1
|
Tóth A, Traub M, Bencsik N, Détári L, Hajnik T, Dobolyi A. Sleep- and sleep deprivation-related changes of vertex auditory evoked potentials during the estrus cycle in female rats. Sci Rep 2024; 14:5784. [PMID: 38461157 PMCID: PMC10924932 DOI: 10.1038/s41598-024-56392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
The estrus cycle in female rodents has been shown to affect a variety of physiological functions. However, little is known about its presumably thorough effect on auditory processing during the sleep-wake cycle and sleep deprivation. Vertex auditory evoked potentials (vAEPs) were evoked by single click tone stimulation and recorded during different stages of the estrus cycle and sleep deprivation performed in metestrus and proestrus in female rats. vAEPs showed a strong sleep-dependency, with the largest amplitudes present during slow wave sleep while the smallest ones during wakefulness. Higher amplitudes and longer latencies were seen in the light phase during all vigilance stages. The largest amplitudes were found during proestrus (light phase) while the shortest latencies were seen during estrus (dark phase) compared to the 2nd day diestrus baseline. High-amplitude responses without latency changes were also seen during metestrus with increased homeostatic sleep drive. More intense and faster processing of auditory information during proestrus and estrus suggesting a more effective perception of relevant environmental cues presumably in preparation for sexual receptivity. A 4-h sleep deprivation resulted in more pronounced sleep recovery in metestrus compared to proestrus without difference in delta power replacement suggesting a better tolerance of sleep deprivation in proestrus. Sleep deprivation decreased neuronal excitability and responsiveness in a similar manner both during metestrus and proestrus, suggesting that the negative consequences of sleep deprivation on auditory processing may have a limited correlation with the estrus cycle stage.
Collapse
Affiliation(s)
- Attila Tóth
- In Vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
| | - Máté Traub
- In Vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Norbert Bencsik
- Cellular Neurobiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - László Détári
- In Vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Tünde Hajnik
- In Vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Arpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
2
|
Xue K, Chen J, Wei Y, Chen Y, Han S, Wang C, Zhang Y, Song X, Cheng J. Altered dynamic functional connectivity of auditory cortex and medial geniculate nucleus in first-episode, drug-naïve schizophrenia patients with and without auditory verbal hallucinations. Front Psychiatry 2022; 13:963634. [PMID: 36159925 PMCID: PMC9489854 DOI: 10.3389/fpsyt.2022.963634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND OBJECTIVE As a key feature of schizophrenia, auditory verbal hallucination (AVH) is causing concern. Altered dynamic functional connectivity (dFC) patterns involving in auditory related regions were rarely reported in schizophrenia patients with AVH. The goal of this research was to find out the dFC abnormalities of auditory related regions in first-episode, drug-naïve schizophrenia patients with and without AVH using resting state functional magnetic resonance imaging (rs-fMRI). METHODS A total of 107 schizophrenia patients with AVH, 85 schizophrenia patients without AVH (NAVH) underwent rs-fMRI examinations, and 104 healthy controls (HC) were matched. Seed-based dFC of the primary auditory cortex (Heschl's gyrus, HES), auditory association cortex (AAC, including Brodmann's areas 22 and 42), and medial geniculate nucleus (MGN) was conducted to build a whole-brain dFC diagram, then inter group comparison and correlation analysis were performed. RESULTS In comparison to the NAVH and HC groups, the AVH group showed increased dFC from left ACC to the right middle temporal gyrus and right middle occipital gyrus, decreased dFC from left HES to the left superior occipital gyrus, left cuneus gyrus, left precuneus gyrus, decreased dFC from right HES to the posterior cingulate gyrus, and decreased dFC from left MGN to the bilateral calcarine gyrus, bilateral cuneus gyrus, bilateral lingual gyrus. The Auditory Hallucination Rating Scale (AHRS) was significantly positively correlated with the dFC values of cluster 1 (bilateral calcarine gyrus, cuneus gyrus, lingual gyrus, superior occipital gyrus, precuneus gyrus, and posterior cingulate gyrus) using left AAC seed, cluster 2 (right middle temporal gyrus and right middle occipital gyrus) using left AAC seed, cluster 1 (bilateral calcarine gyrus, cuneus gyrus, lingual gyrus, superior occipital gyrus, precuneus gyrus and posterior cingulate gyrus) using right AAC seed and cluster 2 (posterior cingulate gyrus) using right HES seed in the AVH group. In both AVH and NAVH groups, a significantly negative correlation is also found between the dFC values of cluster 2 (posterior cingulate gyrus) using the right HES seed and the PANSS negative sub-scores. CONCLUSIONS The present findings demonstrate that schizophrenia patients with AVH showed multiple abnormal dFC regions using auditory related cortex and nucleus as seeds, particularly involving the occipital lobe, default mode network (DMN), and middle temporal lobe, implying that the different dFC patterns of auditory related areas could provide a neurological mechanism of AVH in schizophrenia.
