1
|
Does the change in glutamate to GABA ratio correlate with change in depression severity? A randomized, double-blind clinical trial. Mol Psychiatry 2022; 27:3833-3841. [PMID: 35982258 PMCID: PMC9712215 DOI: 10.1038/s41380-022-01730-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/09/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023]
Abstract
Previous proton magnetic resonance spectroscopy (1H-MRS) studies suggest a perturbation in glutamate and/or GABA in Major Depressive Disorder (MDD). However, no studies examine the ratio of glutamate and glutamine (Glx) to GABA (Glx/GABA) as it relates to depressive symptoms, which may be more sensitive than either single metabolite. Using a within-subject design, we hypothesized that reduction in depressive symptoms correlates with reduction in Glx/GABA in the anterior cingulate cortex (ACC). The present trial is a randomized clinical trial that utilized 1H-MRS to examine Glx/GABA before and after 8 weeks of escitalopram or placebo. Participants completed the 17-item Hamilton Depression Rating Scale (HDRS17) and underwent magnetic resonance spectroscopy before and after treatment. Two GABA-edited MEGA-PRESS acquisitions were interleaved with a water unsuppressed reference scan. GABA and Glx were quantified from the average difference spectrum, with preprocessing using Gannet and spectral fitting using TARQUIN. Linear mixed models were utilized to evaluate relationships between change in HDRS17 and change in Glx/GABA using a univariate linear regression model, multiple linear regression incorporating treatment type as a covariate, and Bayes Factor (BF) hypothesis testing to examine strength of evidence. No significant relationship was detected between percent change in Glx, GABA, or Glx/GABA and percent change in HDRS17, regardless of treatment type. Further, MDD severity before/after treatment did not correlate with ACC Glx/GABA. In light of variable findings in the literature and lack of association in our investigation, future directions should include evaluating glutamate and glutamine individually to shed light on the underpinnings of MDD severity. Advancing Personalized Antidepressant Treatment Using PET/MRI, ClinicalTrials.gov, NCT02623205.
Collapse
|
2
|
Chu SF, Zhang Z, Zhou X, He WB, Yang B, Cui LY, He HY, Wang ZZ, Chen NH. Low corticosterone levels attenuate late life depression and enhance glutamatergic neurotransmission in female rats. Acta Pharmacol Sin 2021; 42:848-860. [PMID: 33028984 PMCID: PMC8149629 DOI: 10.1038/s41401-020-00536-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
Sustained elevation of corticosterone (CORT) is one of the common causes of aging and major depression disorder. However, the role of elevated CORT in late life depression (LLD) has not been elucidated. In this study, 18-month-old female rats were subjected to bilateral adrenalectomy or sham surgery. Their CORT levels in plasma were adjusted by CORT replacement and the rats were divided into high-level CORT (H-CORT), low-level CORT (L-CORT), and Sham group. We showed that L-CORT rats displayed attenuated depressive symptoms and memory defects in behavioral tests as compared with Sham or H-CORT rats. Furthermore, we showed that glutamatergic transmission was enhanced in L-CORT rats, evidenced by enhanced population spike amplitude (PSA) recorded from the dentate gyrus of hippocampus in vivo and increased glutamate release from hippocampal synaptosomes caused by high frequency stimulation or CORT exposure. Intracerebroventricular injection of an enzymatic glutamate scavenger system, glutamic-pyruvic transmine (GPT, 1 μM), significantly increased the PSA in Sham rats, suggesting that extracelluar accumulation of glutamate might be the culprit of impaired glutamatergic transmission, which was dependent on the uptake by Glt-1 in astrocytes. We revealed that hippocampal Glt-1 expression level in the L-CORT rats was much higher than in Sham and H-CORT rats. In a gradient neuron-astrocyte coculture, we found that the expression of Glt-1 was decreased with the increase of neural percentage, suggesting that impairment of Glt-1 might result from the high level of CORT contributed neural damage. In sham rats, administration of DHK that inhibited Glt-1 activity induced significant LLD symptoms, whereas administration of RIL that promoted glutamate uptake significantly attenuated LLD. All of these results suggest that glutamatergic transmission impairment is one of important pathogenesis in LLD induced by high level of CORT, which provide promising clues for the treatment of LLD.
Collapse
Affiliation(s)
- Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xin Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Bin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Bo Yang
- Department of Pharmacy, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, 300300, China
| | - Li-Yuan Cui
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hong-Yuan He
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
3
|
Rothman DL, de Graaf RA, Hyder F, Mason GF, Behar KL, De Feyter HM. In vivo 13 C and 1 H-[ 13 C] MRS studies of neuroenergetics and neurotransmitter cycling, applications to neurological and psychiatric disease and brain cancer. NMR IN BIOMEDICINE 2019; 32:e4172. [PMID: 31478594 DOI: 10.1002/nbm.4172] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 06/10/2023]
Abstract
In the last 25 years 13 C MRS has been established as the only noninvasive method for measuring glutamate neurotransmission and cell specific neuroenergetics. Although technically and experimentally challenging 13 C MRS has already provided important new information on the relationship between neuroenergetics and neuronal function, the high energy cost of brain function in the resting state and the role of altered neuroenergetics and neurotransmitter cycling in disease. In this paper we review the metabolic and neurotransmitter pathways that can be measured by 13 C MRS and key findings on the linkage between neuroenergetics, neurotransmitter cycling, and brain function. Applications of 13 C MRS to neurological and psychiatric disease as well as brain cancer are reviewed. Recent technological developments that may help to overcome spatial resolution and brain coverage limitations of 13 C MRS are discussed.
Collapse
Affiliation(s)
- Douglas L Rothman
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Departments of Radiology and Biomedical Imaging, and Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, 300 Cedar Street, P.O. Box 208043, New Haven, CT, USA
| | - Robin A de Graaf
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fahmeed Hyder
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Graeme F Mason
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kevin L Behar
- Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Henk M De Feyter
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Association between prefrontal glutamine levels and neuroticism determined using proton magnetic resonance spectroscopy. Transl Psychiatry 2019; 9:170. [PMID: 31213596 PMCID: PMC6581909 DOI: 10.1038/s41398-019-0500-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
There is growing evidence for GABA and glutamate-glutamine dysfunction in the pathogenesis of mood and anxiety disorders. It is important to study this pathology in the early phases of the illness in order to develop new approaches to secondary prevention. New magnetic resonance spectroscopy (MRS) measures allow determining glutamine, the principal metabolite of synaptic glutamate that is directly related to glutamate levels in the synaptic cleft, as well as glutamate and GABA. In contrast to previous investigations, this study used community-based recruitment methods and a combined categorical and dimensional approach to psychopathology. In the study protocol, neuroticism was defined as the primary outcome. Neuroticism shares a large proportion of its genetic variance with mood and anxiety disorders. We examined young adult participants recruited from the general population in a cross-sectional study using 3-T 1H-MRS with one voxel in the left dorsolateral prefrontal cortex (DLPFC). The total sample of N = 110 (61 females) included 18 individuals suffering from MDD and 19 individuals suffering from DSM-IV anxiety disorders. We found that glutamine and glutamine-to-glutamate ratio were correlated with neuroticism in the whole sample (r = 0.263, p = 0.005, and n = 110; respectively, r = 0.252, p = 0.008, and n = 110), even when controlling for depression and anxiety disorder diagnoses (for glutamine: beta = 0.220, p = 0.047, and n = 110). Glutamate and GABA were not significantly correlated with neuroticism (r = 0.087, p = 0.365, and n = 110; r = -0.044, p = 0.645, and n = 110). Lack of self-confidence and emotional instability were the clinical correlates of glutamate-glutamine dysfunction. In conclusion, this study suggests that prefrontal glutamine is increased in early phases of mood and anxiety disorders. Further understanding of glutamate-glutamine dysfunction in stress-related disorders may lead to new therapeutic strategies to prevent and treat these disorders.
Collapse
|
5
|
Farthing CA, Farthing DE, Gress RE, Sweet DH. Determination of l-glutamic acid and γ-aminobutyric acid in mouse brain tissue utilizing GC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:64-70. [PMID: 29031110 DOI: 10.1016/j.jchromb.2017.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
A rapid and selective method for the quantitation of neurotransmitters, l-Glutamic acid (GA) and γ-Aminobutyric acid (GABA), was developed and validated using gas chromatography-tandem mass spectrometry (GC-MS/MS). The novel method utilized a rapid online hot GC inlet gas phase sample derivatization and fast GC low thermal mass technology. The method calibration was linear from 0.5 to 100μg/mL, with limits of detections of 100ng/mL and 250ng/mL for GA and GABA, respectively. The method was used to investigate the effects of deletion of organic anion transporter 1 (Oat1) or Oat3 on murine CNS levels of GA and GABA at 3 and 18 mo of age, as compared to age matched wild-type (WT) animals. Whole brain concentrations of GA were comparable between WT, Oat1-/-, and Oat3-/- 18 mo at both 3 and 18 mo of age. Similarly, whole brain concentrations of GABA were not significantly altered in either knockout mouse strain at 3 or 18 mo of age, as compared to WT. These results indicate that the developed GC-MS/MS method provides sufficient sensitivity and selectivity for the quantitation of these neurotransmitters in mouse brain tissue. Furthermore, these results suggest that loss of Oat1 or Oat3 function in isolation does not result in significant alterations in brain tissue levels of GA or GABA.
