1
|
Yu X, Wang Y. Peripheral Fragile X messenger ribonucleoprotein is required for the timely closure of a critical period for neuronal susceptibility in the ventral cochlear nucleus. Front Cell Neurosci 2023; 17:1186630. [PMID: 37305436 PMCID: PMC10248243 DOI: 10.3389/fncel.2023.1186630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Alterations in neuronal plasticity and critical periods are common across neurodevelopmental diseases, including Fragile X syndrome (FXS), the leading single-gene cause of autism. Characterized with sensory dysfunction, FXS is the result of gene silencing of Fragile X messenger ribonucleoprotein 1 (FMR1) and loss of its product, Fragile X messenger ribonucleoprotein (FMRP). The mechanisms underlying altered critical period and sensory dysfunction in FXS are obscure. Here, we performed genetic and surgical deprivation of peripheral auditory inputs in wildtype and Fmr1 knockout (KO) mice across ages and investigated the effects of global FMRP loss on deafferentation-induced neuronal changes in the ventral cochlear nucleus (VCN) and auditory brainstem responses. The degree of neuronal cell loss during the critical period was unchanged in Fmr1 KO mice. However, the closure of the critical period was delayed. Importantly, this delay was temporally coincidental with reduced hearing sensitivity, implying an association with sensory inputs. Functional analyses further identified early-onset and long-lasting alterations in signal transmission from the spiral ganglion to the VCN, suggesting a peripheral site of FMRP action. Finally, we generated conditional Fmr1 KO (cKO) mice with selective deletion of FMRP in spiral ganglion but not VCN neurons. cKO mice recapitulated the delay in the VCN critical period closure in Fmr1 KO mice, confirming an involvement of cochlear FMRP in shaping the temporal features of neuronal critical periods in the brain. Together, these results identify a novel peripheral mechanism of neurodevelopmental pathogenesis.
Collapse
Affiliation(s)
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
2
|
Ge N, Kong L, Zhang AH, Sun Y, Zhao MQ, Zhang B, Xu L, Ke X, Sun H, Wang XJ. Identification of key lipid metabolites during metabolic dysregulation in the diabetic retinopathy disease mouse model and efficacy of Keluoxin capsule using an UHPLC-MS-based non-targeted lipidomics approach. RSC Adv 2021; 11:5491-5505. [PMID: 35423075 PMCID: PMC8694764 DOI: 10.1039/d0ra00343c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
Diabetic retinopathy (DR) is an important complication of diabetes, and is currently the main cause of blindness among young adults in the world. Previous studies have shown that Keluoxin (KLX) capsules have a significant effect on DR in C57BL/KsJ/db-/- mice (db/db mice), however the unclear mechanism limits its further clinical application and actual value. Further research is urgently needed for the treatment of DR disease. Discovery of key lipid biomarkers and metabolic pathways can reveal and explore the molecular mechanisms related to DR development and discover the effect of Keluoxin (KLX) capsule against DR in db/db mice. Lipidomics has been used for characterizing the pathological conditions via identification of key lipid metabolites and the metabolic pathway. In this study, the high-throughput lipidomics using UHPLC-Q-TOF/MS combined with multivariate statistical analysis, querying multiple network databases and employing ingenuity pathway analysis (IPA) method for molecular target prediction. A total of 30 lipid biomarkers were identified and 7 metabolic pathways including arachidonic acid metabolism and steroid hormone biosynthesis were found. The preventive effect of KLX intervention can regulate 22 biomarkers such as LysoPA(16:0/0:0), prostaglandin D2, cortisol and γ-linolenic acid, etc. IPA platform has predicted that PI3K/MAPK pathway are closely related to DR development. It also showed that high-throughput lipidomics combined with multivariate statistical analysis could deep excavate of the biological significance of the big data, and can provide molecular targets information about the disease treatment.