Collapse
Affiliation(s)
- Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
The posterior auditory field is the chief generator of prediction error signals in the auditory cortex. Neuroimage 2021; 242:118446. [PMID: 34352393 DOI: 10.1016/j.neuroimage.2021.118446] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 01/13/2023] Open
Abstract
The auditory cortex (AC) encompasses distinct fields subserving partly different aspects of sound processing. One essential function of the AC is the detection of unpredicted sounds, as revealed by differential neural activity to predictable and unpredictable sounds. According to the predictive coding framework, this effect can be explained by repetition suppression and/or prediction error signaling. The present study investigates functional specialization of the rat AC fields in repetition suppression and prediction error by combining a tone frequency oddball paradigm (involving high-probable standard and low-probable deviant tones) with two different control sequences (many-standards and cascade). Tones in the control sequences were comparable to deviant events with respect to neural adaptation but were not violating a regularity. Therefore, a difference in the neural activity between deviant and control tones indicates a prediction error effect, whereas a difference between control and standard tones indicates a repetition suppression effect. Single-unit recordings revealed by far the largest prediction error effects for the posterior auditory field, while the primary auditory cortex, the anterior auditory field, the ventral auditory field, and the suprarhinal auditory field were dominated by repetition suppression effects. Statistically significant repetition suppression effects occurred in all AC fields, whereas prediction error effects were less robust in the primary auditory cortex and the anterior auditory field. Results indicate that the non-lemniscal, posterior auditory field is more engaged in context-dependent processing underlying deviance-detection than the other AC fields, which are more sensitive to stimulus-dependent effects underlying differential degrees of neural adaptation.
Collapse
|
4
|
Pereira AG, Farias M, Moita MA. Thalamic, cortical, and amygdala involvement in the processing of a natural sound cue of danger. PLoS Biol 2020; 18:e3000674. [PMID: 32396574 PMCID: PMC7217448 DOI: 10.1371/journal.pbio.3000674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/09/2020] [Indexed: 12/21/2022] Open
Abstract
Animals use auditory cues generated by defensive responses of others to detect impending danger. Here we identify a neural circuit in rats involved in the detection of one such auditory cue, the cessation of movement-evoked sound resulting from freezing. This circuit comprises the dorsal subnucleus of the medial geniculate body (MGD) and downstream areas, the ventral area of the auditory cortex (VA), and the lateral amygdala (LA). This study suggests a role for the auditory offset pathway in processing a natural sound cue of threat.
Collapse
Affiliation(s)
- Ana G. Pereira
- Champalimaud Neuroscience Program at the Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Matheus Farias
- Champalimaud Neuroscience Program at the Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Marta A. Moita
- Champalimaud Neuroscience Program at the Champalimaud Centre for the Unknown, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
5
|
Smith PH, Uhlrich DJ, Manning KA. Evaluation of medial division of the medial geniculate (MGM) and posterior intralaminar nucleus (PIN) inputs to the rat auditory cortex, amygdala, and striatum. J Comp Neurol 2019; 527:1478-1494. [PMID: 30689207 DOI: 10.1002/cne.24644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/18/2022]
Abstract
The medial division of the medial geniculate (MGM) and the posterior intralaminar nucleus (PIN) are association nuclei of the auditory thalamus. We made tracer injections in these nuclei to evaluate/compare their presynaptic terminal and postsynaptic target features in auditory cortex, amygdala and striatum, at the light and electron microscopic levels. Cortical labeling was concentrated in Layer 1 but in other layers distribution was location-dependent. In cortical areas designated dorsal, primary and ventral (AuD, Au1, AuV) terminals deep to Layer 1 were concentrated in infragranular layers and sparser in the supragranular and middle layers. In ectorhinal cortex (Ect), distributions below Layer 1 changed with concentrations in supragranular and middle layers. In temporal association cortex (TeA) terminal distributions below Layer 1 was intermediate between AuV/1/D and Ect. In amygdala and striatum, terminal concentrations were higher in striatum but not as dense as in cortical Layer 1. Ultrastructurally, presynaptic terminal size was similar in amygdala, striatum or cortex and in all cortical layers. Postsynaptically MGM/PIN terminals everywhere synapsed on spines or small distal dendrites but as a population the postsynaptic structures in cortex were larger than those in the striatum. In addition, primary cortical targets of terminals were larger in primary cortex than in area Ect. Thus, although postsynaptic size may play some role in changes in synaptic influence between areas it appears that terminal size is not a variable used for that purpose. In auditory cortex, cortical subdivision-dependent changes in the terminal distribution between cortical layers may also play a role.
