1
|
Kanigowski D, Urban-Ciecko J. Conditioning and pseudoconditioning differently change intrinsic excitability of inhibitory interneurons in the neocortex. Cereb Cortex 2024; 34:bhae109. [PMID: 38572735 PMCID: PMC10993172 DOI: 10.1093/cercor/bhae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Many studies indicate a broad role of various classes of GABAergic interneurons in the processes related to learning. However, little is known about how the learning process affects intrinsic excitability of specific classes of interneurons in the neocortex. To determine this, we employed a simple model of conditional learning in mice where vibrissae stimulation was used as a conditioned stimulus and a tail shock as an unconditioned one. In vitro whole-cell patch-clamp recordings showed an increase in intrinsic excitability of low-threshold spiking somatostatin-expressing interneurons (SST-INs) in layer 4 (L4) of the somatosensory (barrel) cortex after the conditioning paradigm. In contrast, pseudoconditioning reduced intrinsic excitability of SST-LTS, parvalbumin-expressing interneurons (PV-INs), and vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) with accommodating pattern in L4 of the barrel cortex. In general, increased intrinsic excitability was accompanied by narrowing of action potentials (APs), whereas decreased intrinsic excitability coincided with AP broadening. Altogether, these results show that both conditioning and pseudoconditioning lead to plastic changes in intrinsic excitability of GABAergic interneurons in a cell-specific manner. In this way, changes in intrinsic excitability can be perceived as a common mechanism of learning-induced plasticity in the GABAergic system.
Collapse
Affiliation(s)
- Dominik Kanigowski
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Joanna Urban-Ciecko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
2
|
Γ-Aminobutyric acid in adult brain: an update. Behav Brain Res 2019; 376:112224. [DOI: 10.1016/j.bbr.2019.112224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/21/2023]
|
3
|
Siucinska E, Brutkowski W, Bernas T. CB1 Cannabinoid Receptor Expression in the Barrel Field Region Is Associated with Mouse Learning. ACS Chem Neurosci 2018. [PMID: 29537813 DOI: 10.1021/acschemneuro.7b00500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We found previously that fear conditioning by combined stimulation of a row B facial vibrissae (conditioned stimulus, CS) with a tail shock (unconditioned stimulus, UCS) leads to expansion of the cortical representation of the "trained" row, labeled with 2-deoxyglucose (2DG), in the layer IIIb/IV of the adult mouse the primary somatosensory cortex (S1) 24 h later. We have observed that these learning-dependent plastic changes are manifested by increased expression of somatostatin, cholecystokinin (SST+, CCK+) but not parvalbumin (PV+) immunopositive interneurons We have expanded this research and quantified a numerical value of CB1-expressing and PV-expressing GABAergic axon terminals (CB1+ and PV+ immunopositive puncta) that innervate different segments of postsynaptic cells in the barrel hollows of S1 cortex. We used 3D microscopy to identify the CB+ and PV+ puncta in the barrel cortex "trained" and the control hemispheres CS+UCS group and in controls: Pseudoconditioned, CS-only, UCS-only, and naive animals. We have identified that (i) the association between whisker-shock "trained" barrel B hollows and CB1+, but not PV+ puncta expression remained significant after Bonferroni correction, (ii) CS+UCS has had a significant increasing effect on expression of CB1+ but not PV+ puncta in barrel cortex "trained" hemisphere, and (iii) the pseudoconditioning had a significant decreasing effect on expression of CB1+, but not on PV+ puncta in barrel cortex, both trained and untrained hemispheres. It is correlated to disturbing behaviors. The results suggest that CB1+ puncta regulation is specifically linked with mechanisms leading to learning-dependent plasticity in S1 cortex.
