1
|
Armbruster M, Forsythe P. The Perinatal Microbiota-Gut-Brain Axis: Implications for Postpartum Depression. Neuroimmunomodulation 2025; 32:67-82. [PMID: 39837281 DOI: 10.1159/000543691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/17/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Pregnancy and childbirth are accompanied by widespread maternal physiological adaptations and hormonal shifts that have been suggested to result in a period of vulnerability for the development of mood disorders such as postpartum depression (PPD). There is also evidence of peripartum changes in the composition of the gut microbiota, but the potential contribution of intestinal microbes to the adaptations, or subsequent vulnerabilities, during this period are unknown. SUMMARY Here, we outline key pathways involved in peripartum adaptations including GABAergic signaling, oxytocin, and immunomodulation that are also associated with susceptibility to mood disorders and present evidence that these pathways are modulated by gut microbes. We also discuss the therapeutic potential of the microbiota-gut-brain axis in PPD and identify future directions for research to help realize this potential. KEY MESSAGES Peripartum adaptations are associated with shifts in gut microbial composition. Disruption of GABAergic, oxytocin, and immunomodulatory pathways may contribute to vulnerability of mood disorders including PPD. These key adaptive pathways are modulated by intestinal microbes suggesting a role for the gut microbiota in determining susceptibility to PPD. More research is needed to confirm relationship between gut microbes and PPD and to gain the mechanistic understanding required to realize the therapeutic potential of microbiota-gut-brain axis in this mood disorder.
Collapse
Affiliation(s)
- Marie Armbruster
- Pulmonary Division, Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Forsythe
- Pulmonary Division, Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Młotkowska P, Marciniak E, Misztal A, Misztal T. Effect of Neurosteroids on Basal and Stress-Induced Oxytocin Secretion in Luteal-Phase and Pregnant Sheep. Animals (Basel) 2023; 13:ani13101658. [PMID: 37238088 DOI: 10.3390/ani13101658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Oxytocin (OT) is a neuropeptide synthesized in the hypothalamic nuclei that modulates both behavioral and reproductive functions, associated with the increased neurosteroid synthesis in the brain. Therefore, the present study tested the hypothesis that manipulation of central neurosteroid levels could affect oxytocin synthesis and release in non-pregnant and pregnant sheep under both basal and stressful conditions. In Experiment 1, luteal-phase sheep were subjected to a series of intracerebroventricular (icv.) infusions of allopregnanolone (AL, 4 × 15 μg/60 μL/30 min) for 3 days. In Experiment 2, pregnant animals (4th month) received a series of infusions of the neurosteroid synthesis blocker, finasteride (4 × 25 μg/60 μL/30 min), conducted for 3 days. In non-pregnant sheep AL alone was shown to differentially modulate OT synthesis in basal conditions, and strongly inhibit OT response to stress (p < 0.001). In contrast, in pregnant animals, basal and stress-induced OT secretion was significantly (p < 0.001) increased during finasteride infusion compared to controls. In conclusion, we showed that neurosteroids were involved in the control of OT secretion in sheep, particularly under stress and pregnancy conditions and are part of an adaptive mechanism which is responsible for protecting and maintaining pregnancy in harmful situations.
Collapse
Affiliation(s)
- Patrycja Młotkowska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Elżbieta Marciniak
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Anna Misztal
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Tomasz Misztal
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| |
Collapse
|
3
|
Turkmen S, Bäckström T, Kangas Flodin Y, Bixo M. Neurosteroid involvement in threatened preterm labour. Endocrinol Diabetes Metab 2021; 4:e00216. [PMID: 33855217 PMCID: PMC8029533 DOI: 10.1002/edm2.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION The neurosteroid allopregnanolone modulates oxytocin expression in the brain, and its effects arise from its action on the GABAA receptor. Whether neurosteroid levels and the function of the GABAA receptor are involved in the risk of preterm labour in pregnant women is unknown. METHODS Pregnant women with (n = 16) or without (n = 20) threatened preterm labour (TPL) in gestational week 33 + 6 days to 37 + 0 days were studied prospectively with procedures including foetal heart rate monitoring, vaginal examination, ultrasound examination and blood tests to determine allopregnanolone, progesterone and oxytocin levels. The GABAA receptor function in both groups was measured with a saccadic eye velocity test (SEVT). RESULTS Plasma oxytocin levels were higher in the TPL group than in the control group (41.5 vs. 37.0 pmol/L, respectively, p = .021). Although the allopregnanolone and progesterone levels in both groups did not differ, there was a negative association between blood oxytocin and allopregnanolone (as predictor) levels in the TPL group (B: -3.2, 95% confidence interval (CI): -5.5 to -0.9, p = .012). As a predictor of TPL, progesterone was associated with cervix maturity (odds ratio: 1.02, 95% CI: 1.00-1.04, p = .038). SEVT showed that the women in both groups had similar GABAA receptor functions. In both groups, body mass index correlated with peak saccadic eye velocity (r = .34, p = .044) and negatively with allopregnanolone (r = -.41, p = .013). CONCLUSIONS Neurosteroid levels were unchanged in the peripheral blood of women with TPL, despite the increase in available oxytocin. Although the function of the GABAA receptor was unchanged in women with TPL, to ensure reliable results, saccadic eye velocity should be investigated during a challenge test with a GABAA receptor agonist.