Collapse
Affiliation(s)
- Nan Ge
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, MetabolomicsLaboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 Heilongjiang Province China +86-451-82110818 +86-451-82110818
| | - Ling Kong
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, MetabolomicsLaboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 Heilongjiang Province China +86-451-82110818 +86-451-82110818
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, MetabolomicsLaboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 Heilongjiang Province China +86-451-82110818 +86-451-82110818
| | - Ye Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, MetabolomicsLaboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 Heilongjiang Province China +86-451-82110818 +86-451-82110818
| | - Man-Qian Zhao
- Chengdu Kanghong Pharmaceutical Co. Ltd Tengfei Second Road No. 355, Shuangliu District Chengdu 610036 Sichuan Province China
| | - Bo Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, MetabolomicsLaboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 Heilongjiang Province China +86-451-82110818 +86-451-82110818
| | - Lei Xu
- Chengdu Kanghong Pharmaceutical Co. Ltd Tengfei Second Road No. 355, Shuangliu District Chengdu 610036 Sichuan Province China
| | - Xiao Ke
- Chengdu Kanghong Pharmaceutical Co. Ltd Tengfei Second Road No. 355, Shuangliu District Chengdu 610036 Sichuan Province China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, MetabolomicsLaboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 Heilongjiang Province China +86-451-82110818 +86-451-82110818
| | - Xi-Jun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, MetabolomicsLaboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 Heilongjiang Province China +86-451-82110818 +86-451-82110818
| |
Collapse
|
3
|
Kiyoyuki Y, Taniguchi W, Okubo M, Yamanaka H, Kobayashi K, Nishio N, Nakatsuka T, Noguchi K. Leukotriene enhances NMDA-induced inward currents in dorsal horn neurons of the rat spinal cord after peripheral nerve injury. Mol Pain 2015; 11:53. [PMID: 26353783 PMCID: PMC4563829 DOI: 10.1186/s12990-015-0059-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 08/31/2015] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND LTB4 is classified as a leukotriene (LT), a group of lipid mediators that are derived from arachidonic acid. It is recognized that leukotrienes are involved in the pathogenesis of many diseases, including peripheral inflammatory pain. However, little is known about the effects of leukotrienes on the spinal dorsal horn during neuropathic pain. Previously, we reported that there was increased expression of 5-lipoxygenase (5-LO) at spinal microglia, and the leukotriene B4 receptor 1 (BLT1), a high affinity receptor of LTB4, in spinal neurons in spared nerve injury (SNI) model rats. In the present study, we examined the effects of LTB4 on spinal dorsal horn neurons in both naïve and SNI model rats using patch-clamp methods. RESULTS Bath application of LTB4 did not change AMPA receptor-mediated spontaneous excitatory postsynaptic currents (sEPSCs) or membrane potentials. However, we found that LTB4 enhanced the amplitude of NMDA receptor-mediated sEPSCs and significantly increased exogenous NMDA-induced inward currents in SNI model rats. This increase of inward currents could be inhibited by a selective LTB4 antagonist, U75302, as well as a GDP-β-S, a G-protein inhibitor. These results indicate that both increased LTB4 from spinal microglia or increased BLT1 in spinal neurons after peripheral nerve injury can enhance the activity of NMDA receptors through intracellular G-proteins in spinal dorsal horn neurons. CONCLUSION Our findings showed that LTB4, which may originate from microglia, can activate BLT1 receptors which are expressed on the membrane of spinal dorsal horn neurons during neuropathic pain. This glia-neuron interaction induces the enhancement of NMDA currents through intracellular G-proteins. The enhancement of NMDA receptor sensitivity of dorsal horn neurons may lead to central sensitization, leading to mechanical pain hypersensitivity.
Collapse
Affiliation(s)
- Yasukuni Kiyoyuki
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan. .,Pain Research Center, Kansai University of Health Sciences, 2-11-1 Wakaba Kumatori-cho, Osaka, 590-0482, Japan.
| | - Wataru Taniguchi
- Department of Orthopedic Surgery, Wakayama Medical University, 811-1 Mimiidera, Wakayama, 641-8510, Japan.
| | - Masamichi Okubo
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hiroki Yamanaka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Kimiko Kobayashi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Naoko Nishio
- Department of Orthopedic Surgery, Wakayama Medical University, 811-1 Mimiidera, Wakayama, 641-8510, Japan.
| | - Terumasa Nakatsuka
- Pain Research Center, Kansai University of Health Sciences, 2-11-1 Wakaba Kumatori-cho, Osaka, 590-0482, Japan.
