1
|
Chen S, Lu H, Cheng C, Ye Z, Hua T. Rapidly repeated visual stimulation induces long-term potentiation of VEPs and increased content of membrane AMPA and NMDA receptors in the V1 cortex of cats. Front Neurosci 2024; 18:1386801. [PMID: 38831757 PMCID: PMC11144871 DOI: 10.3389/fnins.2024.1386801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Studies report that rapidly repeated sensory stimulation can evoke LTP-like improvement of neural response in the sensory cortex. Whether this neural response potentiation is similar to the classic LTP induced by presynaptic electrical stimulation remains unclear. This study examined the effects of repeated high-frequency (9 Hz) versus low-frequency (1 Hz) visual stimulation on visually-evoked field potentials (VEPs) and the membrane protein content of AMPA / NMDA receptors in the primary visual cortex (V1) of cats. The results showed that repeated high-frequency visual stimulation (HFS) caused a long-term improvement in peak-to-peak amplitude of V1-cortical VEPs in response to visual stimuli at HFS-stimulated orientation (SO: 90°) and non-stimulated orientation (NSO: 180°), but the effect exhibited variations depending on stimulus orientation: the amplitude increase of VEPs in response to visual stimuli at SO was larger, reached a maximum earlier and lasted longer than at NSO. By contrast, repeated low-frequency visual stimulation (LFS) had not significantly affected the amplitude of V1-cortical VEPs in response to visual stimuli at both SO and NSO. Furthermore, the membrane protein content of the key subunit GluA1 of AMPA receptors and main subunit NR1 of AMPA receptors in V1 cortex was significantly increased after HFS but not LFS when compared with that of control cats. Taken together, these results indicate that HFS can induce LTP-like improvement of VEPs and an increase in membrane protein of AMPA and NMDA receptors in the V1 cortex of cats, which is similar to but less specific to stimulus orientation than the classic LTP.
Collapse
Affiliation(s)
| | | | | | | | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
2
|
Casey C, Fullard JF, Sleator RD. Unravelling the genetic basis of Schizophrenia. Gene 2024; 902:148198. [PMID: 38266791 DOI: 10.1016/j.gene.2024.148198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Neuronal development is a highly regulated mechanism that is central to organismal function in animals. In humans, disruptions to this process can lead to a range of neurodevelopmental phenotypes, including Schizophrenia (SCZ). SCZ has a significant genetic component, whereby an individual with an SCZ affected family member is eight times more likely to develop the disease than someone with no family history of SCZ. By examining a combination of genomic, transcriptomic and epigenomic datasets, large-scale 'omics' studies aim to delineate the relationship between genetic variation and abnormal cellular activity in the SCZ brain. Herein, we provide a brief overview of some of the key omics methods currently being used in SCZ research, including RNA-seq, the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and high-throughput chromosome conformation capture (3C) approaches (e.g., Hi-C), as well as single-cell/nuclei iterations of these methods. We also discuss how these techniques are being employed to further our understanding of the genetic basis of SCZ, and to identify associated molecular pathways, biomarkers, and candidate drug targets.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland.
| |
Collapse
|
3
|
Zhang L, Wang J, Sun H, Feng G, Gao Z. Interactions between the hippocampus and the auditory pathway. Neurobiol Learn Mem 2022; 189:107589. [DOI: 10.1016/j.nlm.2022.107589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/12/2022] [Accepted: 01/29/2022] [Indexed: 12/22/2022]
|
4
|
O'Riordan KJ, Hu NW, Rowan MJ. Physiological activation of mGlu5 receptors supports the ion channel function of NMDA receptors in hippocampal LTD induction in vivo. Sci Rep 2018. [PMID: 29535352 PMCID: PMC5849730 DOI: 10.1038/s41598-018-22768-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Synaptic long-term depression (LTD) is believed to underlie critical mnemonic processes in the adult hippocampus. The roles of the metabotropic and ionotropic actions of glutamate in the induction of synaptic LTD by electrical low-frequency stimulation (LFS) in the living adult animal is poorly understood. Here we examined the requirement for metabotropic glutamate (mGlu) and NMDA receptors in LTD induction in anaesthetized adult rats. LTD induction was primarily dependent on NMDA receptors and required the involvement of both the ion channel function and GluN2B subunit of the receptor. Endogenous mGlu5 receptor activation necessitated the local application of relatively high doses of either competitive or non-competitive NMDA receptor antagonists to block LTD induction. Moreover, boosting endogenous glutamate activation of mGlu5 receptors with a positive allosteric modulator lowered the threshold for NMDA receptor-dependent LTD induction by weak LFS. The present data provide support in the living animal that NMDA receptor-dependent LTD is boosted by endogenously released glutamate activation of mGlu5 receptors. Given the predominant perisynaptic location of mGlu5 receptors, the present findings emphasize the need to further evaluate the contribution and mechanisms of these receptors in NMDA receptor-dependent synaptic plasticity in the adult hippocampus in vivo.