Collapse
Affiliation(s)
- Sahruh Turkmen
- Sundsvalls Research UnitDepartment of Clinical Sciences, Obstetrics and GynaecologyUmeå UniversitySundsvallSweden
| | - Torbjörn Bäckström
- Sundsvalls Research UnitDepartment of Clinical Sciences, Obstetrics and GynaecologyUmeå UniversitySundsvallSweden
| | - Yvonne Kangas Flodin
- Sundsvalls Research UnitDepartment of Clinical Sciences, Obstetrics and GynaecologyUmeå UniversitySundsvallSweden
| | - Marie Bixo
- Sundsvalls Research UnitDepartment of Clinical Sciences, Obstetrics and GynaecologyUmeå UniversitySundsvallSweden
| |
Collapse
|
4
|
Kim S, Kim SM, Oh B, Tak J, Yang E, Jin YH. Allopregnanolone Effects on Transmission in the Brain Stem Solitary Tract Nucleus (NTS). Neuroscience 2018; 379:219-227. [PMID: 29604384 DOI: 10.1016/j.neuroscience.2018.03.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
During pregnancy, the progesterone metabolite, allopregnanolone (ALLO), becomes elevated and has been associated with altered levels within the CNS and resulting changes in GABAA receptor function. Pregnant animals poorly compensate reflexes for a decrease in blood pressure during hemorrhage. Previous works suggested that ALLO decreases baroreflex responses by central actions, however, the underlying mechanisms are poorly understood. In this study, we tested ALLO actions on visceral afferent synaptic transmission at second-order neurons within medial portions of the nucleus tractus solitarius (NTS) using hindbrain slices from non-pregnant female rats. Solitary tract (ST) stimulation-evoked excitatory postsynaptic currents (ST-eEPSCs) in NTS neurons directly connected to vagal afferents within the ST. ST-eEPSCs were functionally identified as monosynaptic by the latency characteristics (low jitter = standard deviation of latency, ≤200 μs) to ST stimulation. Such second-order neurons all displayed spontaneous inhibitory postsynaptic currents (sIPSCs), and low micromolar concentrations of ALLO increased frequency and decay time. At submicromolar concentrations, ALLO induced a tonic, GABAergic inhibitory current and suppressed ST-eEPSCs' amplitude. While GABAA receptor antagonist, bicuculline, blocked all ALLO effects, gabazine only blocked sIPSC actions. In current-clamp mode, ALLO perfusion increased failure of ST stimulation to trigger action potentials in most neurons. Thus, our results indicate that ALLO acts to suppress visceral afferent ST synaptic transmission at first synapses by activating pharmacologically distinct GABAA subtypes at different concentration ranges. This ALLO-mediated attenuated visceral afferent signal integration in NTS may underlie reflex changes in blood pressure during gestation.
Collapse
Affiliation(s)
- Sojin Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Moon Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bermseok Oh
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jihoon Tak
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eunhee Yang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Republic of Korea
| | - Young-Ho Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
5
|
Abstract
Prolactin (PRL) released from lactotrophs of the anterior pituitary gland in response to the suckling by the offspring is the major hormonal signal responsible for stimulation of milk synthesis in the mammary glands. PRL secretion is under chronic inhibition exerted by dopamine (DA), which is released from neurons of the arcuate nucleus of the hypothalamus into the hypophyseal portal vasculature. Suckling by the young activates ascending systems that decrease the release of DA from this system, resulting in enhanced responsiveness to one or more PRL-releasing hormones, such as thyrotropin-releasing hormone. The neuropeptide oxytocin (OT), synthesized in magnocellular neurons of the hypothalamic supraoptic, paraventricular, and several accessory nuclei, is responsible for contracting the myoepithelial cells of the mammary gland to produce milk ejection. Electrophysiological recordings demonstrate that shortly before each milk ejection, the entire neurosecretory OT population fires a synchronized burst of action potentials (the milk ejection burst), resulting in release of OT from nerve terminals in the neurohypophysis. Both of these neuroendocrine systems undergo alterations in late gestation that prepare them for the secretory demands of lactation, and that reduce their responsiveness to stimuli other than suckling, especially physical stressors. The demands of milk synthesis and release produce a condition of negative energy balance in the suckled mother, and, in laboratory rodents, are accompanied by a dramatic hyperphagia. The reduction in secretion of the adipocyte hormone, leptin, a hallmark of negative energy balance, may be an important endocrine signal to hypothalamic systems that integrate lactation-associated food intake with neuroendocrine systems.