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
4
|
Asahara M, Ito N, Yokomizo T, Nakamura M, Shimizu T, Yamada Y. The absence of the leukotriene B4 receptor BLT1 attenuates peripheral inflammation and spinal nociceptive processing following intraplantar formalin injury. Mol Pain 2015; 11:11. [PMID: 25889478 PMCID: PMC4363055 DOI: 10.1186/s12990-015-0010-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 02/25/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Leukotriene B4 (LTB4) is a potent lipid mediator of inflammation, and its biological effects are mediated primarily through the high affinity LTB4 receptor BLT1. Although numerous studies have reported that LTB4-BLT1 signaling is involved in inflammatory diseases, the role of BLT1 signaling in pain remains undefined. To clarify the role of LTB4-BLT1 signaling in acute inflammatory pain induced by tissue injury, we performed pain behavioral analysis and assessment of local inflammation induced by peripheral formalin injections in BLT1 knockout mice. We examined the phosphorylation of cAMP response element-binding protein (CREB) in the spinal cord both in wild-type and BLT1 knockout mice because phosphorylation of CREB in spinal cord neurons is important for nociceptive sensitization following peripheral injury. We also examined the effect of a BLT1 antagonist on formalin-induced pain responses in mice. RESULTS BLT1 knockout mice exhibited markedly attenuated nociceptive responses induced by intraplantar formalin injections. Edema formation and neutrophil infiltration in the paw were significantly decreased in BLT1 knockout mice compared with wild-type mice. Phosphorylation of CREB in the spinal cord after the intraplantar formalin injection was decreased in BLT1 knockout mice. In addition, mice pretreated with a BLT1 antagonist showed reduced nociception and attenuated CREB phosphorylation in the spinal cord after the formalin injection. CONCLUSIONS Our data suggest that LTB4-BLT1 axis contributes not only to the peripheral inflammation but also to the neuronal activation in the spinal cord induced by intraplantar formalin injections. Thus, LTB4-BLT1 signaling is a potential target for therapeutic intervention of acute and persistent pain induced by tissue injury.
Collapse
Affiliation(s)
- Miho Asahara
- Department of Anesthesiology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Nobuko Ito
- Department of Anesthesiology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan.
| | - Motonao Nakamura
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan.
| | - Takao Shimizu
- Department of Lipid Signaling Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan. .,Department of Lipidomics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Yoshitsugu Yamada
- Department of Anesthesiology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Birnie M, Morrison R, Camara R, Strauss KI. Temporal changes of cytochrome P450 (Cyp) and eicosanoid-related gene expression in the rat brain after traumatic brain injury. BMC Genomics 2013; 14:303. [PMID: 23642095 PMCID: PMC3658912 DOI: 10.1186/1471-2164-14-303] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 04/16/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) induces arachidonic acid (ArA) release from cell membranes. ArA metabolites form a class of over 50 bioactive eicosanoids that can induce both adaptive and/or maladaptive brain responses. The dynamic metabolism of ArA to eicosanoids, and how they affect the injured brain, is poorly understood due to their diverse activities, trace levels, and short half-lives. The eicosanoids produced in the brain postinjury depend upon the enzymes present locally at any given time. Eicosanoids are synthesized by heme-containing enzymes, including cyclooxygenases, lipoxygenases, and arachidonate monoxygenases. The latter comprise a subset of the cytochrome P450 "Cyp" gene family that metabolize fatty acids, steroids, as well as endogenous and exogenous toxicants. However, for many of these genes neither baseline neuroanatomical nor injury-related temporal expression have been studied in the brain.In a rat model of parietal cortex TBI, Cyp and eicosanoid-related mRNA levels were determined at 6 h, 24 h, 3d, and 7d postinjury in parietal cortex and hippocampus, where dynamic changes in eicosanoids have been observed. Quantitative real-time polymerase chain reaction with low density arrays were used to assay 62 rat Cyps, 37 of which metabolize ArA or other unsaturated fatty acids; 16 eicosanoid-related enzymes that metabolize ArA or its metabolites; 8 eicosanoid receptors; 5 other inflammatory- and recovery-related genes, plus 2 mouse Cyps as negative controls and 3 highly expressed "housekeeping" genes. RESULTS Sixteen arachidonate monoxygenases, 17 eicosanoid-related genes, and 12 other Cyps were regulated in the brain postinjury (p < 0.05, Tukey HSD). Discrete tissue levels and distinct postinjury temporal patterns of gene expression were observed in hippocampus and parietal cortex. CONCLUSIONS The results suggest complex regulation of ArA and other lipid metabolism after TBI. Due to the temporal nature of brain injury-induced Cyp gene induction, manipulation of each gene (or its products) at a given time after TBI will be required to assess their contributions to secondary injury and/or recovery. Moreover, a better understanding of brain region localization and cell type-specific expression may be necessary to deduce the role of these eicosanoid-related genes in the healthy and injured brain.