Collapse
Affiliation(s)
- Christine A Farthing
- Virginia Commonwealth University, Department of Pharmaceutics, Richmond, VA 23298, USA
| | - Don E Farthing
- Virginia Commonwealth University, Department of Pharmaceutics, Richmond, VA 23298, USA; National Institutes of Health, National Cancer Institute, Experimental Transplant and Immunology Branch, Bethesda, MD 20892, USA
| | - Ronald E Gress
- National Institutes of Health, National Cancer Institute, Experimental Transplant and Immunology Branch, Bethesda, MD 20892, USA
| | - Douglas H Sweet
- Virginia Commonwealth University, Department of Pharmaceutics, Richmond, VA 23298, USA.
| |
Collapse
|
6
|
MacKenzie EM, Song MS, Dursun SM, Tomlinson S, Todd KG, Baker GB. Phenelzine: An Old Drug That May Hold Clues to The Development of New Neuroprotective Agents. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/10177833.2010.11790656] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Erin M. MacKenzie
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Mee-Sook Song
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Serdar M. Dursun
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Sara Tomlinson
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Kathryn G. Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Glen B. Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Nikoui V, Ostadhadi S, Azhand P, Zolfaghari S, Amiri S, Foroohandeh M, Motevalian M, Sharifi AM, Bakhtiarian A. The effect of nitrazepam on depression and curiosity in behavioral tests in mice: The role of potassium channels. Eur J Pharmacol 2016; 791:369-376. [DOI: 10.1016/j.ejphar.2016.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023]
|
8
|
DiNuzzo M, Giove F, Maraviglia B, Mangia S. Computational Flux Balance Analysis Predicts that Stimulation of Energy Metabolism in Astrocytes and their Metabolic Interactions with Neurons Depend on Uptake of K + Rather than Glutamate. Neurochem Res 2016; 42:202-216. [PMID: 27628293 PMCID: PMC5283516 DOI: 10.1007/s11064-016-2048-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 12/04/2022]
Abstract
Brain activity involves essential functional and metabolic interactions between neurons and astrocytes. The importance of astrocytic functions to neuronal signaling is supported by many experiments reporting high rates of energy consumption and oxidative metabolism in these glial cells. In the brain, almost all energy is consumed by the Na+/K+ ATPase, which hydrolyzes 1 ATP to move 3 Na+ outside and 2 K+ inside the cells. Astrocytes are commonly thought to be primarily involved in transmitter glutamate cycling, a mechanism that however only accounts for few % of brain energy utilization. In order to examine the participation of astrocytic energy metabolism in brain ion homeostasis, here we attempted to devise a simple stoichiometric relation linking glutamatergic neurotransmission to Na+ and K+ ionic currents. To this end, we took into account ion pumps and voltage/ligand-gated channels using the stoichiometry derived from available energy budget for neocortical signaling and incorporated this stoichiometric relation into a computational metabolic model of neuron-astrocyte interactions. We aimed at reproducing the experimental observations about rates of metabolic pathways obtained by 13C-NMR spectroscopy in rodent brain. When simulated data matched experiments as well as biophysical calculations, the stoichiometry for voltage/ligand-gated Na+ and K+ fluxes generated by neuronal activity was close to a 1:1 relationship, and specifically 63/58 Na+/K+ ions per glutamate released. We found that astrocytes are stimulated by the extracellular K+ exiting neurons in excess of the 3/2 Na+/K+ ratio underlying Na+/K+ ATPase-catalyzed reaction. Analysis of correlations between neuronal and astrocytic processes indicated that astrocytic K+ uptake, but not astrocytic Na+-coupled glutamate uptake, is instrumental for the establishment of neuron-astrocytic metabolic partnership. Our results emphasize the importance of K+ in stimulating the activation of astrocytes, which is relevant to the understanding of brain activity and energy metabolism at the cellular level.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 24.2.40, 2200, Copenhagen N, Denmark.
| | - Federico Giove
- Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy.,Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Bruno Maraviglia
- Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy.,Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, Univeristy of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Potter LE, Paylor JW, Suh JS, Tenorio G, Caliaperumal J, Colbourne F, Baker G, Winship I, Kerr BJ. Altered excitatory-inhibitory balance within somatosensory cortex is associated with enhanced plasticity and pain sensitivity in a mouse model of multiple sclerosis. J Neuroinflammation 2016; 13:142. [PMID: 27282914 PMCID: PMC4901403 DOI: 10.1186/s12974-016-0609-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic neuropathic pain is a common symptom of multiple sclerosis (MS). MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) has been used as an animal model to investigate the mechanisms of pain in MS. Previous studies have implicated sensitization of spinal nociceptive networks in the pathogenesis of pain in EAE. However, the involvement of supraspinal sites of nociceptive integration, such as the primary somatosensory cortex (S1), has not been defined. We therefore examined functional, structural, and immunological alterations in S1 during the early stages of EAE, when pain behaviors first appear. We also assessed the effects of the antidepressant phenelzine (PLZ) on S1 alterations and nociceptive (mechanical) sensitivity in early EAE. PLZ has been shown to restore central nervous system (CNS) tissue concentrations of GABA and the monoamines (5-HT, NA) in EAE. We hypothesized that PLZ treatment would also normalize nociceptive sensitivity in EAE by restoring the balance of excitation and inhibition (E-I) in the CNS. METHODS We used in vivo flavoprotein autofluorescence imaging (FAI) to assess neural ensemble responses in S1 to vibrotactile stimulation of the limbs in early EAE. We also used immunohistochemistry (IHC), and Golgi-Cox staining, to examine synaptic changes and neuroinflammation in S1. Mechanical sensitivity was assessed at the clinical onset of EAE with Von Frey hairs. RESULTS Mice with early EAE exhibited significantly intensified and expanded FAI responses in S1 compared to controls. IHC revealed increased vesicular glutamate transporter (VGLUT1) expression and disrupted parvalbumin+ (PV+) interneuron connectivity in S1 of EAE mice. Furthermore, peri-neuronal nets (PNNs) were significantly reduced in S1. Morphological analysis of excitatory neurons in S1 revealed increased dendritic spine densities. Iba-1+ cortical microglia were significantly elevated early in the disease. Chronic PLZ treatment was found to normalize mechanical thresholds in EAE. PLZ also normalized S1 FAI responses, neuronal morphologies, and cortical microglia numbers and attenuated VGLUT1 reactivity-but did not significantly attenuate the loss of PNNs. CONCLUSIONS These findings implicate a pro-excitatory shift in the E-I balance of the somatosensory CNS, arising early in the pathogenesis EAE and leading to large-scale functional and structural plasticity in S1. They also suggest a novel antinociceptive effect of PLZ treatment.
Collapse
Affiliation(s)
- Liam E Potter
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 8-120, Edmonton, AB, T6G 2G3, Canada
| | - John W Paylor
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Psychiatry (NRU), University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Jee Su Suh
- Department of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 8-120, Edmonton, AB, T6G 2G3, Canada
| | - Gustavo Tenorio
- Department of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 8-120, Edmonton, AB, T6G 2G3, Canada
| | - Jayalakshmi Caliaperumal
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Psychology, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Fred Colbourne
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Psychology, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Glen Baker
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Psychiatry (NRU), University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Ian Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Psychiatry (NRU), University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada. .,Department of Pharmacology, University of Alberta, Edmonton, AB, T6E 2H7, Canada. .,Department of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 8-120, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
10
|
Elsayed M, Magistretti PJ. A New Outlook on Mental Illnesses: Glial Involvement Beyond the Glue. Front Cell Neurosci 2015; 9:468. [PMID: 26733803 PMCID: PMC4679853 DOI: 10.3389/fncel.2015.00468] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/16/2015] [Indexed: 12/27/2022] Open
Abstract
Mental illnesses have long been perceived as the exclusive consequence of abnormalities in neuronal functioning. Until recently, the role of glial cells in the pathophysiology of mental diseases has largely been overlooked. However recently, multiple lines of evidence suggest more diverse and significant functions of glia with behavior-altering effects. The newly ascribed roles of astrocytes, oligodendrocytes and microglia have led to their examination in brain pathology and mental illnesses. Indeed, abnormalities in glial function, structure and density have been observed in postmortem brain studies of subjects diagnosed with mental illnesses. In this review, we discuss the newly identified functions of glia and highlight the findings of glial abnormalities in psychiatric disorders. We discuss these preclinical and clinical findings implicating the involvement of glial cells in mental illnesses with the perspective that these cells may represent a new target for treatment.