Collapse
Affiliation(s)
- Ewa Siucinska
- Laboratory of Neuroplasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Wojciech Brutkowski
- Laboratory of Imaging Tissue Structure and Function Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Tytus Bernas
- Laboratory of Imaging Tissue Structure and Function Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| |
Collapse
|
4
|
Neurochemical correlates of functional plasticity in the mature cortex of the brain of rodents. Behav Brain Res 2017; 331:102-114. [DOI: 10.1016/j.bbr.2017.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 01/01/2023]
|
5
|
Liguz-Lecznar M, Urban-Ciecko J, Kossut M. Somatostatin and Somatostatin-Containing Neurons in Shaping Neuronal Activity and Plasticity. Front Neural Circuits 2016; 10:48. [PMID: 27445703 PMCID: PMC4927943 DOI: 10.3389/fncir.2016.00048] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/20/2016] [Indexed: 01/27/2023] Open
Abstract
Since its discovery over four decades ago, somatostatin (SOM) receives growing scientific and clinical interest. Being localized in the nervous system in a subset of interneurons somatostatin acts as a neurotransmitter or neuromodulator and its role in the fine-tuning of neuronal activity and involvement in synaptic plasticity and memory formation are widely recognized in the recent literature. Combining transgenic animals with electrophysiological, anatomical and molecular methods allowed to characterize several subpopulations of somatostatin-containing interneurons possessing specific anatomical and physiological features engaged in controlling the output of cortical excitatory neurons. Special characteristic and connectivity of somatostatin-containing neurons set them up as significant players in shaping activity and plasticity of the nervous system. However, somatostatin is not just a marker of particular interneuronal subpopulation. Somatostatin itself acts pre- and postsynaptically, modulating excitability and neuronal responses. In the present review, we combine the knowledge regarding somatostatin and somatostatin-containing interneurons, trying to incorporate it into the current view concerning the role of the somatostatinergic system in cortical plasticity.
Collapse
Affiliation(s)
- Monika Liguz-Lecznar
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology Warsaw, Poland
| | - Joanna Urban-Ciecko
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental BiologyWarsaw, Poland; Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon UniversityPittsburgh, PA, USA
| | - Malgorzata Kossut
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental BiologyWarsaw, Poland; Department of Psychology, University of Social Sciences and Humanities (SWPS)Warsaw, Poland
| |
Collapse
|
6
|
Siucinska E, Hamed A, Jasinska M. Increases in the numerical density of GAT-1 positive puncta in the barrel cortex of adult mice after fear conditioning. PLoS One 2014; 9:e110493. [PMID: 25333489 PMCID: PMC4204871 DOI: 10.1371/journal.pone.0110493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/19/2014] [Indexed: 11/19/2022] Open
Abstract
Three days of fear conditioning that combines tactile stimulation of a row of facial vibrissae (conditioned stimulus, CS) with a tail shock (unconditioned stimulus, UCS) expands the representation of “trained” vibrissae, which can be demonstrated by labeling with 2-deoxyglucose in layer IV of the barrel cortex. We have also shown that functional reorganization of the primary somatosensory cortex (S1) increases GABAergic markers in the hollows of “trained” barrels of the adult mouse. This study investigated how whisker-shock conditioning (CS+UCS) affected the expression of puncta of a high-affinity GABA plasma membrane transporter GAT-1 in the barrel cortex of mice 24 h after associative learning paradigm. We found that whisker-shock conditioning (CS+UCS) led to increase expression of neuronal and astroglial GAT-1 puncta in the “trained” row compared to controls: Pseudoconditioned, CS-only, UCS-only and Naïve animals. These findings suggest that fear conditioning specifically induces activation of systems regulating cellular levels of the inhibitory neurotransmitter GABA.