Collapse
Affiliation(s)
- Philip H Smith
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Daniel J Uhlrich
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Karen A Manning
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
6
|
Kimura A, Imbe H. Robust Subthreshold Cross-modal Modulation of Auditory Response by Cutaneous Electrical Stimulation in First- and Higher-order Auditory Thalamic Nuclei. Neuroscience 2018; 372:161-180. [PMID: 29309880 DOI: 10.1016/j.neuroscience.2017.12.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/14/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
Conventional extracellular recording has revealed cross-modal alterations of auditory cell activities by cutaneous electrical stimulation of the hindpaw in first- and higher-order auditory thalamic nuclei (Donishi et al., 2011). Juxta-cellular recording and labeling techniques were used in the present study to examine the cross-modal alterations in detail, focusing on possible nucleus and/or cell type-related distinctions in modulation. Recordings were obtained from 80 cells of anesthetized rats. Cutaneous electrical stimulation, which did not elicit unit discharges, i.e., subthreshold effects, modulated early (onset) and/or late auditory responses of first- (64%) and higher-order nucleus cells (77%) with regard to response magnitude, latency and/or burst spiking. Attenuation predominated in the modulation of response magnitude and burst spiking, and delay predominated in the modulation of response time. Striking alterations of burst spiking took place in higher-order nucleus cells, which had the potential to exhibit higher propensities for burst spiking as compared to first-order nucleus cells. A subpopulation of first-order nucleus cells showing modulation in early response magnitude in the caudal domain of the nucleus had larger cell bodies and higher propensities for burst spiking as compared to cells showing no modulation. These findings suggest that somatosensory influence is incorporated into parallel channels in auditory thalamic nuclei to impose distinct impacts on cortical and subcortical sensory processing. Further, cutaneous electrical stimulation given after early auditory responses modulated late responses. Somatosensory influence is likely to affect ongoing auditory processing at any time without being coincident with sound onset in a narrow temporal window.
Collapse
Affiliation(s)
- Akihisa Kimura
- Department of Physiology, Wakayama Medical University, Wakayama Kimiidera 811-1, 641-8509, Japan.
| | - Hiroki Imbe
- Department of Physiology, Wakayama Medical University, Wakayama Kimiidera 811-1, 641-8509, Japan
| |
Collapse
|
7
|
Stehberg J, Dang PT, Frostig RD. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex. Front Neuroanat 2014; 8:93. [PMID: 25309339 PMCID: PMC4174042 DOI: 10.3389/fnana.2014.00093] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/23/2014] [Indexed: 11/23/2022] Open
Abstract
Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI) of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI) and primary visual (VI). It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA) and retrograde (CTb) tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging, and cortical parcellation are discussed.
Collapse
Affiliation(s)
- Jimmy Stehberg
- Department of Neurobiology and Behavior, University of California, Irvine Irvine, CA, USA ; Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Universidad Andres Bello Santiago, Chile
| | - Phat T Dang
- Department of Neurobiology and Behavior, University of California, Irvine Irvine, CA, USA
| | - Ron D Frostig
- Department of Neurobiology and Behavior, University of California, Irvine Irvine, CA, USA ; Department of Biomedical Engineering, University of California, Irvine Irvine, CA, USA ; The Center for the Neurobiology of Learning and Memory, University of California, Irvine Irvine, CA, USA
| |
Collapse
|
8
|
Saldeitis K, Happel MF, Ohl FW, Scheich H, Budinger E. Anatomy of the auditory thalamocortical system in the mongolian gerbil: Nuclear origins and cortical field-, layer-, and frequency-specificities. J Comp Neurol 2014; 522:2397-430. [DOI: 10.1002/cne.23540] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/03/2014] [Accepted: 01/10/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Katja Saldeitis
- Department of Auditory Learning & Speech; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
| | - Max F.K. Happel
- Department of Systems Physiology of Learning; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
- Institute of Biology, Otto-von-Guericke University; D-39120 Magdeburg Germany
| | - Frank W. Ohl
- Department of Systems Physiology of Learning; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
- Institute of Biology, Otto-von-Guericke University; D-39120 Magdeburg Germany
- Center for Behavioral Brain Sciences; Magdeburg Universitätsplatz 2, D-39106 Germany
| | - Henning Scheich
- Department of Auditory Learning & Speech; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
- Center for Behavioral Brain Sciences; Magdeburg Universitätsplatz 2, D-39106 Germany
| | - Eike Budinger
- Department of Auditory Learning & Speech; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
- Clinic of Neurology; Otto-von-Guericke-University Magdeburg; D-39120 Magdeburg Germany
- Center for Behavioral Brain Sciences; Magdeburg Universitätsplatz 2, D-39106 Germany
| |
Collapse
|
9
|
Antunes FM, Malmierca MS. An Overview of Stimulus-Specific Adaptation in the Auditory Thalamus. Brain Topogr 2013; 27:480-99. [DOI: 10.1007/s10548-013-0342-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/05/2013] [Indexed: 12/30/2022]
|
10
|
Storace DA, Higgins NC, Chikar JA, Oliver DL, Read HL. Gene expression identifies distinct ascending glutamatergic pathways to frequency-organized auditory cortex in the rat brain. J Neurosci 2012; 32:15759-68. [PMID: 23136415 PMCID: PMC3752138 DOI: 10.1523/jneurosci.1310-12.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/07/2012] [Accepted: 09/06/2012] [Indexed: 11/21/2022] Open
Abstract
A conserved feature of sound processing across species is the presence of multiple auditory cortical fields with topographically organized responses to sound frequency. Current organizational schemes propose that the ventral division of the medial geniculate body (MGBv) is a single functionally homogenous structure that provides the primary source of input to all neighboring frequency-organized cortical fields. These schemes fail to account for the contribution of MGBv to functional diversity between frequency-organized cortical fields. Here, we report response property differences for two auditory fields in the rat, and find they have nonoverlapping sources of thalamic input from the MGBv that are distinguished by the gene expression for type 1 vesicular glutamate transporter. These data challenge widely accepted organizational schemes and demonstrate a genetic plurality in the ascending glutamatergic pathways to frequency-organized auditory cortex.