Collapse
Affiliation(s)
- Kenneth J O'Riordan
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin, 2, Ireland
| | - Neng-Wei Hu
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin, 2, Ireland. .,Department of Gerontology, Yijishan Hospital, Wannan Medical College, Wuhu, China. .,Department of Physiology and Neurobiology, Zhengzhou University School of Medicine, Zhengzhou, 450001, China.
| | - Michael J Rowan
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin, 2, Ireland.
| |
Collapse
|
5
|
CDRI-08 Attenuates REST/NRSF-Mediated Expression of NMDAR1 Gene in PBDE-209-Exposed Mice Brain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:403840. [PMID: 26413122 PMCID: PMC4564648 DOI: 10.1155/2015/403840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/16/2015] [Accepted: 02/22/2015] [Indexed: 11/17/2022]
Abstract
CDRI-08 is a standardized bacoside enriched ethanolic extract of Bacopa monnieri, a nootropic plant. We reported that CDRI-08 attenuated oxidative stress and memory impairment in mice, induced by a flame retardant, PBDE-209. In order to explore the mechanism, present study was designed to examine the role of CDRI-08 on the expression of NMDAR1 (NR1) and the binding of REST/NRSF to NR1 promoter against postnatal exposure of PBDE-209. Male mice pups were orally supplemented with CDRI-08 at the doses of 40, 80, or 120 mg/kg along with PBDE-209 (20 mg/kg) during PND 3–10 and frontal cortex and hippocampus were collected at PND 11 and 60 to study the expression and regulation of NR1 by RT-PCR and electrophoretic mobility shift assay, respectively. The findings showed upregulated expression of NR1 and decreased binding of REST/NRSF to NR1 promoter after postnatal exposure of PBDE-209. Interestingly, supplementation with CDRI-08 significantly restored the expression of NR1 and binding of REST/NRSF to NR1 promoter near to the control value at the dose of 120 mg/kg. In conclusion, the results suggest that CDRI-08 possibly acts on glutamatergic system through expression and regulation of NR1 and may restore memory, impaired by PBDE-209 as reported in our previous study.
Collapse
|
6
|
Kang JI, Huppé-Gourgues F, Vaucher E. Boosting visual cortex function and plasticity with acetylcholine to enhance visual perception. Front Syst Neurosci 2014; 8:172. [PMID: 25278848 PMCID: PMC4167004 DOI: 10.3389/fnsys.2014.00172] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/31/2014] [Indexed: 11/29/2022] Open
Abstract
The cholinergic system is a potent neuromodulatory system that plays critical roles in cortical plasticity, attention and learning. In this review, we propose that the cellular effects of acetylcholine (ACh) in the primary visual cortex during the processing of visual inputs might induce perceptual learning; i.e., long-term changes in visual perception. Specifically, the pairing of cholinergic activation with visual stimulation increases the signal-to-noise ratio, cue detection ability and long-term facilitation in the primary visual cortex. This cholinergic enhancement would increase the strength of thalamocortical afferents to facilitate the treatment of a novel stimulus while decreasing the cortico-cortical signaling to reduce recurrent or top-down modulation. This balance would be mediated by different cholinergic receptor subtypes that are located on both glutamatergic and GABAergic neurons of the different cortical layers. The mechanisms of cholinergic enhancement are closely linked to attentional processes, long-term potentiation (LTP) and modulation of the excitatory/inhibitory balance. Recently, it was found that boosting the cholinergic system during visual training robustly enhances sensory perception in a long-term manner. Our hypothesis is that repetitive pairing of cholinergic and sensory stimulation over a long period of time induces long-term changes in the processing of trained stimuli that might improve perceptual ability. Various non-invasive approaches to the activation of the cholinergic neurons have strong potential to improve visual perception.