Collapse
Affiliation(s)
- Maha Elsayed
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Pierre J Magistretti
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland; Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia; Department of Psychiatry, Center for Psychiatric Neurosciences, University of LausanneLausanne, Switzerland
| |
Collapse
|
11
|
Tiret B, Shestov AA, Valette J, Henry PG. Metabolic Modeling of Dynamic (13)C NMR Isotopomer Data in the Brain In Vivo: Fast Screening of Metabolic Models Using Automated Generation of Differential Equations. Neurochem Res 2015; 40:2482-92. [PMID: 26553273 DOI: 10.1007/s11064-015-1748-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023]
Abstract
Most current brain metabolic models are not capable of taking into account the dynamic isotopomer information available from fine structure multiplets in (13)C spectra, due to the difficulty of implementing such models. Here we present a new approach that allows automatic implementation of multi-compartment metabolic models capable of fitting any number of (13)C isotopomer curves in the brain. The new automated approach also makes it possible to quickly modify and test new models to best describe the experimental data. We demonstrate the power of the new approach by testing the effect of adding separate pyruvate pools in astrocytes and neurons, and adding a vesicular neuronal glutamate pool. Including both changes reduced the global fit residual by half and pointed to dilution of label prior to entry into the astrocytic TCA cycle as the main source of glutamine dilution. The glutamate-glutamine cycle rate was particularly sensitive to changes in the model.
Collapse
Affiliation(s)
- Brice Tiret
- Commissariat à l'Energie Atomique (CEA), Molecular Imaging Research Center (MIRCen), 92260, Fontenay-aux-Roses, France
| | - Alexander A Shestov
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, USA
| | - Julien Valette
- Commissariat à l'Energie Atomique (CEA), Molecular Imaging Research Center (MIRCen), 92260, Fontenay-aux-Roses, France
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
Shulman RG, Hyder F, Rothman DL. Insights from neuroenergetics into the interpretation of functional neuroimaging: an alternative empirical model for studying the brain's support of behavior. J Cereb Blood Flow Metab 2014; 34:1721-35. [PMID: 25160670 PMCID: PMC4269754 DOI: 10.1038/jcbfm.2014.145] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/12/2014] [Accepted: 07/21/2014] [Indexed: 02/05/2023]
Abstract
Functional neuroimaging measures quantitative changes in neurophysiological parameters coupled to neuronal activity during observable behavior. These results have usually been interpreted by assuming that mental causation of behavior arises from the simultaneous actions of distinct psychological mechanisms or modules. However, reproducible localization of these modules in the brain using functional magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging has been elusive other than for sensory systems. In this paper, we show that neuroenergetic studies using PET, calibrated functional magnetic resonance imaging (fMRI), (13)C magnetic resonance spectroscopy, and electrical recordings do not support the standard approach, which identifies the location of mental modules from changes in brain activity. Of importance in reaching this conclusion is that changes in neuronal activities underlying the fMRI signal are many times smaller than the high ubiquitous, baseline neuronal activity, or energy in resting, awake humans. Furthermore, the incremental signal depends on the baseline activity contradicting theoretical assumptions about linearity and insertion of mental modules. To avoid these problems, while making use of these valuable results, we propose that neuroimaging should be used to identify observable brain activities that are necessary for a person's observable behavior rather than being used to seek hypothesized mental processes.
Collapse
Affiliation(s)
- Robert G Shulman
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
- Departments of Diagnostic Radiology, Yale University, New Haven, Connecticut, USA
- Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
- Departments of Diagnostic Radiology, Yale University, New Haven, Connecticut, USA
- Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Perrine SA, Ghoddoussi F, Michaels MS, Sheikh IS, McKelvey G, Galloway MP. Ketamine reverses stress-induced depression-like behavior and increased GABA levels in the anterior cingulate: an 11.7 T 1H-MRS study in rats. Prog Neuropsychopharmacol Biol Psychiatry 2014; 51:9-15. [PMID: 24246571 DOI: 10.1016/j.pnpbp.2013.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 12/20/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the major inhibitory amino acid neurotransmitter in the brain and is primarily responsible for modulating excitatory tone. Clinical neuroimaging studies show decreased GABA levels in the anterior cingulate of patients with mood disorders, including major depressive disorder. Chronic unpredictable stress (CUS) is an animal model thought to mimic the stressful events that may precipitate clinical depression in humans. In this study male Sprague-Dawley rats were subjected to a modified CUS paradigm that used a random pattern of unpredictable stressors twice daily for 10 days to explore the early developmental stages of depression-like endophenotypes. Control rats were handled daily for 10 days. Some rats from each treatment group received an injection of ketamine (40 mg/kg) after the final stressor. One day following the final stressor rats were tested for behavioral effects in the forced swim test and then euthanized to collect trunk blood and anterior cingulate brain samples. GABA levels were measured in anterior cingulate samples ex vivo using proton magnetic resonance spectroscopy ((1)H-MRS) at 11.7 T. Animals subjected to CUS had lower body weights, higher levels of blood corticosterone, and increased immobility in the forced swim test; all of which suggest that the stress paradigm induced a depression-like phenotype. GABA levels in the anterior cingulate were significantly increased in the stressed animals compared to controls. Administration of ketamine on the last day of treatment blunted the depression-like behavior and increased GABA levels in the anterior cingulate following CUS. These data indicate that stress disrupts GABAergic signaling, which may over time lead to symptoms of depression and ultimately lower basal levels of cortical (1)H-MRS GABA that are seen in humans with depression. Furthermore, the data suggests that ketamine modulates cortical GABA levels as a mechanism of its antidepressant activity.
Collapse
Affiliation(s)
- Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Farhad Ghoddoussi
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mark S Michaels
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Imran S Sheikh
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - George McKelvey
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Matthew P Galloway
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA; Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
14
|
Glial degeneration as a model of depression. Pharmacol Rep 2013; 65:1572-9. [DOI: 10.1016/s1734-1140(13)71518-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/24/2013] [Indexed: 11/18/2022]
|
15
|
Differential levels of brain amino acids in rat models presenting learned helplessness or non-learned helplessness. Psychopharmacology (Berl) 2013; 229:63-71. [PMID: 23568578 DOI: 10.1007/s00213-013-3080-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/21/2013] [Indexed: 01/09/2023]
Abstract
RATIONALE Glutamatergic and γ-aminobutyric acid (GABA)ergic abnormalities have recently been proposed to contribute to depression. The learned helplessness (LH) paradigm produces a reliable animal model of depression that expresses a deficit in escape behavior (LH model); an alternative phenotype that does not exhibit LH is a model of resilience to depression (non-LH model). OBJECTIVES We measured the contents of amino acids in the brain to investigate the mechanisms involved in the pathology of depression. METHODS LH and non-LH models were subjected to inescapable electric footshocks at random intervals following a conditioned avoidance test to determine acquirement of predicted escape deficits. Tissue amino acid contents in eight brain regions were measured via high-performance liquid chromatography. RESULTS The non-LH model showed increased GABA levels in the dentate gyrus and nucleus accumbens and increased glutamine levels in the dentate gyrus and the orbitofrontal cortex. The LH model had reduced glutamine levels in the medial prefrontal cortex. Changes in the ratios of GABA, glutamine, and glutamate were detected in the non-LH model, but not in the LH model. Reductions in threonine levels occurred in the medial prefrontal cortex in both models, whereas elevated alanine levels were detected in the medial prefrontal cortex in non-LH animals. CONCLUSIONS The present study demonstrates region-specific compensatory elevations in GABA levels in the dentate gyrus and nucleus accumbens of non-LH animals, supporting the implication of the GABAergic system in the recovery of depression.
Collapse
|
16
|
Jeffrey FM, Marin-Valencia I, Good LB, Shestov AA, Henry PG, Pascual JM, Malloy CR. Modeling of brain metabolism and pyruvate compartmentation using (13)C NMR in vivo: caution required. J Cereb Blood Flow Metab 2013; 33:1160-7. [PMID: 23652627 PMCID: PMC3734769 DOI: 10.1038/jcbfm.2013.67] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 04/01/2013] [Accepted: 04/03/2013] [Indexed: 01/30/2023]
Abstract
Two variants of a widely used two-compartment model were prepared for fitting the time course of [1,6-(13)C2]glucose metabolism in rat brain. Features common to most models were included, but in one model the enrichment of the substrates entering the glia and neuronal citric acid cycles was allowed to differ. Furthermore, the models included the capacity to analyze multiplets arising from (13)C spin-spin coupling, known to improve parameter estimates in heart. Data analyzed were from a literature report providing time courses of [1,6-(13)C2]glucose metabolism. Four analyses were used, two comparing the effect of different pyruvate enrichment in glia and neurons, and two for determining the effect of multiplets present in the data. When fit independently, the enrichment in glial pyruvate was less than in neurons. In the absence of multiplets, fit quality and parameter values were typical of those in the literature, whereas the multiplet curves were not modeled well. This prompted the use of robust statistical analysis (the Kolmogorov-Smirnov test of goodness of fit) to determine whether individual curves were modeled appropriately. At least 50% of the curves in each experiment were considered poorly fit. It was concluded that the model does not include all metabolic features required to analyze the data.