Collapse
Affiliation(s)
- Douglas A. Storace
- Department of Psychology, Behavioral Neuroscience Division, University of Connecticut, Storrs, Connecticut 06269
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, and
| | - Nathan C. Higgins
- Department of Psychology, Behavioral Neuroscience Division, University of Connecticut, Storrs, Connecticut 06269
| | - Jennifer A. Chikar
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, and
| | - Douglas L. Oliver
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, and
| | - Heather L. Read
- Department of Psychology, Behavioral Neuroscience Division, University of Connecticut, Storrs, Connecticut 06269
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
11
|
Kimura A, Yokoi I, Imbe H, Donishi T, Kaneoke Y. Auditory thalamic reticular nucleus of the rat: Anatomical nodes for modulation of auditory and cross-modal sensory processing in the loop connectivity between the cortex and thalamus. J Comp Neurol 2012; 520:1457-80. [DOI: 10.1002/cne.22805] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Smith PH, Uhlrich DJ, Manning KA, Banks MI. Thalamocortical projections to rat auditory cortex from the ventral and dorsal divisions of the medial geniculate nucleus. J Comp Neurol 2012; 520:34-51. [PMID: 21618239 PMCID: PMC3320111 DOI: 10.1002/cne.22682] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ventral and dorsal medial geniculate (MGV and MGD) constitute the major auditory thalamic subdivisions providing thalamocortical inputs to layer IV and lower layer III of auditory cortex. No quantitative evaluation of this projection is available. Using biotinylated dextran amine (BDA)/biocytin injections, we describe the cortical projection patterns of MGV and MGD cells. In primary auditory cortex the bulk of MGV axon terminals are in layer IV/lower layer III with minor projections to supragranular layers and intermediate levels in infragranular layers. MGD axons project to cortical regions designated posterodorsal (PD) and ventral (VA) showing laminar terminal distributions that are quantitatively similar to the MGV-to-primary cortex terminal distribution. At the electron microscopic level MGV and MGD terminals are non-γ-aminobutyric acid (GABA)ergic with MGD terminals in PD and VA slightly but significantly larger than MGV terminals in primary cortex. MGV/MGD terminals synapse primarily onto non-GABAergic spines/dendrites. A small number synapse on GABAergic structures, contacting large dendrites or cell bodies primarily in the major thalamocortical recipient layers. For MGV projections to primary cortex or MGD projections to PD or VA, the non-GABAergic postsynaptic structures at each site were the same size regardless of whether they were in supragranular, granular, or infragranular layers. However, the population of MGD terminal-recipient structures in VA were significantly larger than the MGD terminal-recipient structures in PD or the MGV terminal-recipient structures in primary cortex. Thus, if terminal and postsynaptic structure size indicate strength of excitation then MGD to VA inputs are strongest, MGD to PD intermediate, and MGV to primary cortex the weakest.