Collapse
Affiliation(s)
- Matthew Birnie
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
| | - Ryan Morrison
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
| | - Ramatoulie Camara
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
| | - Kenneth I Strauss
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
- Present Address: Michigan State University College of Human Medicine, 333 Bostwick Ave NE, 49503 Grand Rapids, MI, USA
| |
Collapse
|
6
|
Takei S, Hasegawa-Ishii S, Uekawa A, Chiba Y, Umegaki H, Hosokawa M, Woodward DF, Watanabe K, Shimada A. Immunohistochemical demonstration of increased prostaglandin F₂α levels in the rat hippocampus following kainic acid-induced seizures. Neuroscience 2012; 218:295-304. [PMID: 22609937 DOI: 10.1016/j.neuroscience.2012.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/04/2012] [Accepted: 05/05/2012] [Indexed: 10/28/2022]
Abstract
Prostaglandin (PG) F(2α) is one of the major prostanoids biosynthesized by cyclooxygenases (COXs) from arachidonic acid. Although it has been reported that there is a selective surge in PGF(2α) production in the hippocampus during kainic acid (KA)-induced seizure activity, the precise intra-hippocampal distribution of PGF(2α) has not been elucidated due to the paucity of effective histological techniques for detecting PGs in tissues. We investigated the tissue distribution of PGF(2α) in the rat hippocampus 30 min after KA injection by developing fixation and immunohistological-staining methods. To detect PGF(2α) directly on histological sections, we used systemic perfusion fixation with water-soluble carbodiimide fixative, followed by immersion of the brains in Zamboni's fixative. We then performed immunofluorescence staining with anti-PGF(2α) antibody, with negative control experiments used to confirm the staining specificity. Definitive immunolabeling for PGF(2α) was evident most markedly in pyramidal cells of the hippocampal cornu Ammonis (CA) 3 sector and neurons of the hilus in KA-treated rats. Immunolabeling for PGF(2α) was also evident in granule cells of the dentate gyrus. Double immunfluorescence staining revealed that PGF(2α)-immunopositive neurons expressed cytosolic phospholipases A(2), COX-2, and FP receptor. These results suggest that the major source of PGF(2α) production immediately after KA injection was neurons of the hippocampal CA3 sector, hilus and dentate gyrus. These neurons exert PGF(2α)-mediated functions via FP receptors in an autocrine/paracrine manner and may play pathophysiological roles in the acute phase (30 min) of excitotoxicity.