Collapse
Affiliation(s)
- F Mark Jeffrey
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Song MS, Matveychuk D, MacKenzie EM, Duchcherer M, Mousseau DD, Baker GB. An update on amine oxidase inhibitors: multifaceted drugs. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:118-24. [PMID: 23410524 DOI: 10.1016/j.pnpbp.2013.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 01/31/2013] [Accepted: 02/03/2013] [Indexed: 02/08/2023]
Abstract
Although not used as extensively as other antidepressants for the treatment of depression, the monoamine oxidase (MAO) inhibitors continue to hold a niche in psychiatry and to have a relatively broad spectrum with regard to treatment of psychiatric and neurological disorders. Experimental and clinical research on MAO inhibitors has been expanding in the past few years, primarily because of exciting findings indicating that these drugs have neuroprotective properties (often independently of their ability to inhibit MAO). The non-selective and irreversible MAO inhibitors tranylcypromine (TCP) and phenelzine (PLZ) have demonstrated neuroprotective properties in numerous studies targeting elements of apoptotic cascades and neurogenesis. l-Deprenyl and rasagiline, both selective MAO-B inhibitors, are used in the management of Parkinson's disease, but these drugs may be useful in the treatment of other neurodegenerative disorders given that they demonstrate neuroprotective/neurorescue properties in a wide variety of models in vitro and in vivo. Although the focus of studies on the involvement of MAO inhibitors in neuroprotection has been on MAO-B inhibitors, there is a growing body of evidence demonstrating that MAO-A inhibitors may also have neuroprotective properties. In addition to MAO inhibition, PLZ also inhibits primary amine oxidase (PrAO), an enzyme implicated in the etiology of Alzheimer's disease, diabetes and cardiovascular disease. These multifaceted aspects of amine oxidase inhibitors and some of their metabolites are reviewed herein.
Collapse
Affiliation(s)
- Mee-Sook Song
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Chassain C, Bielicki G, Carcenac C, Ronsin AC, Renou JP, Savasta M, Durif F. Does MPTP intoxication in mice induce metabolite changes in the nucleus accumbens? A ¹H nuclear MRS study. NMR IN BIOMEDICINE 2013; 26:336-347. [PMID: 23059905 DOI: 10.1002/nbm.2853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 08/09/2012] [Accepted: 08/14/2012] [Indexed: 06/01/2023]
Abstract
Using in vivo ¹H NMR spectroscopy in a mouse model of Parkinson's disease, we previously showed that glutamate concentrations in the dorsal striatum were highest after dopamine denervation associated with an increase in gamma-aminobutyric acid (GABA) and (Gln) glutamine levels. The aim of this study was to determine whether the changes previously observed in the motor part of the striatum were reproduced in a ventral part of the striatum, the nucleus accumbens (NAc). This study was carried out on controls and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. In vivo spectra were acquired for a voxel (8 μL) in the dorsal striatum, and in the NAc (1.56 μL). NMR acquisitions were first performed 10 days after the last MPTP injection in a basal condition [after saline intraperitoneal (i.p.) injection] and then in the same animal the week after basal NMR acquisitions, after acute levodopa administration (200 mg kg⁻¹, i.p.). Immunohistochemistry was used to determine the levels of (Glu) glutamate, glutamine synthetase (GS) and glutamic acid decarboxylase (GAD) isoform 67 in these two structures. The Glu, Gln and GABA concentrations obtained in the basal state were higher in the NAc of MPTP-intoxicated mice which have the higher dopamine denervation in the ventral tegmental area (VTA) and in the dorsal striatum. Levodopa decreased the levels of these metabolites in MPTP-intoxicated mice to levels similar to those in controls. In parallel, immunohistochemical staining showed that glutamate, GS and GAD67 immunoreactivity increased in the dorsal striatum of MPTP-intoxicated mice and in the NAc for animals with a severe dopamine denervation in VTA. These findings strongly supported a hyperactivity of the glutamatergic cortico-striatal pathway and changes in glial activity when the dopaminergic denervation in the VTA and substantia nigra pars compacta (SNc) was severe.
Collapse
Affiliation(s)
- Carine Chassain
- CHU Clermont-Ferrand, Service of Neurology, F-63001, Clermont-Ferrand, France.
| | | | | | | | | | | | | |
Collapse
|
19
|
Rothman DL, De Feyter HM, Maciejewski PK, Behar KL. Is there in vivo evidence for amino acid shuttles carrying ammonia from neurons to astrocytes? Neurochem Res 2012; 37:2597-612. [PMID: 23104556 DOI: 10.1007/s11064-012-0898-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
The high in vivo flux of the glutamate/glutamine cycle puts a strong demand on the return of ammonia released by phosphate activated glutaminase from the neurons to the astrocytes in order to maintain nitrogen balance. In this paper we review several amino acid shuttles that have been proposed for balancing the nitrogen flows between neurons and astrocytes in the glutamate/glutamine cycle. All of these cycles depend on the directionality of glutamate dehydrogenase, catalyzing reductive glutamate synthesis (forward reaction) in the neuron in order to capture the ammonia released by phosphate activated glutaminase, while catalyzing oxidative deamination of glutamate (reverse reaction) in the astrocytes to release ammonia for glutamine synthesis. Reanalysis of results from in vivo experiments using (13)N and (15)N labeled ammonia and (15)N leucine in rats suggests that the maximum flux of the alanine/lactate or branched chain amino acid/branched chain amino acid transaminase shuttles between neurons and astrocytes are approximately 3-5 times lower than would be required to account for the ammonia transfer from neurons to astrocytes needed for glutamine synthesis (amide nitrogen) to sustain the glutamate/glutamine cycle. However, in the rat brain both the total ammonia fixation rate by glutamate dehydrogenase and the total branched chain amino acid transaminase activity are sufficient to support a branched chain amino acid/branched chain keto acid shuttle, as proposed by Hutson and coworkers, which would support the de novo synthesis of glutamine in the astrocyte to replace the ~20 % of neurotransmitter glutamate that is oxidized. A higher fraction of the nitrogen needs of total glutamate neurotransmitter cycling could be supported by hybrid cycles in which glutamate and tricarboxylic acid cycle intermediates act as a nitrogen shuttle. A limitation of all in vivo studies in animals conducted to date is that none have shown transfer of nitrogen for glutamine amide synthesis, either as free ammonia or via an amino acid from the neurons to the astrocytes. Future work will be needed, perhaps using methods for selectively labeling nitrogen in neurons, to conclusively establish the rate of amino acid nitrogen shuttles in vivo and their coupling to the glutamate/glutamine cycle.
Collapse
Affiliation(s)
- Douglas L Rothman
- Department of Diagnostic Radiology and Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, 300 Cedar Street, P.O. Box 208043, New Haven, CT 06520-8043, USA.
| | | | | | | |
Collapse
|
20
|
Preclinical (1)H-MRS neurochemical profiling in neurological and psychiatric disorders. Bioanalysis 2012; 4:1787-804. [PMID: 22877223 DOI: 10.4155/bio.12.129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ongoing development of animal models of neurological and psychiatric disorders in combination with the development of advanced nuclear magnetic resonance (NMR) techniques and instrumentation has led to increased use of in vivo proton NMR spectroscopy ((1)H-MRS) for neurochemical analyses. (1)H-MRS is one of only a few analytical methods that can assay in vivo and longitudinal neurochemical changes associated with neurological and psychiatric diseases, with the added advantage of being a technique that can be utilized in both preclinical and clinical studies. In this review, recent progress in the use of (1)H-MRS to investigate animal models of neurological and psychiatric disorders is summarized with examples from the literature and our own work.
Collapse
|
21
|
Quantitative fMRI and oxidative neuroenergetics. Neuroimage 2012; 62:985-94. [PMID: 22542993 DOI: 10.1016/j.neuroimage.2012.04.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 11/22/2022] Open
Abstract
The discovery of functional magnetic resonance imaging (fMRI) has greatly impacted neuroscience. The blood oxygenation level-dependent (BOLD) signal, using deoxyhemoglobin as an endogenous paramagnetic contrast agent, exposes regions of interest in task-based and resting-state paradigms. However the BOLD contrast is at best a partial measure of neuronal activity, because the functional maps obtained by differencing or correlations ignore the total neuronal activity in the baseline state. Here we describe how studies of brain energy metabolism at Yale, especially with (13)C magnetic resonance spectroscopy and related techniques, contributed to development of quantitative functional brain imaging with fMRI by providing a reliable measurement of baseline energy. This narrative takes us on a journey, from molecules to mind, with illuminating insights about neuronal-glial activities in relation to energy demand of synaptic activity. These results, along with key contributions from laboratories worldwide, comprise the energetic basis for quantitative interpretation of fMRI data.