Collapse
Affiliation(s)
- Philip H Smith
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| | | | | | | |
Collapse
|
13
|
Rabang CF, Bartlett EL. A computational model of cellular mechanisms of temporal coding in the medial geniculate body (MGB). PLoS One 2011; 6:e29375. [PMID: 22195049 PMCID: PMC3241713 DOI: 10.1371/journal.pone.0029375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 11/28/2011] [Indexed: 12/04/2022] Open
Abstract
Acoustic stimuli are often represented in the early auditory pathway as patterns of neural activity synchronized to time-varying features. This phase-locking predominates until the level of the medial geniculate body (MGB), where previous studies have identified two main, largely segregated response types: Stimulus-synchronized responses faithfully preserve the temporal coding from its afferent inputs, and Non-synchronized responses, which are not phase locked to the inputs, represent changes in temporal modulation by a rate code. The cellular mechanisms underlying this transformation from phase-locked to rate code are not well understood. We use a computational model of a MGB thalamocortical neuron to test the hypothesis that these response classes arise from inferior colliculus (IC) excitatory afferents with divergent properties similar to those observed in brain slice studies. Large-conductance inputs exhibiting synaptic depression preserved input synchrony as short as 12.5 ms interclick intervals, while maintaining low firing rates and low-pass filtering responses. By contrast, small-conductance inputs with Mixed plasticity (depression of AMPA-receptor component and facilitation of NMDA-receptor component) desynchronized afferent inputs, generated a click-rate dependent increase in firing rate, and high-pass filtered the inputs. Synaptic inputs with facilitation often permitted band-pass synchrony along with band-pass rate tuning. These responses could be tuned by changes in membrane potential, strength of the NMDA component, and characteristics of synaptic plasticity. These results demonstrate how the same synchronized input spike trains from the inferior colliculus can be transformed into different representations of temporal modulation by divergent synaptic properties.
Collapse
Affiliation(s)
- Cal F. Rabang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Edward L. Bartlett
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
14
|
Salgado H, García-Oscos F, Dinh L, Atzori M. Dynamic modulation of short-term synaptic plasticity in the auditory cortex: the role of norepinephrine. Hear Res 2011; 271:26-36. [PMID: 20816739 PMCID: PMC3021619 DOI: 10.1016/j.heares.2010.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 07/30/2010] [Accepted: 08/25/2010] [Indexed: 11/20/2022]
Abstract
Norepinephrine (NE) is an important modulator of neuronal activity in the auditory cortex. Using patch-clamp recording and a pair pulse protocol on an auditory cortex slice preparation we recently demonstrated that NE affects cortical inhibition in a layer-specific manner, by decreasing apical but increasing basal inhibition onto layer II/III pyramidal cell dendrites. In the present study we used a similar protocol to investigate the dependence of noradrenergic modulation of inhibition on stimulus frequency, using 1s-long train pulses at 5, 10, and 20 Hz. The study was conducted using pharmacologically isolated inhibitory postsynaptic currents (IPSCs) evoked by electrical stimulation of axons either in layer I (LI-eIPSCs) or in layer II/III (LII/III-eIPSCs). We found that: 1) LI-eIPSC display less synaptic depression than LII/III-eIPSCs at all the frequencies tested, 2) in both type of synapses depression had a presynaptic component which could be altered manipulating [Ca²+]₀, 3) NE modestly altered short-term synaptic plasticity at low or intermediate (5-10 Hz) frequencies, but selectively enhanced synaptic facilitation in LI-eIPSCs while increasing synaptic depression of LII/III-eIPSCs in the latest (>250 ms) part of the response, at high stimulation frequency (20 Hz). We speculate that these mechanisms may limit the temporal window for top-down synaptic integration as well as the duration and intensity of stimulus-evoked gamma-oscillations triggered by complex auditory stimuli during alertness.
Collapse
Affiliation(s)
- Humberto Salgado
- School of Behavioral and Brain Sciences, Laboratory of Cell and Synaptic Physiology, University of Texas at Dallas, Richardson, TX 75080, USA
| | | | | | | |
Collapse
|
15
|
Storace DA, Higgins NC, Read HL. Thalamocortical pathway specialization for sound frequency resolution. J Comp Neurol 2010; 519:177-93. [DOI: 10.1002/cne.22501] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Storace DA, Higgins NC, Read HL. Thalamic label patterns suggest primary and ventral auditory fields are distinct core regions. J Comp Neurol 2010; 518:1630-46. [PMID: 20232478 DOI: 10.1002/cne.22345] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A hierarchical scheme proposed by Kaas and colleagues suggests that primate auditory cortex can be divided into core and belt regions based on anatomic connections with thalamus and distinctions among response properties. According to their model, core auditory cortex receives predominantly unimodal sensory input from the ventral nucleus of the medial geniculate body (MGBv); whereas belt cortex receives predominantly cross-modal sensory input from nuclei outside the MGBv. We previously characterized distinct response properties in rat primary (A1) versus ventral auditory field (VAF) cortex; however, it has been unclear whether VAF should be categorized as a core or belt auditory cortex. The current study employed high-resolution functional imaging to map intrinsic metabolic responses to tones and to guide retrograde tracer injections into A1 and VAF. The size and density of retrogradely labeled somas in the medial geniculate body (MGB) were examined as a function of their position along the caudal-to-rostral axis, subdivision of origin, and cortical projection target. A1 and VAF projecting neurons were found in the same subdivisions of the MGB but in rostral and caudal parts, respectively. Less than 3% of the cells projected to both regions. VAF projecting neurons were smaller than A1 projecting neurons located in dorsal (MGBd) and suprageniculate (SG) nuclei. Thus, soma size varied with both caudal-rostral position and cortical target. Finally, the majority (>70%) of A1 and VAF projecting neurons were located in MGBv. These MGB connection profiles suggest that rat auditory cortex, like primate auditory cortex, is made up of multiple distinct core regions.