Collapse
Affiliation(s)
- William R Crowley
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
6
|
Popoola DO, Borrow AP, Sanders JE, Nizhnikov ME, Cameron NM. Can low-level ethanol exposure during pregnancy influence maternal care? An investigation using two strains of rat across two generations. Physiol Behav 2015; 148:111-21. [PMID: 25575692 DOI: 10.1016/j.physbeh.2015.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/31/2014] [Accepted: 01/05/2015] [Indexed: 01/12/2023]
Abstract
Gestational alcohol use is well documented as detrimental to both maternal and fetal health, producing an increase in offspring's tendency for alcoholism, as well as in behavioral and neuropsychological disorders. In both rodents and in humans, parental care can influence the development of offspring physiology and behavior. Animal studies that have investigated gestational alcohol use on parental care and/or their interaction mostly employ heavy alcohol use and single strains. This study aimed at investigating the effects of low gestational ethanol dose on parental behavior and its transgenerational transmission, with comparison between two rat strains. Pregnant Sprague Dawley (SD) and Long Evans (LE) progenitor dams (F0) received 1g/kg ethanol or water through gestational days 17-20 via gavage, or remained untreated in their home cages. At maturity, F1 female offspring were mated with males of the same strain and treatment and were left undisturbed through gestation. Maternal behavior was scored in both generations during the first six postnatal days. Arch-back nursing (ABN) was categorized as: 1, when the dam demonstrated minimal kyphosis; 2, when the dam demonstrated moderate kyphosis; and 3, when the dam displayed maximal kyphosis. Overall, SD showed greater amounts of ABN than LE dams and spent more time in contact with their pups. In the F0 generation, water and ethanol gavage increased ABN1 and contact with pups in SD, behaviors which decreased in treated LE. For ABN2, ethanol-treated SD dams showed more ABN2 than water-treated dams, with no effect of treatment on LE animals. In the F1 generation, prenatal exposure affected retrieval. Transgenerational transmission of LG was observed only in the untreated LE group. Strain-specific differences in maternal behavior were also observed. This study provides evidence that gestational gavage can influence maternal behavior in a strain-specific manner. Our results also suggest that the experimental procedure during gestation and genetic variations between strains may play an important role in the behavioral effects of prenatal manipulations.
Collapse
Affiliation(s)
- Daniel O Popoola
- Psychology Department, Center for Development and Behavioral Neuroscience, Binghamton University - SUNY, NY, USA
| | - Amanda P Borrow
- Psychology Department, Center for Development and Behavioral Neuroscience, Binghamton University - SUNY, NY, USA
| | - Julia E Sanders
- Psychology Department, Center for Development and Behavioral Neuroscience, Binghamton University - SUNY, NY, USA
| | | | - Nicole M Cameron
- Psychology Department, Center for Development and Behavioral Neuroscience, Binghamton University - SUNY, NY, USA.
| |
Collapse
|
7
|
Vargas-Martínez F, Uvnäs-Moberg K, Petersson M, Olausson HA, Jiménez-Estrada I. Neuropeptides as neuroprotective agents: Oxytocin a forefront developmental player in the mammalian brain. Prog Neurobiol 2014; 123:37-78. [DOI: 10.1016/j.pneurobio.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
|
8
|
Livingstone DEW, Di Rollo EM, Yang C, Codrington LE, Mathews JA, Kara M, Hughes KA, Kenyon CJ, Walker BR, Andrew R. Relative adrenal insufficiency in mice deficient in 5α-reductase 1. J Endocrinol 2014; 222:257-66. [PMID: 24872577 PMCID: PMC4104038 DOI: 10.1530/joe-13-0563] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Patients with critical illness or hepatic failure exhibit impaired cortisol responses to ACTH, a phenomenon known as 'relative adrenal insufficiency'. A putative mechanism is that elevated bile acids inhibit inactivation of cortisol in liver by 5α-reductases type 1 and type 2 and 5β-reductase, resulting in compensatory downregulation of the hypothalamic-pituitary-adrenal axis and adrenocortical atrophy. To test the hypothesis that impaired glucocorticoid clearance can cause relative adrenal insufficiency, we investigated the consequences of 5α-reductase type 1 deficiency in mice. In adrenalectomised male mice with targeted disruption of 5α-reductase type 1, clearance of corticosterone was lower after acute or chronic (eightfold, P<0.05) administration, compared with WT control mice. In intact 5α-reductase-deficient male mice, although resting plasma corticosterone levels were maintained, corticosterone responses were impaired after ACTH administration (26% lower, P<0.05), handling stress (2.5-fold lower, P<0.05) and restraint stress (43% lower, P<0.05) compared with WT mice. mRNA levels of Nr3c1 (glucocorticoid receptor), Crh and Avp in pituitary or hypothalamus were altered, consistent with enhanced negative feedback. These findings confirm that impaired peripheral clearance of glucocorticoids can cause 'relative adrenal insufficiency' in mice, an observation with important implications for patients with critical illness or hepatic failure, and for patients receiving 5α-reductase inhibitors for prostatic disease.