Collapse
Affiliation(s)
- Ewa Siucinska
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- * E-mail:
| | - Adam Hamed
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Malgorzata Jasinska
- Department of Histology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
7
|
Cybulska-Klosowicz A, Posluszny A, Nowak K, Siucinska E, Kossut M, Liguz-Lecznar M. Interneurons containing somatostatin are affected by learning-induced cortical plasticity. Neuroscience 2013; 254:18-25. [PMID: 24055404 DOI: 10.1016/j.neuroscience.2013.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/15/2013] [Accepted: 09/09/2013] [Indexed: 01/21/2023]
Abstract
The maintenance of neural circuit stability is a dynamic process that requires the plasticity of many cellular and synaptic components. By changing the excitatory/inhibitory balance, inhibitory GABAergic plasticity can regulate excitability, and contribute to neural circuit function and refinement in learning and memory. Increased inhibitory GABAergic neurotransmission has been shown in brain structures involved in the learning process. Previously, we showed that classical conditioning in which tactile stimulation of one row of vibrissae (conditioned stimulus, CS) was paired with a tail shock (unconditioned stimulus, UCS) in adult mice results in the increased density of GABAergic interneurons and increased expression of glutamic acid decarboxylase (GAD)-67 in barrels of the "trained" row cortical representation. In inhibitory neurons of the rat cortex GAD co-localizes with several proteins and peptides. We found previously that the density of the parvalbumin (GAD+/Prv+)-containing subpopulation is not changed after conditioning. In the present study, we examined GABAergic somatostatin (Som)-, calbindin (CB)- and calretinin (CR)-positive interneurons in the cortical representation of "trained" vibrissae after training. Cells showing double immunostaining for GAD/Som, GAD/CR and GAD/CB were counted in the barrels representing vibrissae activated during the training and in control, untouched rows. We found a substantial increase of GAD/Som-containing cells in the trained row representation. No changes in the density of GAD/CR or GAD/CB neurons were observed. These results suggest that Som-containing interneurons are involved in learning-induced changes in the inhibitory cortical network.
Collapse
Affiliation(s)
- A Cybulska-Klosowicz
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
8
|
Bekisz M, Garkun Y, Wabno J, Hess G, Wrobel A, Kossut M. Increased excitability of cortical neurons induced by associative learning: an ex vivo study. Eur J Neurosci 2010; 32:1715-25. [PMID: 20964731 DOI: 10.1111/j.1460-9568.2010.07453.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In adult mice, classical conditioning in which whisker stimulation is paired with an electric shock to the tail results in a decrease in the frequency of head movements, induces expansion of the cortical representation of stimulated vibrissae and enhances inhibitory synaptic interactions within the 'trained' barrels. We investigated whether such a simple associative learning paradigm also induced changes in neuronal excitability. Using whole-cell recordings from ex vivo slices of the barrel cortex we found that layer IV excitatory cells located in the cortical representation of the 'trained' row of vibrissae had a higher frequency of spikes recorded at threshold potential than neurons from the 'untrained' row and than cells from control animals. Additionally, excitatory cells within the 'trained' barrels were characterized by increased gain of the input-output function, lower amplitudes of fast after-hyperpolarization and decreased effect of blocking of BK channels by iberiotoxin. These findings provide new insight into the possible mechanism for enhanced intrinsic excitability of layer IV excitatory neurons. In contrast, the fast spiking inhibitory cells recorded in the same barrels did not change their intrinsic excitability after the conditioning procedure. The increased excitability of excitatory neurons within the 'trained' barrels may represent the counterpart of homeostatic plasticity, which parallels enhanced synaptic inhibition described previously. Together, the two mechanisms would contribute to increase the input selectivity within the conditioned cortical network.
Collapse
Affiliation(s)
- Marek Bekisz
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
9
|
Mix A, Benali A, Eysel UT, Funke K. Continuous and intermittent transcranial magnetic theta burst stimulation modify tactile learning performance and cortical protein expression in the rat differently. Eur J Neurosci 2010; 32:1575-86. [PMID: 20950358 DOI: 10.1111/j.1460-9568.2010.07425.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) can modulate cortical excitability in a stimulus-frequency-dependent manner. Two kinds of theta burst stimulation (TBS) [intermittent TBS (iTBS) and continuous TBS (cTBS)] modulate human cortical excitability differently, with iTBS increasing it and cTBS decreasing it. In rats, we recently showed that this is accompanied by changes in the cortical expression of proteins related to the activity of inhibitory neurons. Expression levels of the calcium-binding protein parvalbumin (PV) and of the 67-kDa isoform of glutamic acid decarboxylase (GAD67) were strongly reduced following iTBS, but not cTBS, whereas both increased expression of the 65-kDa isoform of glutamic acid decarboxylase. In the present study, to investigate possible functional consequences, we applied iTBS and cTBS to rats learning a tactile discrimination task. Conscious rats received either verum or sham rTMS prior to the task. Finally, to investigate how rTMS and learning effects interact, protein expression was determined for cortical areas directly involved in the task and for those either not, or indirectly, involved. We found that iTBS, but not cTBS, improved learning and strongly reduced cortical PV and GAD67 expression. However, the combination of learning and iTBS prevented this effect in those cortical areas involved in the task, but not in unrelated areas. We conclude that the improved learning found following iTBS is a result of the interaction of two effects, possibly in a homeostatic manner: a general weakening of inhibition mediated by the fast-spiking interneurons, and re-established activity in those neurons specifically involved in the learning task, leading to enhanced contrast between learning-induced and background activity.