Collapse
Affiliation(s)
- Douglas A Storace
- Psychology, Behavioral Neuroscience Division, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | |
Collapse
|
17
|
Kimura A, Imbe H, Donishi T. Efferent connections of an auditory area in the caudal insular cortex of the rat: anatomical nodes for cortical streams of auditory processing and cross-modal sensory interactions. Neuroscience 2010; 166:1140-57. [DOI: 10.1016/j.neuroscience.2010.01.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/15/2010] [Accepted: 01/15/2010] [Indexed: 11/30/2022]
|
18
|
Campi KL, Bales KL, Grunewald R, Krubitzer L. Connections of auditory and visual cortex in the prairie vole (Microtus ochrogaster): evidence for multisensory processing in primary sensory areas. Cereb Cortex 2010; 20:89-108. [PMID: 19395525 PMCID: PMC2792189 DOI: 10.1093/cercor/bhp082] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In prairie voles, primary sensory areas are dominated by neurons that respond to one sensory modality, but some neurons also respond to stimulation of other modalities. To reveal the anatomical substrate for these multimodal responses, we examined the connections of the primary auditory area + the anterior auditory field (A1 + AAF), the temporal anterior area (TA), and the primary visual area (V1). A1 + AAF had intrinsic connections and connections with TA, multimodal cortex (MM), V1, and primary somatosensory area (S1). TA had intrinsic connections and connections with A1 + AAF, MM, and V2. Callosal connections were observed in homotopic locations in auditory cortex for both fields. A1 + AAF and TA receive thalamic input primarily from divisions of the medial geniculate nucleus but also from the lateral geniculate nucleus (LGd), the lateral posterior nucleus, and the ventral posterior nucleus (VP). V1 had dense intrinsic connections and connections with V2, MM, auditory cortex, pyriform cortex (Pyr), and, in some cases, somatosensory cortex. V1 had interhemispheric connections with V1, V2, MM, S1, and Pyr and received thalamic input from LGd and VP. Our results indicate that multisensory integration occurs in primary sensory areas of the prairie vole cortex, and this may be related to behavioral specializations associated with its niche.
Collapse
Affiliation(s)
- Katharine L. Campi
- Center for Neuroscience
- Department of Psychology, University of California, Davis, Davis, CA 95616, USA
| | - Karen L. Bales
- Department of Psychology, University of California, Davis, Davis, CA 95616, USA
| | | | - Leah Krubitzer
- Center for Neuroscience
- Department of Psychology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
19
|
Kimura A, Imbe H, Donishi T. Axonal projections of auditory cells with short and long response latencies in the medial geniculate nucleus: distinct topographies in the connection with the thalamic reticular nucleus. Eur J Neurosci 2009; 30:783-99. [PMID: 19712090 DOI: 10.1111/j.1460-9568.2009.06880.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thalamic reticular nucleus (TRN) is a crucial anatomical node of thalamocortical connectivity for sensory processing. In the rat auditory system, we determined features of thalamic projections to the TRN, using juxtacellular recording and labeling techniques. Two types of auditory cells (short latency, SL, and long latency, LL), exhibiting unit discharges to noise burst stimuli (duration, 100 ms) with short (< 50 ms) and long (> 100 ms) response latencies, were obtained from the ventral division of the medial geniculate nucleus (MGV). Both SL and LL cells had a propensity to exhibit reverberatory discharges in response to sound stimuli. The primary discharges of SL cells were mostly single spikes while the non-primary discharges of SL cells and the whole discharges of LL cells were mostly burst spikes. SL cells sent topographic projections to the TRN along the dorsoventral and rostrocaudal neural axes while LL cells only along the rostrocaudal axis. As tonotopy-related cortical projections to the TRN are topographic primarily along the dorsoventral extent of the TRN and the MGV is tonotopically organized along the dorsoventral axis, SL cells, directly activated by ascending auditory inputs, may be closely involved in tonotopic thalamocortical connectivity. On the other hand, LL cells, which are suppressed by ascending inputs and could be driven to discharge by corticofugal inputs, are assumed to activate the TRN in a manner less related to tonotopic organization. There may exist heterogeneous projections from the MGV to the TRN, which, in conjunction with corticofugal connections, could constitute distinct channels of auditory processing.