Collapse
Affiliation(s)
- Dawn E W Livingstone
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Emma M Di Rollo
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Chenjing Yang
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Lucy E Codrington
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - John A Mathews
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Madina Kara
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Katherine A Hughes
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Christopher J Kenyon
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Brian R Walker
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ruth Andrew
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
9
|
Gharedaghi MH, Javadi-Paydar M, Yousefzadeh-Fard Y, Salehi-Sadaghiani M, Javadian P, Fakhraei N, Tavangar SM, Dehpour AR. Muscimol delays lipopolysaccharide-induced preterm delivery in mice: role of GABAAreceptors and nitric oxide. J Matern Fetal Neonatal Med 2012; 26:36-43. [DOI: 10.3109/14767058.2012.722715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Bâ A. Perinatal thiamine deficiency-induced spontaneous abortion and pup-killing responses in rat dams. Nutr Neurosci 2012; 16:69-77. [PMID: 22889588 DOI: 10.1179/1476830512y.0000000032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The current study attempts to determine whether thiamine (B1 vitamin) deficiency and chronic alcohol-related thiamine-deficient (TD) status, disturb maternal behavior towards pups. METHODS During gestation and lactation, Wistar rat dams were exposed to the following treatments: (i) prenatal TD dams; (ii) perinatal TD dams; (iii) postnatal TD dams; (iv) 12% alcohol/water drinking mothers; (v) ad libitum control dams. Pair-feeding treatments controlled malnutrition related to thiamine deficiency; (vi) prenatal pair-fed (PF) dams; (vii) perinatal PF dams; (viii) postnatal PF dams and included also the control of alcohol consummation: (ix) PF saccharose dams. Dams were observed for gestation outcome and for apparent disorders of the maternal behavior related to the pups at parturition. RESULTS From the nine experimental groups studied, only pre- and perinatal TD dams exhibited spontaneous abortion (33.36 and 41.66%, respectively) followed by pups-killing responses where, respectively, 4 dams/7 (57.14%) and 5 dams/7 (71.43%) showed disruption of maternal behavior and appearance of cannibalism towards pups which all were killed within 48 hours after parturition. Spontaneous abortion and pup-killing responses were not observed in the dams of any other experimental group, suggesting that perinatal disturbances of hormonal factors underlay these maternal disorders. DISCUSSION Previous studies reported that thiamine deficiency-induced degeneration of dopamine neurons may be related to mouse-killing aggression in rats. The present study suggests that perinatal thiamine deficiency-induced alteration of dopaminergic neurons in maternal brain could be a trigger factor of pup-killing responses. Central dopamine and oxytocin have been strongly associated with both the onset and maintenance of maternal behavior and the regulation of maternal aggressiveness as well. Our studies suggest that estrogen control oxytocin levels in brain structures of pregnancy-terminated rats via dopamine transmission. Thiamine may modulate cAMP/Ca2+ -dependent estradiol-triggered responses which in turn control dopamine synthesis. Consequently, thiamine deficiency induced perinatally triggers pup-killing responses in pregnancy-terminated rats by the following toxic effects: (i) disturbances of estrogen production and/or release affecting dopamine synthesis; (ii) alterations of dopamine inhibition on central oxytocinergic system-related maternal aggressiveness. Likewise, our results indicate also that perinatal thiamine deficiency alone induces spontaneous abortion, reduces litter size, and lowers birth weight, which together suggest changing in the fetoplacental estrogen receptor alpha/progesterone receptor A ratio during gestation, via autocrine/paracrine regulation disturbances. Those hypotheses should be confirmed by further investigations.
Collapse
Affiliation(s)
- Abdoulaye Bâ
- Université de Cocody, UFR Biosciences, Abidjan, Côte d'Ivoire.