Collapse
Affiliation(s)
- Annika Mix
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
10
|
Urban-Ciecko J, Kossut M, Mozrzymas JW. Sensory learning differentially affects GABAergic tonic currents in excitatory neurons and fast spiking interneurons in layer 4 of mouse barrel cortex. J Neurophysiol 2010; 104:746-54. [PMID: 20573973 DOI: 10.1152/jn.00988.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pairing tactile stimulation of whiskers with a tail shock is known to result in expansion of cortical representation of stimulated vibrissae and in the increase in synaptic GABAergic transmission. However, the impact of such sensory learning in classical conditioning paradigm on GABAergic tonic currents has not been addressed. To this end, we performed whole cell patch-clamp slice recordings of tonic currents from neurons (excitatory regular spiking, regular spiking nonpyramidal, and fast spiking interneurons) of layer 4 of the barrel cortex from naive and trained mice. Interestingly, endogenous tonic GABAergic currents measured from the excitatory neurons in the cortical representation of "trained" vibrissae were larger than in the "naïve" or pseudoconditioned ones. On the contrary, sensory learning markedly reduced tonic currents in the fast spiking interneurons but not in regular spiking nonpyramidal neurons. Changes of tonic currents were accompanied by changes in the input resistances-decrease in regular spiking and increase in fast spiking neurons, respectively. Applications of nipecotic acid, a GABA uptake blocker, enhanced the tonic currents, but the impact of the sensory learning remained qualitatively the same as in the case of the tonic currents. Similar to endogenous tonic currents, sensory learning enhanced currents induced by THIP (superagonist for delta subunit-containing GABA(A) receptors) in regular spiking neurons, whereas the opposite was observed for the fast spiking interneurons. In conclusion, our data show that the sensory learning strongly affects the GABAergic tonic currents in a cell-specific manner and suggest that the underlying mechanism involves regulation of expression of delta subunit-containing GABA(A) receptors.
Collapse
Affiliation(s)
- Joanna Urban-Ciecko
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Wroclaw, Poland.
| | | | | |
Collapse
|
11
|
Abstract
The structure of neurons changes during development and in response to injury or alteration in sensory experience. Changes occur in the number, shape, and dimensions of dendritic spines together with their synapses. However, precise data on these changes in response to learning are sparse. Here, we show using quantitative transmission electron microscopy that a simple form of learning involving mystacial vibrissae results in approximately 70% increase in the density of inhibitory synapses on spines of neurons located in layer IV barrels that represent the stimulated vibrissae. The spines contain one asymmetrical (excitatory) and one symmetrical (inhibitory) synapse (double-synapse spines), and their density increases threefold as a result of learning with no apparent change in the density of asymmetrical synapses. This effect seems to be specific for learning because pseudoconditioning (in which the conditioned and unconditioned stimuli are delivered at random) does not lead to the enhancement of symmetrical synapses but instead results in an upregulation of asymmetrical synapses on spines. Symmetrical synapses of cells located in barrels receiving the conditioned stimulus also show a greater concentration of GABA in their presynaptic terminals. These results indicate that the immediate effect of classical conditioning in the "conditioned" barrels is rapid, pronounced, and inhibitory.