Collapse
Affiliation(s)
- Jun Il Kang
- École d'optométrie, Université de Montréal Montréal, QC, Canada ; Département de Neuroscience, Université de Montréal Montréal, QC, Canada
| | | | - Elvire Vaucher
- École d'optométrie, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
7
|
Ahmed MM, Dhanasekaran AR, Block A, Tong S, Costa ACS, Gardiner KJ. Protein profiles associated with context fear conditioning and their modulation by memantine. Mol Cell Proteomics 2014; 13:919-37. [PMID: 24469516 DOI: 10.1074/mcp.m113.035568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Analysis of the molecular basis of learning and memory has revealed details of the roles played by many genes and the proteins they encode. Because most individual studies focus on a small number of proteins, many complexities of the relationships among proteins and their dynamic responses to stimulation are not known. We have used the technique of reverse phase protein arrays (RPPA) to assess the levels of more than 80 proteins/protein modifications in subcellular fractions from hippocampus and cortex of mice trained in Context Fear Conditioning (CFC). Proteins include components of signaling pathways, several encoded by immediate early genes or involved in apoptosis and inflammation, and subunits of glutamate receptors. At one hour after training, levels of more than half the proteins had changed in one or more fractions, among them multiple components of the Mitogen-activated protein kinase, MAPK, and Mechanistic Target of Rapamycin, MTOR, pathways, subunits of glutamate receptors, and the NOTCH pathway modulator, NUMB homolog (Drosophila). Levels of 37 proteins changed in the nuclear fraction of hippocampus alone. Abnormalities in levels of thirteen proteins analyzed have been reported in brains of patients with Alzheimer's Disease. We therefore further investigated the protein profiles of mice treated with memantine, a drug approved for treatment of AD. In hippocampus, memantine alone induced many changes similar to those seen after CFC and altered the levels of seven proteins associated with Alzheimer's Disease abnormalities. Lastly, to further explore the relevance of these datasets, we superimposed responses to CFC and memantine onto components of the long term potentiation pathway, a process subserving learning and memory formation. Fourteen components of the long term potentiation pathway and 26 proteins interacting with components responded to CFC and/or memantine. Together, these datasets provide a novel view of the diversity and complexity in protein responses and interactions following normal learning.
Collapse
|
8
|
Li L, Wang H, Ghafari M, An G, Korz V, Lubec G. Dorsal hippocampal brain receptor complexes linked to the protein synthesis-dependent late phase (LTP) in the rat. Brain Struct Funct 2014; 220:1051-62. [PMID: 24442866 DOI: 10.1007/s00429-013-0699-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
In order to link major brain receptor complex levels to in vivo electrically induced LTP, a bipolar stimulation electrode was chronically implanted into the perforant path, while two monopolar recording electrodes were implanted into the dentate gyrus of the dorsal hippocampus. The recording electrode was measuring extracellular excitatory postsynaptic potentials, while the other one measured population spikes. Immunoblotting of native receptor proteins was carried out in the DH based upon blue-native gel electrophoresis and immunoprecipitation followed by mass spectrometrical identification of the NR1-GluA1-GluA2 complex was used to provide evidence for complex formation. The induction of LTP in DH was proven and NMDA receptor complex levels containing NR1, GluA1, GluA2 and GluA3 were modulated by LTP induction. The LTP-associated changes of receptor complex levels may indicate concerted action, interaction and represent a pattern of major brain receptor complexes in the DH following electrical induction of LTP in the rat.
Collapse
Affiliation(s)
- Lin Li
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
9
|
Talaei SA, Salami M. Sensory experience differentially underlies developmental alterations of LTP in CA1 area and dentate gyrus. Brain Res 2013; 1537:1-8. [DOI: 10.1016/j.brainres.2013.08.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/31/2013] [Accepted: 08/30/2013] [Indexed: 11/28/2022]
|
10
|
Abstract
Long-term synaptic plasticity involves changes in the expression and membrane insertion of cell-surface proteins. Interestingly, the mRNAs encoding many cell-surface proteins are localized to dendrites, but whether dendritic protein synthesis is required for activity-induced surface expression of specific proteins is unknown. Herein, we used microfluidic devices to demonstrate that dendritic protein synthesis is necessary for activity-induced insertion of GluN2A-containing NMDA receptors in rat hippocampal neurons. Furthermore, visualization of activity-induced local translation of GluN2A mRNA and membrane insertion of GluN2A protein in dendrites was directly observed and shown to depend on a 3' untranslated region cytoplasmic polyadenylation element and its associated translation complex. These findings uncover a novel mechanism for cytoplasmic polyadenylation element-mediated posttranscriptional regulation of GluN2A mRNA to control NMDA receptor surface expression during synaptic plasticity.