| |
Collapse
|
11
|
Brunton PJ, Bales J, Russell JA. Allopregnanolone and induction of endogenous opioid inhibition of oxytocin responses to immune stress in pregnant rats. J Neuroendocrinol 2012; 24:690-700. [PMID: 22340139 DOI: 10.1111/j.1365-2826.2012.02295.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In virgin rats, systemic administration of interleukin (IL)-1β (i.e. to mimic infection), increases oxytocin secretion and the firing rate of oxytocin neurones in the supraoptic nucleus (SON). However, in late pregnancy, stimulated oxytocin secretion is inhibited by an endogenous opioid mechanism, preserving the expanded neurohypophysial oxytocin stores for parturition and minimising the risk of preterm labour. Central levels of the neuroactive metabolite of progesterone, allopregnanolone, increase during pregnancy and allopregnanolone acting on GABA(A) receptors on oxytocin neurones enhances inhibitory transmission. In the present study, we tested whether allopregnanolone induces opioid inhibition of the oxytocin system in response to IL-1β in late pregnancy. Inhibition of 5α-reductase (an allopregnanolone-synthesising enzyme) with finasteride potentiated IL-1β-evoked oxytocin secretion in late pregnant rats, whereas allopregnanolone reduced the oxytocin response in virgin rats. IL-1β increased the number of magnocellular neurones in the SON and paraventricular nucleus (PVN) expressing Fos (an indicator of neuronal activation) in virgin but not pregnant rats. In immunoreactive oxytocin neurones in the SON and PVN, finasteride increased IL-1β-induced Fos expression in pregnant rats. Conversely, allopregnanolone reduced the number of magnocellular oxytocin neurones activated by IL-1β in virgin rats. Treatment with naloxone (an opioid antagonist) greatly enhanced the oxytocin response to IL-1β in pregnancy, and finasteride did not enhance this effect, indicating that allopregnanolone and the endogenous opioid mechanisms do not act independently. Indeed, allopregnanolone induced opioid inhibition over oxytocin responses to IL-1β in virgin rats. Thus, in late pregnancy, allopregnanolone induces opioid inhibition over magnocellular oxytocin neurones and hence on oxytocin secretion in response to immune challenge. This mechanism will minimise the risk of preterm labour and prevent the depletion of neurohypophysial oxytocin stores, which are required for parturition.
Collapse
Affiliation(s)
- P J Brunton
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | | | | |
Collapse
|
12
|
Paris JJ, Brunton PJ, Russell JA, Frye CA. Immune stress in late pregnant rats decreases length of gestation and fecundity, and alters later cognitive and affective behaviour of surviving pre-adolescent offspring. Stress 2011; 14:652-64. [PMID: 21995525 PMCID: PMC3376536 DOI: 10.3109/10253890.2011.628719] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Immune challenge during pregnancy is associated with preterm birth and poor perinatal development. The mechanisms of these effects are not known. 5α-Pregnan-3α-ol-20-one (3α,5α-THP), the neuroactive metabolite of progesterone, is critical for neurodevelopment and stress responses, and can influence cognition and affective behaviours. To develop an immune challenge model of preterm birth, pregnant Long-Evans rat dams were administered lipopolysaccharide [LPS; 30 μg/kg/ml, intraperitoneal (IP)], interleukin-1β (IL-1β; 1 μg/rat, IP) or vehicle (0.9% saline, IP) daily on gestational days 17-21. Compared to control treatment, prenatal LPS or IL-1β reduced gestational length and the number of viable pups born. At 28-30 days of age, male and female offspring of mothers exposed to prenatal IL-1β had reduced cognitive performance in the object recognition task compared to controls. In females, but not males, prenatal IL-1β reduced anxiety-like behaviour, indicated by entries to the centre of an open field. In the hippocampus, progesterone turnover to its 5α-reduced metabolites was lower in prenatally exposed IL-1β female, but not in male offspring. IL-1β-exposed males and females had reduced oestradiol content in hippocampus, medial prefrontal cortex and diencephalon compared to controls. Thus, immune stress during late pregnancy reduced gestational length and negatively impacted birth outcomes, hippocampal function and central neurosteroid formation in the offspring.