Collapse
|
22
|
Wang J, Geng B, Shen HL, Xu X, Wang H, Wang CF, Ma JL, Wang ZP. Amino acid transport system A is involved in inflammatory nociception in rats. Brain Res 2012; 1449:38-45. [PMID: 22373650 DOI: 10.1016/j.brainres.2012.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 11/30/2022]
Abstract
Previous studies have indicated that central sensitization is a state of increased excitability of nociceptive neurons in the spinal dorsal horn following peripheral tissue injury and/or inflammation and astrocytes play an important role in the central sensitization. The current study investigated the role of amino acid transport system A in central sensitization and hyperalgesia induced by intraplantar injection of formalin in rats. Formalin (5%, 50μl) injected subcutaneously into the unilateral hindpaw pad induced typical biphase nociceptive behaviors, including licking/biting and flinching of the injected paw and an increase of glial fibrillary acid protein (GFAP, an activated astrocyte marker) expression in spinal dorsal horn, and these effects could be attenuated by intrathecal injection of the competitive inhibitor of amino acid system A transporter, methylaminoisobutyric acid (MeAIB, 0.1, 0.3, 0.5, and 0.7mmol), in a dose-dependent manner. Intrathecal injection of vehicle (PBS) had no effect on the formalin-induced nociceptive behaviors and increase of the GFAP. These findings suggest that amino acid transport system A is involved in inflammation-induced nociception, and inhibition of this transporter system results in inhibition of the central sensitization and hyperalgesia.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou University, No. 82 Cui Ying Men Street, Lanzhou, Gansu 730030, PR China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Rothman DL, De Feyter HM, de Graaf RA, Mason GF, Behar KL. 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans. NMR IN BIOMEDICINE 2011; 24:943-57. [PMID: 21882281 PMCID: PMC3651027 DOI: 10.1002/nbm.1772] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 05/05/2023]
Abstract
In the last 25 years, (13)C MRS has been established as the only noninvasive method for the measurement of glutamate neurotransmission and cell-specific neuroenergetics. Although technically and experimentally challenging, (13)C MRS has already provided important new information on the relationship between neuroenergetics and neuronal function, the energy cost of brain function, the high neuronal activity in the resting brain state and how neuroenergetics and neurotransmitter cycling are altered in neurological and psychiatric disease. In this article, the current state of (13)C MRS as it is applied to the study of neuroenergetics and neurotransmitter cycling in humans is reviewed. The focus is predominantly on recent findings in humans regarding metabolic pathways, applications to clinical research and the technical status of the method. Results from in vivo (13)C MRS studies in animals are discussed from the standpoint of the validation of MRS measurements of neuroenergetics and neurotransmitter cycling, and where they have helped to identify key questions to address in human research. Controversies concerning the relationship between neuroenergetics and neurotransmitter cycling and factors having an impact on the accurate determination of fluxes through mathematical modeling are addressed. We further touch upon different (13)C-labeled substrates used to study brain metabolism, before reviewing a number of human brain diseases investigated using (13)C MRS. Future technological developments are discussed that will help to overcome the limitations of (13)C MRS, with special attention given to recent developments in hyperpolarized (13)C MRS.
Collapse
Affiliation(s)
- Douglas L Rothman
- Department of Diagnostic Radiology, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT 06520-8043, USA.
| | | | | | | | | |
Collapse
|
25
|
Abstract
OBJECTIVE To review the literature on the involvement of glutamate (Glu), including its interactions with other neurochemical systems, in the pathophysiology of depression. METHOD A MEDLINE search using the terms glutamate, depression and major depressive disorder, was performed. RESULTS Alterations in proteins involved in glutamatergic signalling are implicated in variations in behaviour in animal models of depression. Drugs acting at Glu receptors appear to have antidepressant-like effects in these models, and traditional antidepressant pharmacotherapies act on the glutamatergic system. Recent evidence from genetic studies and in vivo spectroscopy also correlate glutamatergic dysfunction with depression. Trials of N-methyl-d-aspartate receptor antagonists in humans have provided mixed results. CONCLUSION A growing body of evidence indicates that the glutamatergic system is involved in the pathophysiology of depression, and may represent a target for intervention.
Collapse
Affiliation(s)
- Nicholas D Mitchell
- Department of Psychiatry, University of Alberta Hospital, Edmonton, AB, Canada.
| | | |
Collapse
|
26
|
Yang J, Johnson C, Shen J. Detection of reduced GABA synthesis following inhibition of GABA transaminase using in vivo magnetic resonance signal of [13C]GABA C1. J Neurosci Methods 2009; 182:236-43. [PMID: 19540876 PMCID: PMC2738992 DOI: 10.1016/j.jneumeth.2009.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/11/2009] [Accepted: 06/11/2009] [Indexed: 11/22/2022]
Abstract
Previous in vivo magnetic resonance spectroscopy (MRS) studies of gamma-aminobutyric acid (GABA) synthesis have relied on (13)C label incorporation into GABA C2 from [1-(13)C] or [1,6-(13)C(2)]glucose. In this study, the [(13)C]GABA C1 signal at 182.3 ppm in the carboxylic/amide spectral region of localized in vivo (13)C spectra was detected. GABA-transaminase of rat brain was inhibited by administration of gabaculine after pre-labeling of GABA C1 and its metabolic precursors with exogenous [2,5-(13)C(2)]glucose. A subsequent isotope chase experiment was performed by infusing unlabeled glucose, which revealed a markedly slow change in the labeling of GABA C1 accompanying the blockade of the GABA shunt. This slow labeling of GABA at elevated GABA concentration was attributed to the relatively small intercompartmental GABA-glutamine cycling flux that constitutes the main route of (13)C label loss during the isotope chase. Because this study showed that using low RF power broadband stochastic proton decoupling is feasible at very high field strength, it has important implications for the development of carboxylic/amide (13)C MRS methods to study brain metabolism and neurotransmission in human subjects at high magnetic fields.
Collapse
Affiliation(s)
- Jehoon Yang
- National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
- Samsung Biomedical Research Institute, Seoul, Korea
| | - Christopher Johnson
- National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| | - Jun Shen
- National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| |
Collapse
|
27
|
A high performance liquid chromatography method with electrochemical detection of gamma-aminobutyric acid, glutamate and glutamine in rat brain homogenates. J Neurosci Methods 2009; 183:176-81. [PMID: 19596377 DOI: 10.1016/j.jneumeth.2009.06.042] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 12/31/2022]
Abstract
Determination of gamma-aminobutyric acid (GABA), glutamate (Glu) and glutamine (Gln) in animal models has been important to understand the normal function and clinical aspects of some neurological diseases. Quantification of these amino acid transmitters has conventionally been performed by using a high performance liquid chromatography (HPLC) system. This paper describes an improved HPLC method with electrochemical detection for glutamate, glutamine and GABA determination in brain homogenates. The protocol is based on a precolumn derivatization of amino acids with o-phthalaldehyde and sodium sulfite, a separation through a C18, 5 microm particle size column and an isocratic elution. Several modifications of previous works on methanol percentage, pH, temperature, flow rate and derivatization solution concentration were done to obtain a suitable protocol for amino acid quantification in brain homogenate samples. Total elution time is 35 min approximately. Technical requirements and laboratory expenses of this new protocol are minimal. This technique showed high linearity, repeatability and accuracy.
Collapse
|
28
|
Yang J, Xu S, Shen J. Fast isotopic exchange between mitochondria and cytosol in brain revealed by relayed 13C magnetization transfer spectroscopy. J Cereb Blood Flow Metab 2009; 29:661-9. [PMID: 19156161 PMCID: PMC2845910 DOI: 10.1038/jcbfm.2008.170] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In vivo 13C magnetic resonance spectroscopy has been applied to studying brain metabolic processes by measuring 13C label incorporation into cytosolic pools such as glutamate and aspartate. However, the rate of exchange between mitochondrial alpha-ketoglutarate/oxaloacetate and cytosolic glutamate/aspartate (Vx) extracted from metabolic modeling has been controversial. Because brain fumarase is exclusively located in the mitochondria, and mitochondrial fumarate is connected to cytosolic aspartate through a chain of fast exchange reactions, it is possible to directly measure Vx from the four-carbon side of the tricarboxylic acid cycle by magnetization transfer. In isoflurane-anesthetized adult rat brain, a relayed 13C magnetization transfer effect on cytosolic aspartate C2 at 53.2 ppm was detected after extensive signal averaging with fumarate C2 at 136.1 ppm irradiated using selective radiofrequency pulses. Quantitative analysis using Bloch-McConnell equations and a four-site exchange model found that Vx approximately 13-19 micromol per g per min (>>VTCA, the tricarboxylic acid cycle rate) when the longitudinal relaxation time of malate C2 was assumed to be within +/-33% of that of aspartate C2. If Vx approximately VTCA, the isotopic exchange between mitochondria and cytosol would be too slow on the time scale of 13C longitudinal relaxation to cause a detectable magnetization transfer effect.