Collapse
|
11
|
Li H, Wu X, Bai Y, Huang Y, He W, Dong Z. Unilateral lesion of dorsal hippocampus in adult rats impairs contralateral long-term potentiation in vivo and spatial memory in the early postoperative phase. Behav Brain Res 2012; 230:428-32. [DOI: 10.1016/j.bbr.2012.02.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 02/24/2012] [Accepted: 02/25/2012] [Indexed: 10/28/2022]
|
12
|
Zhang Y, Sheng H, Qi J, Ma B, Sun J, Li S, Ni X. Glucocorticoid acts on a putative G protein-coupled receptor to rapidly regulate the activity of NMDA receptors in hippocampal neurons. Am J Physiol Endocrinol Metab 2012; 302:E747-58. [PMID: 22146309 DOI: 10.1152/ajpendo.00302.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoids (GCs) have been demonstrated to act through both genomic and nongenomic mechanisms. The present study demonstrated that corticosterone rapidly suppressed the activity of N-methyl-D-aspartate (NMDA) receptors in cultured hippocampal neurons. The effect was maintained with corticosterone conjugated to bovine serum albumin and blocked by inhibition of G protein activity with intracellular GDP-β-S application. Corticosterone increased GTP-bound G(s) protein and cyclic AMP (cAMP) production, activated phospholipase Cβ(3) (PLC-β(3)), and induced inositol-1,4,5-triphosphate (IP(3)) production. Blocking PLC and the downstream cascades with PLC inhibitor, IP(3) receptor antagonist, Ca(2+) chelator, and protein kinase C (PKC) inhibitors prevented the actions of corticosterone. Blocking adenylate cyclase (AC) and protein kinase A (PKA) caused a decrease in NMDA-evoked currents. Application of corticosterone partly reversed the inhibition of NMDA currents caused by blockage of AC and PKA. Intracerebroventricular administration of corticosterone significantly suppressed long-term potentiation (LTP) in the CA1 region of the hippocampus within 30 min in vivo, implicating the possibly physiological significance of rapid effects of GC on NMDA receptors. Taken together, our results indicate that GCs act on a putative G protein-coupled receptor to activate multiple signaling pathways in hippocampal neurons, and the rapid suppression of NMDA activity by GCs is dependent on PLC and downstream signaling.
Collapse
MESH Headings
- Animals
- Blotting, Western
- CA1 Region, Hippocampal/cytology
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/metabolism
- Cells, Cultured
- Cyclic AMP/metabolism
- Excitatory Postsynaptic Potentials
- Female
- Glucocorticoids/pharmacology
- Hippocampus/cytology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Long-Term Potentiation/drug effects
- Male
- Neurons/drug effects
- Neurons/metabolism
- Patch-Clamp Techniques
- Pregnancy
- Radioimmunoassay
- Rats
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled/drug effects
- Receptors, Glucocorticoid/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Signal Transduction/drug effects
- Synapses/drug effects
- Synapses/physiology
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Yanmin Zhang
- Department of Physiology, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Hosseinmardi N, Azimi L, Fathollahi Y, Javan M, Naghdi N. In vivo sodium salicylate causes tolerance to acute morphine exposure and alters the ability of high frequency stimulation to induce long-term potentiation in hippocampus area CA1. Eur J Pharmacol 2011; 670:487-94. [DOI: 10.1016/j.ejphar.2011.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/29/2011] [Accepted: 09/07/2011] [Indexed: 10/17/2022]
|
14
|
Histaminergic mechanisms for modulation of memory systems. Neural Plast 2011; 2011:328602. [PMID: 21876818 PMCID: PMC3160014 DOI: 10.1155/2011/328602] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/29/2011] [Indexed: 12/31/2022] Open
Abstract
Encoding for several memory types requires neural changes and the activity of distinct regions across the brain. These areas receive broad projections originating in nuclei located in the brainstem which are capable of modulating the activity of a particular area. The histaminergic system is one of the major modulatory systems, and it regulates basic homeostatic and higher functions including arousal, circadian, and feeding rhythms, and cognition. There is now evidence that histamine can modulate learning in different types of behavioral tasks, but the exact course of modulation and its mechanisms are controversial. In the present paper we review the involvement of the histaminergic system and the effects histaminergic receptor agonists/antagonists have on the performance of tasks associated with the main memory types as well as evidence provided by studies with knockout models. Thus, we aim to summarize the possible effects histamine has on modulation of circuits involved in memory formation.