Collapse
Affiliation(s)
- S Takei
- Division of Neuropathology, Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya-cho, Kasugai, Aichi 480-0392, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Noguchi K, Okubo M. Leukotrienes in Nociceptive Pathway and Neuropathic/Inflammatory Pain. Biol Pharm Bull 2011; 34:1163-9. [DOI: 10.1248/bpb.34.1163] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine
| | - Masamichi Okubo
- Department of Anatomy and Neuroscience, Hyogo College of Medicine
| |
Collapse
|
8
|
Yoshikawa K, Takei S, Hasegawa-Ishii S, Chiba Y, Furukawa A, Kawamura N, Hosokawa M, Woodward DF, Watanabe K, Shimada A. Preferential localization of prostamide/prostaglandin F synthase in myelin sheaths of the central nervous system. Brain Res 2010; 1367:22-32. [PMID: 20950588 DOI: 10.1016/j.brainres.2010.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 10/19/2022]
Abstract
Prostaglandin (PG) F(₂α) is a product of cyclooxygenase (COX)-catalyzed metabolism of arachidonic acid and exerts biological functions in various tissues. Prostaglandin ethanolamide (prostamide) F(₂α) is a COX-2-catalyzed metabolite of arachidonoyl ethanolamide (anandamide) that induces pharmacological actions in ocular tissues. Although PGF(₂α) is one of the most abundant prostaglandins in the brain, function of PGF(₂α) in the central nervous system (CNS) has not been extensively investigated. Recently identified prostamide/PGF synthase catalyzes the reductions of prostamide H₂ to prostamide F(₂α) and PGH₂ to PGF(₂α), chiefly in the CNS. We examined tissue distribution of the enzyme in the CNS by immunohistochemistry, double immunofluorescence, and immuno-electron microscopy. We confirmed histological findings by immunofluorescence analyses of brain cell cultures. Prostamide/PGF synthase was expressed preferentially in the white matter bundles of the entire CNS of adult mice with less marked expression in neuronal cell bodies. The enzyme was colocalized with myelin basic protein (MBP) in myelin sheaths but not in axons. At the ultrastructural level, the enzyme was localized to myelin sheaths. Expression of the enzyme increased between P9 and P14 during the postnatal development, presumably in accordance with myelinogenesis. Cultured oligodendrocytes at 7 days in vitro expressed the enzyme in cytoplasmic processes where the enzyme was colocalized with MBP. Immunoreactivity for COX-2 was detected in white matter and cultured oligodendrocytes. Relatively selective localization of prostamide/PGF synthase suggests that myelin sheaths of the CNS may serve as the sites for producing prostamide F(₂α) and/or PGF(₂α), which may contribute to the formation and maintenance of central myelin.
Collapse
Affiliation(s)
- Keisuke Yoshikawa
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya, Kasugai, Aichi 480-0892, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhao J, Quyyumi AA, Patel R, Zafari AM, Veledar E, Onufrak S, Shallenberger LH, Jones L, Vaccarino V. Sex-specific association of depression and a haplotype in leukotriene A4 hydrolase gene. Psychosom Med 2009; 71:691-6. [PMID: 19622707 PMCID: PMC3113512 DOI: 10.1097/psy.0b013e3181b05c57] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess whether genetic variants involved in inflammation play a role in the sex difference in depression. Depression is, in part, genetically determined and inflammation has been implicated. Women are twice as likely to develop depression as men. METHODS We examined the association, separately in men and women, between seven single nucleotide polymorphisms (SNPs) in the arachidonate 5-lipoxygenase-activating protein (ALOX5AP) gene and 12 SNPs in the leukotriene A4 hydrolase (LTA4H) gene and depression in 1368 white subjects (30.4% female) referred for cardiovascular evaluation. Depression was defined as a score of >or=10 in the Patient Health Questionnaire 9. Single marker analysis was assessed by the chi(2) test. Haplotype-specific associations were performed, using likelihood ratio tests. Empirical significance levels were determined by permutation tests. RESULTS Depressed individuals, comprising 14.5% of the total, were more likely to be female, current smokers, have a history of diabetes and myocardial infarction. None of the SNPs in the ALOX5AP gene, either singly or in combination, was associated with depression. The 12 SNPs in the LTA4H gene were not individually associated with depression. However, a six-SNP haplotype in LTA4H gene, named HapE, showed a significant protective effect on depression in women, but not in men, after correcting for cardiovascular effects. The interaction between HapE and sex on depression was statistically significant. CONCLUSION This study provides the first evidence for a sex-specific association of a novel haplotype in the LTA4H gene on depression. Although replication is needed, our study suggests that genetic variations may underlie sex differences in depression.
Collapse
Affiliation(s)
- Jinying Zhao
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Science Center, 801 NE 13th Street, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|