Collapse
Affiliation(s)
- Akihisa Kimura
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama, Japan.
| | | | | |
Collapse
|
20
|
Halverson HE, Poremba A, Freeman JH. Medial auditory thalamus inactivation prevents acquisition and retention of eyeblink conditioning. Learn Mem 2008; 15:532-8. [PMID: 18626096 PMCID: PMC2505321 DOI: 10.1101/lm.1002508] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/13/2008] [Indexed: 11/25/2022]
Abstract
The auditory conditioned stimulus (CS) pathway that is necessary for delay eyeblink conditioning was investigated using reversible inactivation of the medial auditory thalamic nuclei (MATN) consisting of the medial division of the medial geniculate (MGm), suprageniculate (SG), and posterior intralaminar nucleus (PIN). Rats were given saline or muscimol infusions into the MATN contralateral to the trained eye before each of four conditioning sessions with an auditory CS. Rats were then given four additional sessions without infusions to assess savings from the initial training. All rats were then given a retention test with a muscimol infusion followed by a recovery session. Muscimol infusions through cannula placements within 0.5 mm of the MGm prevented acquisition of eyeblink conditioned responses (CRs) and also blocked CR retention. Cannula placements more than 0.5 mm from the MATN did not completely block CR acquisition and had a partial effect on CR retention. The primary and secondary effects of MATN inactivation were examined with 2-deoxy-glucose (2-DG) autoradiography. Differences in 2-DG uptake in the auditory thalamus were consistent with the cannula placements and behavioral results. Differences in 2-DG uptake were found between groups in the ipsilateral auditory cortex, basilar pontine nuclei, and inferior colliculus. Results from this experiment indicate that the MATN contralateral to the trained eye and its projection to the pontine nuclei are necessary for acquisition and retention of eyeblink CRs to an auditory CS.
Collapse
Affiliation(s)
| | - Amy Poremba
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| | - John H. Freeman
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
21
|
Spectral processing deficits in belt auditory cortex following early postnatal lesions of somatosensory cortex. Neuroscience 2008; 153:535-49. [DOI: 10.1016/j.neuroscience.2008.01.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 11/20/2022]
|
22
|
Llano DA, Sherman SM. Evidence for nonreciprocal organization of the mouse auditory thalamocortical-corticothalamic projection systems. J Comp Neurol 2008; 507:1209-27. [PMID: 18181153 DOI: 10.1002/cne.21602] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We tested the hypothesis that information is routed from one area of the auditory cortex (AC) to another via the dorsal division of the medial geniculate body (MGBd) by analyzing the degree of reciprocal connectivity between the auditory thalamus and cortex. Biotinylated dextran amine injected into the primary AC (AI) or anterior auditory field (AAF) of mice produced large, "driver-type" terminals primarily in the MGBd, with essentially no such terminals in the ventral MGB (MGBv). In contrast, small, "modulator-type" terminals were found primarily in the MGBv, and this coincided with areas of retrogradely labeled thalamocortical cell bodies. After MGBv injections, anterograde label was observed in layers 4 and 6 of the AI and AAF, which coincided with retrogradely labeled layer 6 cell bodies. After MGBd injections, thalamocortical terminals were seen in layers 1, 4, and 6 of the secondary AC and dorsoposterior AC, which coincided with labeled layer 6 cell bodies. Notably, after MGBd injection, a substantial number of layer 5 cells were labeled in all AC areas, whereas very few were seen after MGBv injection. Further, the degree of anterograde label in layer 4 of cortical columns containing labeled layer 6 cell bodies was greater than in columns containing labeled layer 5 cell bodies. These data suggest that auditory layer 5 corticothalamic projections are targeted to the MGBd in a nonreciprocal fashion and that the MGBd may route this information to the nonprimary AC.
Collapse
Affiliation(s)
- Daniel A Llano
- Department of Neurology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
23
|
Kimura A, Imbe H, Donishi T, Tamai Y. Axonal projections of single auditory neurons in the thalamic reticular nucleus: implications for tonotopy-related gating function and cross-modal modulation. Eur J Neurosci 2007; 26:3524-35. [DOI: 10.1111/j.1460-9568.2007.05925.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Polley DB, Read HL, Storace DA, Merzenich MM. Multiparametric Auditory Receptive Field Organization Across Five Cortical Fields in the Albino Rat. J Neurophysiol 2007; 97:3621-38. [PMID: 17376842 DOI: 10.1152/jn.01298.2006] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The auditory cortex of the rat is becoming an increasingly popular model system for studies of experience-dependent receptive field plasticity. However, the relative position of various fields within the auditory core and the receptive field organization within each field have yet to be fully described in the normative case. In this study, the macro- and micro-organizational features of the auditory cortex were studied in pentobarbital-anesthetized adult rats with a combination of physiological and anatomical methods. Dense microelectrode mapping procedures were used to identify the relative position of five tonotopically organized fields within the auditory core: primary auditory cortex (AI), the posterior auditory field (PAF), the anterior auditory field (AAF), the ventral auditory field (VAF), and the suprarhinal auditory field (SRAF). AI and AAF both featured short-latency, sharply tuned responses with predominantly monotonic intensity-response functions. SRAF and PAF were both characterized by longer-latency, broadly tuned responses. VAF directly abutted the ventral boundary of AI but was almost exclusively composed of low-threshold nonmonotonic intensity-tuned responses. Dual injection of retrograde tracers into AI and VAF was used to demonstrate that the sources of thalamic input from the medial geniculate body to each area were essentially nonoverlapping. An analysis of receptive field parameters beyond characteristic frequency revealed independent spatially ordered representations for features related to spectral tuning, intensity tuning, and onset response properties in AI, AAF, VAF, and SRAF. These data demonstrate that despite its greatly reduced physical scale, the rat auditory cortex features a surprising degree of organizational complexity and detail.