Collapse
|
15
|
Liu F, Jiang H, Zhong W, Wu X, Luo J. Changes in ensemble activity of hippocampus CA1 neurons induced by chronic morphine administration in freely behaving mice. Neuroscience 2010; 171:747-59. [PMID: 20888400 DOI: 10.1016/j.neuroscience.2010.09.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/08/2010] [Accepted: 09/17/2010] [Indexed: 11/24/2022]
Abstract
The hippocampus plays an important role in the formation of new memories and spatial navigation. Recently, growing evidence supports the view that it is also involved in addiction to opiates and other drugs. Theoretical and experimental studies suggest that hippocampal neural-network oscillations at specific frequencies and unit firing patterns reflect information of learning and memory encoding. Here, using multichannel recordings from the hippocampal CA1 area in behaving mice, we investigated the phase correlations between the theta (4-10 Hz) and gamma (40-100 Hz) oscillations, and the timing of spikes modulated by these oscillations. Local field potentials and single unit recordings in the CA1 area of mice receiving chronic morphine treatment revealed that the power of the theta rhythm was strongly increased; at the same time, the theta frequency during different behavioral states shifted markedly, and the characteristic coupling of theta and gamma oscillations was altered. Surprisingly, though the gamma oscillation frequency changed, the power of gamma lacking theta did not. Moreover, the timing of pyramidal cell spikes relative to the theta rhythm and the timing of interneuron spikes relative to the gamma rhythm changed during chronic morphine administration. Furthermore, these responses were impaired by a selective D1/D5 receptor antagonist intra-hippocampus injection. These results indicate that chronic morphine administration induced the changes of ensemble activity in the CA1 area, and these changes were dependent on local dopamine receptor activation.
Collapse
Affiliation(s)
- F Liu
- Department of Neurobiology, Institute of Neuroscience, Zhejiang University School of Medicine, 388 Yu Hang Tang Road, Hangzhou 310058, PR China
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Lourenço CF, Santos R, Barbosa RM, Gerhardt G, Cadenas E, Laranjinha J. In vivo modulation of nitric oxide concentration dynamics upon glutamatergic neuronal activation in the hippocampus. Hippocampus 2010; 21:622-30. [DOI: 10.1002/hipo.20774] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2009] [Indexed: 11/07/2022]
|
18
|
Frade J, Barbosa R, Laranjinha J. Stimulation of NMDA and AMPA glutamate receptors elicits distinct concentration dynamics of nitric oxide in rat hippocampal slices. Hippocampus 2009; 19:603-11. [DOI: 10.1002/hipo.20536] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Differential trafficking of AMPA and NMDA receptors during long-term potentiation in awake adult animals. J Neurosci 2008; 27:14171-8. [PMID: 18094256 DOI: 10.1523/jneurosci.2348-07.2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite a wealth of evidence in vitro that AMPA receptors are inserted into the postsynaptic membrane during long-term potentiation (LTP), it remains unclear whether this occurs in vivo at physiological concentrations of receptors. To address the issue of whether native AMPA or NMDA receptors undergo such trafficking during LTP in the adult brain, we examined the synaptic and surface expression of glutamate receptor subunits during the early induction phase of LTP in the dentate gyrus of awake adult rats. Induction of LTP was accompanied by a rapid NMDA receptor-dependent increase in surface expression of glutamate receptor 1-3 (GluR1-3) subunits. However, in the postsynaptic density fraction only GluR1 accumulated. GluR2/3-containing AMPA receptors, in contrast, were targeted exclusively to extrasynaptic sites in a protein synthesis-dependent manner. NMDA receptor subunits exhibited a delayed accumulation, both at the membrane surface and in postsynaptic densities, that was dependent on protein synthesis. These data suggest that trafficking of native GluR1-containing AMPA receptors to synapses is important for early-phase LTP in awake adult animals, and that this increase is followed homeostatically by a protein synthesis-dependent trafficking of NMDA receptors.