Collapse
Affiliation(s)
- Jehoon Yang
- Molecular Imaging Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, USA
- Samsung Biomedical Research Institute, 50 Ilwon-dong, Kangnam-Gu, Seoul, Korea
| | - Su Xu
- Molecular Imaging Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, USA
| | - Jun Shen
- Molecular Imaging Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, USA
| |
Collapse
|
29
|
Yang J, Shen J. Elevated endogenous GABA concentration attenuates glutamate-glutamine cycling between neurons and astroglia. J Neural Transm (Vienna) 2009; 116:291-300. [PMID: 19184333 PMCID: PMC2845912 DOI: 10.1007/s00702-009-0186-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
Abstract
In this study, the relationship between endogenous brain GABA concentration and glutamate-glutamine cycling flux (V (cyc)) was investigated using in vivo (1)H and (1)H{(13)C} magnetic resonance spectroscopy techniques. Graded elevations of brain GABA levels were induced in rat brain after administration of the highly specific GABA-transaminase inhibitor vigabatrin (gamma-vinyl-GABA). The glial-specific substrate [2-(13)C]acetate and (1)H{(13)C} magnetic resonance spectroscopy were used to measure V (cyc) at different GABA levels. Significantly reduced V (cyc) was found in rats pretreated with vigabatrin. The reduction in group mean V (cyc) over the range of GABA concentrations investigated in this study (1.0 +/- 0.3-5.1 +/- 0.5 micromol/g) was found to be nonlinear: Delta V (cyc)/V (cyc) = [GABA (micromol/g)](-0.35 )- 1.0 (r (2) = 0.98). The results demonstrate that V (cyc) is modulated by endogenous GABA levels, and that glutamatergic and GABAergic interactions can be studied in vivo using noninvasive magnetic resonance spectroscopy techniques.
Collapse
Affiliation(s)
- Jehoon Yang
- Molecular Imaging Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, USA
- Samsung Biomedical Research Institute, 50 Ilwon-dong, Kangnam-Gu, Seoul, Korea
| | - Jun Shen
- Molecular Imaging Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, USA
| |
Collapse
|
30
|
Shen J, Rothman DL, Behar KL, Xu S. Determination of the glutamate-glutamine cycling flux using two-compartment dynamic metabolic modeling is sensitive to astroglial dilution. J Cereb Blood Flow Metab 2009; 29:108-18. [PMID: 18766194 PMCID: PMC2613170 DOI: 10.1038/jcbfm.2008.102] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the last decade (13)C magnetic resonance spectroscopy ((13)C MRS) combined with the infusion of [1-(13)C]glucose has been used to measure the cerebral rate of the glutamate-glutamine cycle (V(cyc)). However, the effect of the astroglial label dilution pathways on the accuracy and precision of the (13)C MRS measurement of V(cyc) has not been evaluated or realized. In this report, we use the numerical Monte Carlo method to study the effect of astroglial dilution on the reliability of extracting V(cyc) using the neuronal-astroglial two-compartment metabolic model and [1-(13)C]glucose infusion. The results show that omission of the astroglial dilution flux leads to a large loss in the sensitivity of the glutamine turnover curve to V(cyc). When the measured isotopic dilution of cerebral glutamine is accounted for in the analysis, the value of V(cyc) can be precisely and accurately determined.
Collapse
Affiliation(s)
- Jun Shen
- 1Molecular Imaging Branch, Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
31
|
Mlynárik V, Cudalbu C, Xin L, Gruetter R. 1H NMR spectroscopy of rat brain in vivo at 14.1Tesla: improvements in quantification of the neurochemical profile. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 194:163-168. [PMID: 18703364 DOI: 10.1016/j.jmr.2008.06.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 06/26/2008] [Accepted: 06/26/2008] [Indexed: 05/26/2023]
Abstract
Ultra-short echo-time proton single voxel spectra of rat brain were obtained on a 14.1T 26 cm horizontal bore system. At this field, the fitted linewidth in the brain tissue of adult rats was about 11 Hz. New, separated resonances ascribed to phosphocholine, glycerophosphocholine and N-acetylaspartate were detected for the first time in vivo in the spectral range of 4.2-4.4 ppm. Moreover, improved separation of the resonances of lactate, alanine, gamma-aminobutyrate, glutamate and glutathione was observed. Metabolite concentrations were estimated by fitting in vivo spectra to a linear combination of simulated spectra of individual metabolites and a measured spectrum of macromolecules (LCModel). The calculated concentrations of metabolites were generally in excellent agreement with those obtained at 9.4T. These initial results further indicated that increasing magnetic field strength to 14.1T enhanced spectral resolution in (1)H NMR spectroscopy. This implies that the quantification of the neurochemical profile in rodent brain can be achieved with improved accuracy and precision.
Collapse
Affiliation(s)
- Vladimír Mlynárik
- Laboratory of Functional and Metabolic Imaging LIFMET, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
32
|
N-Propynyl analogs of β-phenylethylidenehydrazines: Synthesis and evaluation of effects on glycine, GABA, and monoamine oxidase. Bioorg Med Chem 2008; 16:8254-63. [DOI: 10.1016/j.bmc.2008.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/14/2008] [Accepted: 07/14/2008] [Indexed: 11/17/2022]
|
33
|
Proton magnetic resonance spectroscopy measurement of brain glutamate levels in premenstrual dysphoric disorder. Biol Psychiatry 2008; 63:1178-84. [PMID: 18061146 DOI: 10.1016/j.biopsych.2007.10.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/10/2007] [Accepted: 10/11/2007] [Indexed: 11/23/2022]
Abstract
BACKGROUND Women who suffer from premenstrual dysphoric disorder (PMDD) classically display depressive and anxiety symptoms in the premenstrum. Preclinical and clinical studies have suggested a role of glutamate in anxiety and depression. This investigation aims at demonstrating fluctuations of glutamate across the menstrual cycle in the medial prefrontal cortex of women who suffer from PMDD and healthy control subjects (HCs). METHODS Twelve PMDD women and 13 HCs were randomized to two single-voxel 3 Tesla proton magnetic resonance spectroscopy examinations of the medial prefrontal cortex during the follicular phase and the luteal phase. RESULTS A phase effect was observed; the levels of glutamate/creatine plus phosphocreatine (Cr) were significantly lower during the luteal phase compared with the follicular phase. However, no statistically significant diagnosis or phase x diagnosis effects were found. CONCLUSIONS The optimized stimulated echo acquisition mode (STEAM) pulse timings selected in this study (echo time [TE], mixing time [TM] = 240, 27 msec) allow us to interpret our results as the first report of alterations of brain glutamate levels across the menstrual cycle. Hormonal fluctuations associated with the menstrual cycle likely contribute to these glutamate level variations. Although PMDD women undergo a similar decrease in glutamate during the luteal phase as the HCs, PMDD women may display an increased behavioral sensitivity to those phase-related alterations. These menstrual cycle-related variations of glutamate levels may also contribute to the influence of the phases of the menstrual cycle in other neuropsychiatric disorders.
Collapse
|
34
|
Xu S, Yang J, Shen J. Inverse polarization transfer for detecting in vivo 13C magnetization transfer effect of specific enzyme reactions in 1H spectra. Magn Reson Imaging 2008; 26:413-9. [PMID: 18063339 PMCID: PMC2693921 DOI: 10.1016/j.mri.2007.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/27/2007] [Accepted: 07/24/2007] [Indexed: 10/22/2022]
Abstract
The wide chemical shift dispersion and long T(1) of (13)C have allowed determination of in vivo magnetization transfer effects caused by aspartate aminotransferase and lactate dehydrogenase reactions using (13)C magnetic resonance spectroscopy. In this report, we demonstrate that these effects can be observed in the proton spectra by transferring the equilibrium magnetization of (13)C via the one-bond scalar coupling between (13)C and (1)H using an inverse insensitive nuclei enhanced by polarization transfer-based heteronuclear polarization transfer method. This inverse method allows a combination of the advantages of the long (13)C T(1) for maximum magnetization transfer and the high sensitivity of proton detection. The feasibility of this in vivo inverse polarization transfer approach was evaluated for detecting the (13)C magnetization transfer effect of aspartate aminotransferase and lactate dehydrogenase reactions from a 72.5-microl voxel in the rat brain at 11.7 T.
Collapse
Affiliation(s)
- Su Xu
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD 20892-1527, USA
| | | | | |
Collapse
|
35
|
Pollack MH, Jensen JE, Simon NM, Kaufman RE, Renshaw PF. High-field MRS study of GABA, glutamate and glutamine in social anxiety disorder: response to treatment with levetiracetam. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:739-43. [PMID: 18206286 DOI: 10.1016/j.pnpbp.2007.11.023] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 11/14/2007] [Accepted: 11/20/2007] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Abnormalities in brain gamma-aminobutyric acid (GABA) and glutamate may be relevant to the underlying pathophysiology of anxiety disorders including social anxiety disorder (SAD). METHODS We used proton magnetic resonance spectroscopy (pMRS) to examine whole brain and regional GABA, glutamate and glutamine in patients (N=10) with SAD at baseline compared to a matched group of healthy controls (HC), and changes following 8 weeks of pharmacotherapy with levetiracetam. RESULTS For SAD subjects, there were significantly higher whole brain levels of glutamate and glutamine, though no significant differences in GABA. In the thalamus, glutamine was higher and GABA lower for SAD subjects. There was a significant reduction in thalamic glutamine with levetiracetam treatment. CONCLUSION Our findings provide preliminary support for impaired GABAergic and overactive glutamatergic function in social anxiety disorder and the potential relevance of changes in these systems for the anxiolytic response to levetiracetam.