Collapse
Affiliation(s)
- Daniel B Polley
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN 37232-8548, USA.
| | | | | | | |
Collapse
|
25
|
Kimura A, Donishi T, Okamoto K, Imbe H, Tamai Y. Efferent connections of the ventral auditory area in the rat cortex: implications for auditory processing related to emotion. Eur J Neurosci 2007; 25:2819-34. [PMID: 17459110 DOI: 10.1111/j.1460-9568.2007.05519.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the rat auditory cortex, ventral (VA) and posterodorsal (PD) areas are the two major auditory fields that receive thalamic afferents from the dorsal division of the medial geniculate body (MGD). VA and PD are presumed to serve distinct functions in tandem as the pair of major cortical recipients of extralemniscal thalamic inputs. To deduce the functional significance of VA, efferent connections of VA were examined with the anterograde tracer biocytin. VA lies primarily in the ventral margin of area Te1 and represents frequencies primarily < 15 kHz [Donishi, T., Kimura, A., Okamoto, K. & Tamai, Y. (2006) Neuroscience, 141, 1553-1567.] Biocytin was iontophoretically injected into cortical regions which were defined as VA based on histological location, auditory response and thalamocortical connectivity. Anterograde labelling revealed two important aspects of cortical projections. First, VA sent a projection to a well-confined region in the caudal end of the insular cortex (Ins) pivotal for fear memory formation during aversive conditioning. Second, VA sent parallel projections to cortical regions that probably comprise the other nonprimary auditory fields, including PD. The results suggest that VA relays auditory input from the MGD to the Ins for affective memory formation and at the same time dispatches the auditory signal, which may represent emotional content, to the remaining nonprimary auditory fields. PD is assumed to play a pivotal role in auditory spatial processing for directed attention (Kimura et al., 2004). As the counterpart of PD, VA is assumed to give rise to another major stream of cortical information processing, most probably related to emotion.
Collapse
Affiliation(s)
- A Kimura
- Department of Physiology, Wakayama Medical University, Wakayama Kimiidera 811-1, 641-8509, Japan.
| | | | | | | | | |
Collapse
|
26
|
Hishida R, Kamatani D, Kitaura H, Kudoh M, Shibuki K. Functional local connections with differential activity-dependence and critical periods surrounding the primary auditory cortex in rat cerebral slices. Neuroimage 2007; 34:679-93. [PMID: 17112744 DOI: 10.1016/j.neuroimage.2006.09.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 09/20/2006] [Accepted: 09/25/2006] [Indexed: 10/23/2022] Open
Abstract
Sensory information is processed in neural networks connecting the primary sensory cortices with surrounding higher areas. Here, we investigated the properties of local connections between the primary auditory cortex (area 41) and surrounding areas (areas 20, 36, 18a and 39) in rat cerebral slices. Neural activities elicited by repetitive electrical stimulation were visualized using the activity-dependent changes in endogenous fluorescence derived from mitochondrial flavoproteins, which mostly reflect activities produced by polysynaptic glutamatergic transmission. Polysynaptic feedforward propagation was dominant compared with the corresponding polysynaptic feedback propagation between the primary (area 41) and secondary (areas 20 and 36) auditory cortices, while such a tendency was less clear in other pathways. Long inter-areal (>1 mm) propagation with the same dominancy was observed after layer V stimulation between areas 41 and 20, and was not affected by cutting the underlying white matter. Activity-dependent changes in neural activities induced by low-frequency stimulation in the presence of 1 microM bicuculline were investigated using Ca2+ imaging. Significant potentiation of the polysynaptic Ca2+ activities was only observed in polysynaptic feedforward pathways from the primary to secondary auditory cortices. Experience-dependence of the connections between areas 41 and 20 was investigated using flavoprotein fluorescence imaging. The activities from areas 41 to 20 were reduced by cochlear lesions produced at P12 but not at P28, while the activities from areas 20 to 41 were reduced by the lesions at P28, suggesting the critical period for the polysynaptic feedforward connection was before P28, while for the polysynaptic feedback connection was after P28.
Collapse
Affiliation(s)
- Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1 Asahi-machi, Niigata 951-8585, Japan.
| | | | | | | | | |
Collapse
|