Collapse
|
20
|
Zarrindast MR, Lashgari R, Rezayof A, Motamedi F, Nazari-Serenjeh F. NMDA receptors of dorsal hippocampus are involved in the acquisition, but not in the expression of morphine-induced place preference. Eur J Pharmacol 2007; 568:192-8. [PMID: 17509561 DOI: 10.1016/j.ejphar.2007.04.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/09/2007] [Accepted: 04/17/2007] [Indexed: 11/20/2022]
Abstract
In the present study, involvement of the N-methyl-d-aspartate (NMDA) receptors of the CA1 region of dorsal hippocampus (intra-CA1) in the acquisition or expression of morphine-induced conditioned place preference in rats was studied. Male Wistar rats were used in these experiments. NMDA-receptor agonist (NMDA) and antagonist (MK-801) were injected into the CA1 region of the dorsal hippocampus (intra-CA1) and morphine was injected subcutaneously. An unbiased conditioned place preference paradigm was used to study the effect of these agents. In the first set of experiments, the drugs were used during the development of conditioned place preference by morphine or they were used alone in order to see if they induce conditioned place preference or conditioned place aversion. Our data showed that subcutaneous (s.c.) injection of morphine sulphate (2.5-10 mg/kg) induced conditioned place preference in rat. NMDA (0.1-1 microg/rat) or MK-801 (1-4 microg/rat) did not induce conditioned place preference or conditioned place aversion. Intra-CA1 administration of different doses of NMDA (0.1-1 microg/rat) increased, while MK-801 (1-4 microg/rat) decreased morphine-induced place preference. MK-801 reversed the effect of NMDA on morphine response. In the second set of experiments, when the drugs were used before testing on Day 5, in order to test their effects on the expression of morphine (7.5 mg/kg)-induced place preference, intra-CA1 administration of NMDA or MK-801 did not alter the morphine response. None of the drugs influenced locomotion. It is concluded that NMDA receptor of the CA1 region of hippocampus are involved in the acquisition but not expression of morphine-induced place preference.
Collapse
Affiliation(s)
- Mohammad-Reza Zarrindast
- Department of Pharmacology and Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | |
Collapse
|
21
|
Grova N, Valley A, Turner JD, Morel A, Muller CP, Schroeder H. Modulation of behavior and NMDA-R1 gene mRNA expression in adult female mice after sub-acute administration of benzo(a)pyrene. Neurotoxicology 2007; 28:630-6. [PMID: 17397927 DOI: 10.1016/j.neuro.2007.01.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 01/25/2007] [Accepted: 01/25/2007] [Indexed: 01/09/2023]
Abstract
The behavioral performances of adult mice exposed to sub-acute doses of benzo(a)pyrene (B(a)P) were monitored in tests related to learning and memory (Y maze and Morris water maze), locomotor activity (open-field test) and motor coordination (Locotronic apparatus). At low doses (0.02 and 0.2mg/kg), B(a)P impaired short-term learning and spatial memory performance in the Y maze and in the Morris water maze tests. Surprisingly, in the Y maze, the performances of animals exposed to the highest dose of B(a)P (200mg/kg) were quite similar to those of control animals. Hyperactivity/hyperarousal observed in both tests at this dose and attributed to an anxiolytic-like effect of B(a)P may have blurred the learning deficit in these mice faced with a new situation. These deficits seem to be unrelated to motor impairments because B(a)P had no effect on locomotor activity and motor coordination. We demonstrated that sub-acute exposure to B(a)P in adult mice also modulates gene expression of NMDA-R1 subunit in brain areas highly involved in cognitive function like the hippocampus, suggesting a relationship between the expression of functional NMDA-R1 mRNA, impairment of short-term and spatial memory and the B(a)P exposure levels.
Collapse
Affiliation(s)
- Nathalie Grova
- Institute of Immunology, Laboratoire National de Santé, 20A rue Auguste Lumière, L-1011 Luxembourg, Luxembourg
| | | | | | | | | | | |
Collapse
|