Germany.
| | | |
Collapse
|
17
|
Oh-i K, Keino H, Goto H, Yamakawa N, Takeuchi M, Usui M, Iwasaki T. Upregulation of neurotrophic factor-related gene expression in retina with experimental autoimmune uveoretinitis by intravitreal injection of tacrolimus (FK506). Br J Ophthalmol 2007; 91:1537-40. [PMID: 17940132 DOI: 10.1136/bjo.2007.116525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM The current study was designed to determine whether intravitreal injection of tacrolimus (FK506) modulates the gene expression of neurotrophic factor-related molecules in the retina from eyes with induced experimental autoimmune uveoretinitis (EAU) in rats. METHODS Rats were immunised with interphotoreceptor retinoid binding protein peptide (R14) and given intravitreal injection of tacrolimus on day 12 after immunisation. As control, immunised rats received intravitreal injection of vehicle. On day 15 after immunisation, changes in the genetic programme associated with neuroprotection and inflammatory responses in the retinas from both groups were determined by DNA microarray analyses and confirmed by real-time PCR analyses. RESULTS The gene expression of inflammatory responses was markedly reduced in tacrolimus-treated eyes. Genes for molecules associated with neuroprotection (oestrogen receptor, erythropoietin receptor, gamma-aminobutyric acid receptor, protein kinase C, glial cell line-derived neurotrophic factor receptor, fibroblast growth factor and neuropeptide Y receptor) were upregulated in the retinas from tacrolimus-treated eyes. CONCLUSIONS Intravitreal injection of tacrolimus modulated the genes related to neuroprotection in the retina during the ongoing process of EAU. This treatment may be useful for the neuroprotection of retina with severe uveitis as well as for immunosuppression in the uveitic eyes.
Collapse
Affiliation(s)
- Keiko Oh-i
- Department of Ophthalmology, Tokyo Medical University, 6-7-1, Nishi-shinjuku, Shinjuku-ku, Tokyo, Japan 160-0023
| | | | | | | | | | | | | |
Collapse
|
18
|
Olling JD, Ulrichsen J, Haugbøl S, Glenthøj B, Hemmingsen R, Woldbye DPD. Decreased gene expression of neuropeptide Y and its receptors in hippocampal regions during ethanol withdrawal in rats. Neurosci Lett 2007; 424:160-4. [PMID: 17723274 DOI: 10.1016/j.neulet.2007.07.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Revised: 05/07/2007] [Accepted: 07/03/2007] [Indexed: 11/25/2022]
Abstract
Ethanol withdrawal is associated with neuronal hyperexcitability and increased hippocampal glutamate release. Neuropeptide Y (NPY) appears to play an important role in regulation of hippocampal neuronal excitability by inhibiting glutamate release. Expression of NPY and its receptors Y1, Y2, and Y5 was studied in hippocampal areas of rats during ethanol withdrawal after repeated intragastric ethanol administration for 2 or 4 days using in situ hybridization. Withdrawal was associated with decreased hippocampal expression of NPY and each of its receptors, particularly Y2, after 2 and/or 4 days of ethanol compared to control rats. These data suggest that the hippocampal NPY system is downregulated during ethanol withdrawal and these neuroadaptational changes could play a role in mediating withdrawal hyperexcitability.
Collapse
Affiliation(s)
- Janne D Olling
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen & University Hospital Rigshospitalet 6102, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
19
|
Hart SA, Snyder MA, Smejkalova T, Woolley CS. Estrogen mobilizes a subset of estrogen receptor-alpha-immunoreactive vesicles in inhibitory presynaptic boutons in hippocampal CA1. J Neurosci 2007; 27:2102-11. [PMID: 17314305 PMCID: PMC6673535 DOI: 10.1523/jneurosci.5436-06.2007] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Revised: 01/21/2007] [Accepted: 01/22/2007] [Indexed: 01/01/2023] Open
Abstract
Although the classical mechanism of estrogen action involves activation of nuclear transcription factor receptors, estrogen also has acute effects on neuronal signaling that occur too rapidly to involve gene expression. These rapid effects are likely to be mediated by extranuclear estrogen receptors associated with the plasma membrane and/or cytoplasmic organelles. Here we used a combination of serial-section electron microscopic immunocytochemistry, immunofluorescence, and Western blotting to show that estrogen receptor-alpha is associated with clusters of vesicles in perisomatic inhibitory boutons in hippocampal CA1 and that estrogen treatment mobilizes these vesicle clusters toward synapses. Estrogen receptor-alpha is present in approximately one-third of perisomatic inhibitory boutons, and specifically in those that express cholecystokinin, not parvalbumin. We also found a high degree of extranuclear estrogen receptor-alpha colocalization with neuropeptide Y. Our results suggest a novel mode of estrogen action in which a subset of vesicles within a specific population of inhibitory boutons responds directly to estrogen by moving toward synapses. The mobilization of these vesicles may influence acute effects of estrogen mediated by estrogen receptor-alpha signaling at inhibitory synapses.
Collapse
Affiliation(s)
- Sharron A. Hart
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Melissa A. Snyder
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Tereza Smejkalova
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Catherine S. Woolley
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
20
|
Brumovsky P, Shi TS, Landry M, Villar MJ, Hökfelt T. Neuropeptide tyrosine and pain. Trends Pharmacol Sci 2007; 28:93-102. [PMID: 17222466 DOI: 10.1016/j.tips.2006.12.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 11/24/2006] [Accepted: 12/20/2006] [Indexed: 12/20/2022]
Abstract
Research during the past two decades supports a complex role for neuropeptide tyrosine (NPY) and two of its associated receptors, the Y1 receptor and the Y2 receptor, in the modulation of pain, in addition to regeneration and survival mechanisms at the spinal level. Thus, NPY has been shown to both cause and reduce pain, in addition to having biphasic effects. Recent research has focused on the distribution of the spinal NPY-mediated system. Here, we propose various possible scenarios for the role of NPY in pain processing, based on its actions at different sites (axon versus cell body), through different receptors (Y1 receptor versus Y2 receptor) and/or types of neuron (ganglion neurons and intraganglionic cross-excitation versus interneurons versus projection neurons).
Collapse
Affiliation(s)
- Pablo Brumovsky
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|