Collapse
Affiliation(s)
- Mark H Pollack
- Psychiatry Department, Massachusetts General Hospital, Boston, MA 02114, United States.
| | | | | | | | | |
Collapse
|
36
|
Shestov AA, Valette J, Uğurbil K, Henry PG. On the reliability of (13)C metabolic modeling with two-compartment neuronal-glial models. J Neurosci Res 2008; 85:3294-303. [PMID: 17393498 DOI: 10.1002/jnr.21269] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metabolic modeling of (13)C NMR spectroscopy ((13)C MRS) data using two-compartment neuronal-glial models enabled non-invasive measurements of the glutamate-glutamine cycle rate (V(NT)) in the brain in vivo. However, the reliability of such two-compartment metabolic modeling has not been examined thoroughly. This study uses Monte-Carlo simulations to investigate the reliability of metabolic modeling of (13)C positional enrichment time courses measured in brain amino acids such as glutamate and glutamine during [1-(13)C]- or [1,6-(13)C(2)]glucose infusion. Results show that the determination of V(NT) is not very precise under experimental conditions typical of in vivo NMR studies, whereas the neuronal TCA cycle rate V(TCA(N)) is determined with a much higher precision. Consistent with these results, simulated (13)C positional enrichment curves for glutamate and glutamine are much more sensitive to the value of V(TCA(N)) than to the value of V(NT). We conclude that the determination of the glutamate-glutamine cycle rate V(NT) using (13)C MRS is relatively unreliable when fitting (13)C positional enrichment curves obtained during [1-(13)C] or [1,6-(13)C(2)]glucose infusion. Further developments are needed to improve the determination of V(NT), for example using additional information from (13)C-(13)C isotopomers and/or using glial specific substrates such as [2-(13)C]acetate.
Collapse
Affiliation(s)
- Alexander A Shestov
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
37
|
Abstract
This review assesses the parallel data on the role of gamma-aminobutyric acid (GABA) in depression and anxiety. We review historical and new data from both animal and human experimentation which have helped define the key role for this transmitter in both these mental pathologies. By exploring the overlap in these conditions in terms of GABAergic neurochemistry, neurogenetics, brain circuitry, and pharmacology, we develop a theory that the two conditions are intrinsically interrelated. The role of GABAergic agents in demonstrating this interrelationship and in pointing the way to future research is discussed.
Collapse
Affiliation(s)
- Allan V Kalueff
- Laboratory of Clinical Science, National Institute of Mental Health, Bethesda, Maryland, USA
| | | |
Collapse
|
38
|
Chassain C, Bielicki G, Durand E, Lolignier S, Essafi F, Traoré A, Durif F. Metabolic changes detected by proton magnetic resonance spectroscopy in vivo and in vitro in a murin model of Parkinson's disease, the MPTP-intoxicated mouse. J Neurochem 2007; 105:874-82. [PMID: 18088356 DOI: 10.1111/j.1471-4159.2007.05185.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by the progressive loss of the dopaminergic neurons in the substantia nigra pars compacta, which project to the striatum. The aim of this study was to analyze in vivo and in vitro consequences of dopamine depletion on amount of metabolites in a mouse model of Parkinson's disease using proton (1)H magnetic resonance spectroscopy (MRS). The study was performed on control mice (n = 7) and MPTP-intoxicated mice (n = 7). All the experiments were performed at 9.4 T. For in vivo MRS acquisitions, mice were anesthetized and carefully placed on an animal handling system with the head centered in birdcage coil used for both excitation and signal reception. Spectra were acquired in a voxel (8 microL) centered in the striatum, applying a point-resolved spectroscopy sequence (TR = 4000 ms, TE = 8.8 ms). After in vivo MRS acquisitions, mice were killed; successful lesion verified by tyrosine hydroxylase immunolabeling on the substantia nigra pars compacta and in vitro MRS acquisitions performed on perchloric extracts of anterior part of mice brains. In vitro spectra were acquired using a standard one-pulse experiment. The absolute concentrations of metabolites were determined using jmrui (Lyon, France) from (1)H spectra obtained in vivo on striatum and in vitro on perchloric extracts. Glutamate (Glu), glutamine (Gln), and GABA concentrations obtained in vivo were significantly increased in striatum of MPTP-lesioned mice (Glu: 15.5 +/- 2.5 vs. 12.9 +/- 1.0 mmol/L, p < 0.05; Gln: 2.3 +/- 0.9 vs. 1.8 +/- 0.6 mmol/L, p < 0.05; GABA: 2.3 +/- 0.9 vs. 1.3 +/- 0.6 mmol/L, p < 0.05). The in vitro results confirmed these results, Glu (10.9 +/- 2.5 vs. 7.9 +/- 1.7 micromol/g, p < 0.05), Gln (6.8 +/- 2.9 vs. 4.3 +/- 1.0 micromol/g, p < 0.05), and GABA (2.9 +/- 0.9 vs. 1.5 +/- 0.4 micromol/g, p < 0.01). The present study strongly supports a hyperactivity of the glutamatergic cortico-striatal pathway hypothesis after dopaminergic denervation in association with an increase of striatal GABA levels. It further shows an increased of striatal Gln concentrations, perhaps as a strategy to protect neurons from Glu excitotoxic injury after striatal dopamine depletion.
Collapse
Affiliation(s)
- Carine Chassain
- Univ Clermont 1, UFR Medicine, EA 3845, Clermont-Ferrand, France.
| | | | | | | | | | | | | |
Collapse
|
39
|
Sartorius A, Mahlstedt MM, Vollmayr B, Henn FA, Ende G. Elevated spectroscopic glutamate/gamma-amino butyric acid in rats bred for learned helplessness. Neuroreport 2007; 18:1469-73. [PMID: 17712276 DOI: 10.1097/wnr.0b013e3282742153] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The theory of depression is dominated by the monoamine hypothesis but there is increasing evidence that beyond monoamines, glutamate (Glu) and gamma-aminobutyric acid (GABA) play an essential role in the pathogenesis of depression. In this study, the effect of alterations of GABA and Glu were investigated in the congenital learned helplessness paradigm. Proton magnetic resonance spectroscopy is an important monitoring tool to bridge the findings in clinical and preclinical studies. We found increased Glu/GABA ratios in the hippocampus and prefrontal cortex of placebo-treated (saline intraperitoneally) congenital learned helplessness rats versus wild-type rats, and a treatment-induced (desipramine 10 mg/kg intraperitoneally or electroconvulsive shock) decrease of this monoamine ratio in both brain regions. Our results corroborate previous findings of an amino-acid influence on the pathomechanisms of mood disorders.
Collapse
|
40
|
MacKenzie EM, Grant SL, Baker GB, Wood PL. Phenelzine causes an increase in brain ornithine that is prevented by prior monoamine oxidase inhibition. Neurochem Res 2007; 33:430-6. [PMID: 17768678 DOI: 10.1007/s11064-007-9448-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 07/17/2007] [Indexed: 11/30/2022]
Abstract
Phenelzine (PLZ), a nonselective irreversible inhibitor of monoamine oxidase (MAO), also inhibits GABA-transaminase (GABA-T), markedly increasing brain GABA levels. PLZ is also a substrate for MAO, and studies suggest that a metabolite formed by the action of this enzyme on PLZ may be responsible for the increase in GABA observed. We have recently found that PLZ also elevates brain ornithine (ORN), an amino acid precursor to both glutamate (and GABA) and the polyamines, and have conducted dose- and time-response studies on this effect. Rats were treated with vehicle or PLZ doses (7.5, 15 or 30 mg/kg i.p.), and brains were collected 3 h later. In the time-response study, animals were treated with vehicle or PLZ (15 mg/kg i.p.) and brains were collected 1-24 h later. To determine whether a metabolite formed by the action of MAO on PLZ may be responsible for the elevation in brain ORN observed, animals were pretreated with vehicle or the MAO inhibitor tranylcypromine (TCP) before vehicle or PLZ (15 mg/kg), and brains collected 3 h later. ORN levels (measured by an HPLC procedure) were dose- and time-dependently increased in PLZ-treated animals, with levels reaching approximately 650% of control at 6 and 12 h. Pretreatment with TCP completely abolished the PLZ-induced increase in brain ORN, suggesting, as with GABA, that a metabolite of PLZ formed by the action of MAO is responsible for the elevation of brain ORN observed. The possible contribution of increased ORN to therapeutic and/or neuroprotective properties of PLZ is discussed.