Collapse
Affiliation(s)
- Jason J Paris
- Department of Psychology, University at Albany-SUNY, Albany, NY 12222, USA
| | | | | | | |
Collapse
|
13
|
Endocrine induced changes in brain function during pregnancy. Brain Res 2010; 1364:198-215. [DOI: 10.1016/j.brainres.2010.09.062] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/10/2010] [Accepted: 09/16/2010] [Indexed: 02/05/2023]
|
14
|
Sex-specific effects of early neonatal progesterone treatment on dopamine and serotonin metabolism in rat striatum and frontal cortex. Life Sci 2010; 87:738-42. [DOI: 10.1016/j.lfs.2010.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 10/04/2010] [Accepted: 10/15/2010] [Indexed: 11/22/2022]
|
15
|
Brooks VL, Dampney RAL, Heesch CM. Pregnancy and the endocrine regulation of the baroreceptor reflex. Am J Physiol Regul Integr Comp Physiol 2010; 299:R439-51. [PMID: 20504907 PMCID: PMC2928618 DOI: 10.1152/ajpregu.00059.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 05/19/2010] [Indexed: 02/07/2023]
Abstract
The purpose of this review is to delineate the general features of endocrine regulation of the baroreceptor reflex, as well as specific contributions during pregnancy. In contrast to the programmed changes in baroreflex function that occur in situations initiated by central command (e.g., exercise or stress), the complex endocrine milieu often associated with physiological and pathophysiological states can influence the central baroreflex neuronal circuitry via multiple sites and mechanisms, thereby producing varied changes in baroreflex function. During pregnancy, baroreflex gain is markedly attenuated, and at least two hormonal mechanisms contribute, each at different brain sites: increased levels of the neurosteroid 3alpha-hydroxy-dihydroprogesterone (3alpha-OH-DHP), acting in the rostral ventrolateral medulla (RVLM), and reduced actions of insulin in the forebrain. 3alpha-OH-DHP appears to potentiate baroreflex-independent GABAergic inhibition of premotor neurons in the RVLM, which decreases the range of sympathetic nerve activity that can be elicited by changes in arterial pressure. In contrast, reductions in the levels or actions of insulin in the brain blunt baroreflex efferent responses to increments or decrements in arterial pressure. Although plasma levels of angiotensin II are increased in pregnancy, this is not responsible for the reduction in baroreflex gain, although it may contribute to the increased level of sympathetic nerve activity in this condition. How these different hormonal effects are integrated within the brain, as well as possible interactions with additional potential neuromodulators that influence baroreflex function during pregnancy and other physiological and pathophysiological states, remains to be clearly delineated.
Collapse
Affiliation(s)
- Virginia L Brooks
- Dept. of Physiology and Pharmacology, L-334, Oregon Health & Science Univ., 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | |
Collapse
|
16
|
Russell JA, Douglas AJ, Brunton PJ. Reduced Hypothalamo-pituitary-adrenal Axis Stress Responses in Late Pregnancy. Ann N Y Acad Sci 2008; 1148:428-38. [DOI: 10.1196/annals.1410.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Paris JJ, Frye CA. Estrous cycle, pregnancy, and parity enhance performance of rats in object recognition or object placement tasks. Reproduction 2008; 136:105-15. [PMID: 18390689 DOI: 10.1530/rep-07-0512] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ovarian hormone elevations are associated with enhanced learning/memory. During behavioral estrus or pregnancy, progestins, such as progesterone (P(4)) and its metabolite 5 alpha-pregnan-3 alpha-ol-20-one (3 alpha,5 alpha-THP), are elevated due, in part, to corpora luteal and placental secretion. During 'pseudopregnancy', the induction of corpora luteal functioning results in a hormonal milieu analogous to pregnancy, which ceases after about 12 days, due to the lack of placental formation. Multiparity is also associated with enhanced learning/memory, perhaps due to prior steroid exposure during pregnancy. Given evidence that progestins and/or parity may influence cognition, we investigated how natural alterations in the progestin milieu influence cognitive performance. In Experiment 1, virgin rats (nulliparous) or rats with two prior pregnancies (multiparous) were assessed on the object placement and recognition tasks, when in high-estrogen/P(4) (behavioral estrus) or low-estrogen/P(4) (diestrus) phases of the estrous cycle. In Experiment 2, primiparous or multiparous rats were tested in the object placement and recognition tasks when not pregnant, pseudopregnant, or pregnant (between gestational days (GDs) 6 and 12). In Experiment 3, pregnant primiparous or multiparous rats were assessed daily in the object placement or recognition tasks. Females in natural states associated with higher endogenous progestins (behavioral estrus, pregnancy, multiparity) outperformed rats in low progestin states (diestrus, non-pregnancy, nulliparity) on the object placement and recognition tasks. In earlier pregnancy, multiparous, compared with primiparous, rats had a lower corticosterone, but higher estrogen levels, concomitant with better object placement performance. From GD 13 until post partum, primiparous rats had higher 3 alpha,5 alpha-THP levels and improved object placement performance compared with multiparous rats.
Collapse
Affiliation(s)
- Jason J Paris
- The University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, USA
| | | |
Collapse
|
18
|
Mouihate A, Harré EM, Martin S, Pittman QJ. Suppression of the febrile response in late gestation: evidence, mechanisms and outcomes. J Neuroendocrinol 2008; 20:508-14. [PMID: 18266941 PMCID: PMC3547979 DOI: 10.1111/j.1365-2826.2008.01666.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fever is a beneficial host defence response. However, fever caused by the immune stimulant, lipopolysaccharide (LPS), are attenuated in many species during pregnancy, particularly near term. A number of parallel mechanisms may be responsible, and these vary in magnitude according to the time of gestation, type of inflammatory stimulus and species of animal. Some studies report a reduction in the plasma levels of circulating pro-inflammatory cytokines such as tumour necrosis factor-alpha, interleukin-1beta and interleukin-6 along with increased levels of anti-inflammatory cytokines such as interleukin-1 receptor antagonist. Associated with the attenuated febrile response to LPS is a reduction in the activation of the prostaglandin synthesising enzyme, cyclo-oxygenase 2, resulting in reduced levels of the obligatory prostaglandin mediators of the febrile response in the brain. There is also a reduction in the sensitivity of the brain to the pyrogenic action of prostaglandins, which does not appear to be due to a change in the levels of hypothalamic EP3 prostaglandin receptors. The suppression of fever at term may be important for the health of the neonate because fever in pregnant mothers may be harmful to the late-term foetus and neonate.