Collapse
|
12
|
Liguz-Lecznar M, Waleszczyk WJ, Zakrzewska R, Skangiel-Kramska J, Kossut M. Associative pairing involving monocular stimulation selectively mobilizes a subclass of GABAergic interneurons in the mouse visual cortex. J Comp Neurol 2009; 516:482-92. [DOI: 10.1002/cne.22129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Tokarski K, Urban-Ciecko J, Kossut M, Hess G. Sensory learning-induced enhancement of inhibitory synaptic transmission in the barrel cortex of the mouse. Eur J Neurosci 2007; 26:134-41. [PMID: 17573922 DOI: 10.1111/j.1460-9568.2007.05629.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In adult mice, repetitive pairing of stimulation of mystacial vibrissae with an electrical shock to the tail induces expansion of the cortical representation of stimulated vibrissae accompanied by elevation of the GABAergic markers. Here, we show that this associative learning paradigm results in a selective increase in the frequency of spontaneous inhibitory postsynaptic currents in layer IV excitatory neurons located within the barrel representing stimulated vibrissae, evident 24 h after the end of training. The mean amplitude of spontaneous inhibitory postsynaptic potentials recorded from excitatory neurons was unchanged. Recordings from layer IV excitatory and fast spiking neurons showed that the training induced changes neither in the mean frequency nor it the mean amplitude of spontaneous excitatory postsynaptic currents. On the other hand, the mean amplitude of field potentials evoked by the stimulation of layer VI and recorded in layer IV was significantly reduced. These data indicate that aversive training results in a selective and long-lasting enhancement of GABAergic transmission within the cortical representation of stimulated vibrissae, which may result in a decrease in layer VI-evoked field responses.
Collapse
Affiliation(s)
- Krzysztof Tokarski
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | | | | | | |
Collapse
|
14
|
Teter B. Life-span influences of apoE4 on CNS function. Neurobiol Aging 2007; 28:693-703; discussion 704-6. [PMID: 17045362 DOI: 10.1016/j.neurobiolaging.2006.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 06/22/2006] [Indexed: 11/20/2022]
Affiliation(s)
- Bruce Teter
- Department of Medicine SFVP, University of California, Los Angeles and Veteran's Administration-GLAHS, Sepulveda VA Medical Center, mc 151, 16111 Plummer St., Sepulveda, CA 91343, United States.
| |
Collapse
|
15
|
Siucinska E. GAD67-positive puncta: contributors to learning-dependent plasticity in the barrel cortex of adult mice. Brain Res 2006; 1106:52-62. [PMID: 16828715 DOI: 10.1016/j.brainres.2006.05.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 05/10/2006] [Accepted: 05/19/2006] [Indexed: 11/25/2022]
Abstract
We have previously shown that a classical aversive conditioning paradigm involving stimulation of a row of facial vibrissae (whiskers) in the mouse produced expansion of the cortical representation of the activated vibrissae ("trained row"). This was demonstrated by labeling with 2-deoxyglucose (2DG) in layer IV of the barrel cortex. We have also shown that functional reorganization of the S1 cortex is accompanied by increases in the density of small GABAergic cells, and in GAD67 mRNA in the hollows of barrels representing the "trained row". The aim of this study was to determine whether GAD67-positive puncta (boutons) are affected by learning. Unbiased optical disector counting was applied to sections from the mouse barrel cortex that had been immunostained using a polyclonal antibody against GAD67. Quantification of the numerical density of GAD67-positive boutons was performed for four groups of mice: those that had been given aversive conditioning, pseudoconditioned mice with random application of the unconditioned stimulus, mice that had received only whisker stimulation, and naive animals. This study is the first to demonstrate that learning-dependent modification of mature somatosensory cortex is associated with a 50% increase in GAD67-positive boutons in the hollows of "trained" barrels compared with those of control barrels. Sensory learning seems to mobilize the activity of the inhibitory transmission system in the cortical region where plastic changes were previously detected by 2DG labeling.
Collapse
Affiliation(s)
- Ewa Siucinska
- Dept. of Molecular and Cellular Neurobiology, Nencki Institute, 3 Pasteur st., 02-093 Warsaw, Poland.
| |
Collapse
|