Collapse
Affiliation(s)
- Erin M MacKenzie
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, 1E7.31 Walter MacKenzie Centre, Edmonton, AB, Canada T6G 2R7
| | | | | | | |
Collapse
|
41
|
Xu S, Yang J, Shen J. In vivo 13C saturation transfer effect of the lactate dehydrogenase reaction. Magn Reson Med 2007; 57:258-64. [PMID: 17260357 DOI: 10.1002/mrm.21137] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lactate dehydrogenase (LDH, EC 1.1.1.27) catalyzes an exchange reaction between pyruvate and lactate. It is demonstrated here that this reaction is sufficiently fast to cause a significant magnetization (saturation) transfer effect when the 13C resonance of pyruvate is saturated by a continuous-wave (CW) RF pulse. Infusion of [2-(13)C]glucose was used to allow labeling of pyruvate C2 at 207.9 ppm to determine the pseudo first-order rate constant of the unidirectional lactate-->pyruvate flux in vivo. During systemic administration of GABAA receptor antagonist bicuculline, this pseudo first-order rate constant was determined to be 0.08+/-0.01 s-1 (mean+/-SD, N=4) in halothane-anesthetized adult rat brains. In 9L and C6 rat glioma models, the 13C saturation transfer effect of the LDH reaction was also detected in vivo. Our results demonstrate that the 13C magnetization transfer effect of the LDH reaction may be useful as a novel marker for utilizing noninvasive in vivo MRS to study many physiological and pathological conditions, such as cancer.
Collapse
Affiliation(s)
- Su Xu
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland 20892-1527, USA
| | | | | |
Collapse
|
42
|
Lee Y, Gaskins D, Anand A, Shekhar A. Glia mechanisms in mood regulation: a novel model of mood disorders. Psychopharmacology (Berl) 2007; 191:55-65. [PMID: 17225169 DOI: 10.1007/s00213-006-0652-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Accepted: 11/14/2006] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Recent evidence in clinical and preclinical studies has implicated glutamate neurotransmissions in pathophysiology of mood disorders. The regulation of amino acid neurotransmission, i.e., glutamate and gamma-aminobutyric acid (GABA) involves coordinated mechanisms of uptake and transport within a tripartite synaptic system that includes neurons and glia. Newly appreciated role of the glia, more specifically astrocytes on neuronal functions combined with reported postmortem abnormalities of glia in patients with mood disorders further supports the role of glia in mood disorders. MATERIALS AND METHODS This report presents some of our preliminary results utilizing glia-selective toxins and other pharmacological tools to suppress glial function within the limbic system to study the resulting behavioral abnormalities, and thus, elucidate glial involvement in the development of mood disorders. RESULTS AND DISCUSSION We demonstrate that chronic blockade of glutamate uptake by a glial/neuronal transporter antagonist L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) within the amygdala, a key area implicated in mood regulation, results in dose-dependent reduction in social exploratory behavior and disrupts circadian activity patterns consistent with symptoms of mood disorders. Similarly, the selective astrocytic glutamate transporter type 1 (GLT-1) blocker dihydrokainic acid (DHK) injected into the amygdala also results in reduced social interaction that is blocked by selective glutamate N-methyl-D-aspartate (NMDA) type receptor antagonist AP5. The results are discussed in the context of glial and glutamate mechanisms in mood disorders and potential therapeutic avenues to address these mechanisms.
Collapse
Affiliation(s)
- Younglim Lee
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
43
|
Xu S, Shen J. In vivo dynamic turnover of cerebral 13C isotopomers from [U-13C]glucose. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 182:221-8. [PMID: 16859940 DOI: 10.1016/j.jmr.2006.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 06/27/2006] [Accepted: 07/02/2006] [Indexed: 05/11/2023]
Abstract
An INEPT-based (13)C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic (13)C isotopomer turnover from intravenously infused [U-(13)C]glucose in a 211 microL voxel located in the adult rat brain. The INEPT-based (1)H-->(13)C polarization transfer method is mostly adiabatic and therefore minimizes signal loss due to B(1) inhomogeneity of the surface coils used. High quality and reproducible data were acquired as a result of combined use of outer volume suppression, ISIS, and the single-shot three-dimensional localization scheme built in the INEPT pulse sequence. Isotopomer patterns of both glutamate C4 at 34.00 ppm and glutamine C4 at 31.38 ppm are dominated first by a doublet originated from labeling at C4 and C5 but not at C3 (with (1)J(C4C5) = 51 Hz) and then by a quartet originated from labeling at C3, C4, and C5 (with (1)J(C3C4) = 35 Hz). A lag in the transition of glutamine C4 pattern from doublet-dominance to quartet dominance as compared to glutamate C4 was observed, which provides an independent verification of the precursor-product relationship between neuronal glutamate and glial glutamine and a significant intercompartmental cerebral glutamate-glutamine cycle between neurons and glial cells.
Collapse
Affiliation(s)
- Su Xu
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
44
|
Yang J, Shen J. Increased oxygen consumption in the somatosensory cortex of alpha-chloralose anesthetized rats during forepaw stimulation determined using MRS at 11.7 Tesla. Neuroimage 2006; 32:1317-25. [PMID: 16797191 DOI: 10.1016/j.neuroimage.2006.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 05/05/2006] [Accepted: 05/09/2006] [Indexed: 11/15/2022] Open
Abstract
The significance of changes in cerebral oxygen consumption in focally activated brain tissue is still controversial. Since the rate of cerebral oxygen consumption is tightly coupled to that of tricarboxylic acid cycle which can be measured from the turnover kinetics of [4-(13)C]glutamate using in vivo (1)H{(13)C} magnetic resonance spectroscopy, changes in tricarboxylic acid cycle flux rate were assessed in primary somatosensory cortex of alpha-chloralose anesthetized rats during electrical forepaw stimulation. With markedly improved (1)H{(13)C} magnetic resonance spectroscopy technique and the use of high magnetic field strength of 11.7 T accessible to the current study, [4-(13)C]glutamate at 2.35 ppm was spectrally resolved from overlapping resonances of [4-(13)C]glutamine at 2.46 ppm and [2-(13)C]GABA at 2.28 ppm as well as the more distal [3-(13)C]glutamate and [3-(13)C]glutamine. The results showed a significantly increased V(TCA) in focally activated primary somatosensory cortex during forepaw stimulation, corresponding to approximately 51 +/- 27% (n = 6, mean +/- SD) increase in cerebral oxygen consumption rate. Considering the high efficiency in producing adenosine triphosphate by oxidative metabolism of glucose, the results demonstrate that aerobic oxidative metabolism provides the majority of energy required for cerebral focal activation in alpha-chloralose anesthetized rats subjected to forepaw stimulation.
Collapse
Affiliation(s)
- Jehoon Yang
- Molecular Imaging Branch, Mood and Anxiety Disorders Program, National Institute of Mental Health, Bldg. 10, Rm. 2D51A, 9000 Rockville Pike, Bethesda, MD 20892-1527, USA
| | | |
Collapse
|
45
|
Shen J. 13C magnetic resonance spectroscopy studies of alterations in glutamate neurotransmission. Biol Psychiatry 2006; 59:883-7. [PMID: 16199016 DOI: 10.1016/j.biopsych.2005.07.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/11/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
Over the past a few years, significant progress has been made in refining the in vivo 13C magnetic resonance spectroscopy technique and in applying it to studying the alterations in the glutamate-glutamine cycling flux. Meanwhile, the details of the metabolic modeling are being rigorously debated. Recent evidence against fast alpha-ketoglutarate-glutamate exchange across the mitochondrial membrane is examined. Previous reports have indicated that glutamate release or 13C label incorporation into glutamine is attenuated at elevated concentrations of endogenous gamma-aminobutyric acid (GABA). A recent study has shown that phenelzine administration reduces the glutamate-glutamine cycling flux while raising endogenous GABA levels in vivo. Effects of several metabotropic glutamate receptor agonists and antagonists and brain disorders on the glutamate-glutamine cycle are also summarized.
Collapse
Affiliation(s)
- Jun Shen
- Molecular Imaging Branch, Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, Maryland 20892-1527, USA.
| |
Collapse
|
46
|
Li S, Chen Z, Zhang Y, Lizak M, Bacher J, Innis RB, Shen J. In vivo single-shot, proton-localized 13C MRS of rhesus monkey brain. NMR IN BIOMEDICINE 2005; 18:560-9. [PMID: 16273509 DOI: 10.1002/nbm.993] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A single-shot, proton-localized, polarization transfer (13)C spectroscopic method was proposed and implemented on a 4.7 T scanner for studying rhesus monkey brains. The polarization transfer sequence was mostly adiabatic, minimizing signal loss due to B(1) inhomogeneity. RF pulses in polarization transfer were also used for voxel selection of protons with gradient fields. The transferred (13)C magnetization was refocused by additional refocusing adiabatic pulses. With the intravenous infusion of D-[1-(13)C]glucose solution, (13)C NMR spectra from a 30 mL voxel were acquired for the resonances of C1 of glucose, C2,3,4 of glutamate and glutamine. The time-resolved turnover of glutamate, glutamine and aspartate from intravenously infused D-[1-(13)C]glucose at a temporal resolution of 12 min was demonstrated with excellent spectral resolution and signal-to-noise ratio. Typically, the half-height linewidth of the decoupled (13)C peaks was approximately 4 Hz. Data obtained with infusion of sodium [2-(13)C]acetate using the proposed polarization transfer method and data from the carboxylic carbon region using non-localized acquisition are also presented.
Collapse
Affiliation(s)
- Shizhe Li
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|