Collapse
Affiliation(s)
- A Mouihate
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, Institutes of Infection, Immunity and Inflammation and Maternal and Child Health, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
19
|
Brunton PJ, Russell JA. The expectant brain: adapting for motherhood. Nat Rev Neurosci 2008; 9:11-25. [PMID: 18073776 DOI: 10.1038/nrn2280] [Citation(s) in RCA: 275] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A successful pregnancy requires multiple adaptations of the mother's physiology to optimize fetal growth and development, to protect the fetus from adverse programming, to provide impetus for timely parturition and to ensure that adequate maternal care is provided after parturition. Many of these adaptations are organized by the mother's brain, predominantly through changes in neuroendocrine systems, and these changes are primarily driven by the hormones of pregnancy. By contrast, adaptations in the mother's brain during lactation are maintained by external stimuli from the young. The changes in pregnancy are not necessarily innocuous: they may predispose the mother to post-partum mood disorders.
Collapse
Affiliation(s)
- Paula J Brunton
- Laboratory of Neuroendocrinology, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, Scotland, UK
| | | |
Collapse
|
20
|
Kvochina L, Hasser EM, Heesch CM. Pregnancy increases baroreflex-independent GABAergic inhibition of the RVLM in rats. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2295-305. [PMID: 17898121 PMCID: PMC2841061 DOI: 10.1152/ajpregu.00365.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During baroreceptor unloading, sympathoexcitation is attenuated in near-term pregnant compared with nonpregnant rats. Alterations in balance among different excitatory and inhibitory inputs within central autonomic pathways likely contribute to changes in regulation of sympathetic outflow in pregnancy. Both baroreflex-dependent and baroreflex-independent GABAergic inputs inhibit sympathoexcitatory neurons within rostral ventrolateral medulla (RVLM). The present experiments tested the hypothesis that influence of baroreflex-independent GABAergic inhibition of RVLM is greater in pregnant compared with nonpregnant rats. Afferent baroreceptor inputs were eliminated by bilateral sinoaortic denervation in inactin-anesthetized rats. In pregnant compared with nonpregnant rats, baseline mean arterial pressure (MAP) was lower (pregnant = 75 +/- 6 mmHg, nonpregnant = 115 +/- 7 mmHg) and heart rate was higher (pregnant = 381 +/- 10 beats/min, nonpregnant = 308 +/- 10 beats/min). Pressor and sympathoexcitatory [renal sympathetic nerve activity, (RSNA)] responses due to bilateral GABA(A) receptor blockade (bicuculline, 4 mM, 100 nl) of the RVLM were greater in pregnant rats (delta MAP: pregnant = 101 +/- 4 mmHg, nonpregnant = 80 +/- 6 mmHg; delta RSNA: pregnant = 182 +/- 23% control, nonpregnant = 133 +/- 10% control). Unexpected transient sympathoexcitatory effects of angiotensin AT(1) receptor blockade in the RVLM were greater in pregnant rats. Although excitatory responses to bicuculline were attenuated by prior RVLM AT1 receptor blockade in both groups, pressor responses to disinhibition of the RVLM remained augmented in pregnant rats. Increased influence of baroreflex-independent GABAergic inhibition in RVLM could contribute to suppressed sympathoexcitation during withdrawal of arterial baroreceptor input in pregnant animals.
Collapse
Affiliation(s)
- Lyudmyla Kvochina
- Department of Biomedical Sciences, Univ. of Missouri, 134 Research Park, Columbia, MO 65211, USA
| | | | | |
Collapse
|
21
|
Brown CH, Brunton PJ, Russell JA. Rapid estradiol-17beta modulation of opioid actions on the electrical and secretory activity of rat oxytocin neurons in vivo. Neurochem Res 2007; 33:614-23. [PMID: 17960480 DOI: 10.1007/s11064-007-9506-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2007] [Indexed: 12/14/2022]
Abstract
During pregnancy, emergence of endogenous opioid inhibition of oxytocin neurons is revealed by increased oxytocin secretion after administration of the opioid receptor antagonist, naloxone. Here we show that prolonged estradiol-17beta and progesterone treatment (mimicking pregnancy levels) potentiates naloxone-induced oxytocin secretion in urethane-anesthetized virgin female rats. We further show that estradiol-17beta alone rapidly modifies opioid interactions with oxytocin neurons, by recording their firing rate in anesthetized rats sensitized to naloxone by morphine dependence. Naloxone-induced morphine withdrawal strongly increased the firing rate of oxytocin neurons in morphine dependent rats. Estradiol-17beta did not alter basal oxytocin neuron firing rate over 30 min, but amplified naloxone-induced increases in firing rate. Firing pattern analysis indicated that acute estradiol-17beta increased oxytocin secretion in dependent rats by increasing action potential clustering without an overall increase in firing rate. Hence, rapid estradiol-17beta actions might underpin enhanced oxytocin neuron responses to naloxone in pregnancy.
Collapse
Affiliation(s)
- Colin H Brown
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, 9054, New Zealand.
| | | | | |
Collapse
|
22
|
Douglas AJ, Johnstone LE, Leng G. Neuroendocrine mechanisms of change in food intake during pregnancy: a potential role for brain oxytocin. Physiol Behav 2007; 91:352-65. [PMID: 17512024 DOI: 10.1016/j.physbeh.2007.04.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During pregnancy body weight, and particularly adiposity, increase, due to hyperphagia rather than decreased energy metabolism. These physiological adaptations provide the growing fetus(es) with nutrition and prepare the mother for the metabolically-demanding lactation period following birth. Mechanisms underlying the hyperphagia are still poorly understood. Although the peripheral signals that drive appetite and satiety centers of the brain are increased in pregnancy, the brain may become insensitive to their effects. For example, leptin secretion increases but hypothalamic resistance to leptin actions develops. However, several adaptations in hypothalamic neuroendocrine systems may converge to increase ingestive behavior. Oxytocin is one of the anorectic hypothalamic neuropeptides. Oxytocin neurons, both centrally-projecting parvocellular oxytocin neurons and central dendritic release of oxytocin from magnocellular neurons, may play a key role in regulating energy intake. During feeding in non-pregnant rats, magnocellular oxytocin neurons, especially those in the supraoptic nucleus, become strongly activated indicating their imminent role in meal termination. However, in mid-pregnancy the excitability of these neurons is reduced, central dendritic oxytocin release is inhibited and patterns of oxytocin receptor binding in the brain alter. Our recent data suggest that lack of central oxytocin action may partly contribute to maternal hyperphagia. However, although opioid inhibition is a major factor in oxytocin neuron restraint during pregnancy and opioids enhance food intake, an increase in opioid orexigenic actions were not observed. While changes in several central input pathways to oxytocin neurons are likely to be involved, the high level of progesterone secretion during pregnancy is probably the ultimate trigger for the adaptations.
Collapse
Affiliation(s)
- Alison J Douglas
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
23
|
Eva C, Serra M, Mele P, Panzica G, Oberto A. Physiology and gene regulation of the brain NPY Y1 receptor. Front Neuroendocrinol 2006; 27:308-39. [PMID: 16989896 DOI: 10.1016/j.yfrne.2006.07.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 07/18/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Neuropeptide Y (NPY) is one of the most prominent and abundant neuropeptides in the mammalian brain where it interacts with a family of G-protein coupled receptors, including the Y(1) receptor subtype (Y(1)R). NPY-Y(1)R signalling plays a prominent role in the regulation of several behavioural and physiological functions including feeding behaviour and energy balance, sexual hormone secretion, stress response, emotional behaviour, neuronal excitability and ethanol drinking. Y(1)R expression is regulated by neuronal activity and peripheral hormones. The Y(1)R gene has been isolated from rodents and humans and it contains multiple regulatory elements that may participate in the regulation of its expression. Y(1)R expression in the hypothalamus is modulated by changes in energetic balance induced by a wide variety of conditions (fasting, pregnancy, hyperglycaemic challenge, hypophagia, diet induced obesity). Estrogens up-regulate responsiveness to NPY to stimulate preovulatory GnRH and gonadotropin surges by increasing Y(1)R gene expression both in the hypothalamus and the pituitary. Y(1)R expression is modulated by different kinds of brain insults, such as stress and seizure activity, and alteration in its expression may contribute to antidepressant action. Chronic modulation of GABA(A) receptor function by benzodiazepines or neuroactive steroids also affects Y(1)R expression in the amygdala, suggesting that a functional interaction between the GABA(A) receptor and Y(1)R mediated signalling may contribute to the regulation of emotional behaviour. In this paper, we review the state of the art concerning Y(1)R function and gene expression, including our personal contribution to many of the subjects mentioned above.
Collapse
Affiliation(s)
- Carola Eva
- Sezione di Farmacologia, Dipartimento di Anatomia, Farmacologia e Medicina Legale, Università di Torino, Italy; Centro Rita Levi Montalcini, Università di Torino, Italy.
| | | | | | | | | |
Collapse
|