1
|
Onufriev MV, Stepanichev MY, Moiseeva YV, Zhanina MY, Nedogreeva OA, Kostryukov PA, Lazareva NA, Gulyaeva NV. A Comparative Study of Two Models of Intraluminal Filament Middle Cerebral Artery Occlusion in Rats: Long-Lasting Accumulation of Corticosterone and Interleukins in the Hippocampus and Frontal Cortex in Koizumi Model. Biomedicines 2022; 10:biomedicines10123119. [PMID: 36551875 PMCID: PMC9775077 DOI: 10.3390/biomedicines10123119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/10/2022] Open
Abstract
Recently, we have shown the differences in the early response of corticosterone and inflammatory cytokines in the hippocampus and frontal cortex (FC) of rats with middle cerebral artery occlusion (MCAO), according to the methods of Longa et al. (LM) and Koizumi et al. (KM) which were used as alternatives in preclinical studies to induce stroke in rodents. In the present study, corticosterone and proinflammatory cytokines were assessed 3 months after MCAO. The most relevant changes detected during the first days after MCAO became even more obvious after 3 months. In particular, the MCAO-KM (but not the MCAO-LM) group showed significant accumulation of corticosterone and IL1β in both the ipsilateral and contralateral hippocampus and FC. An accumulation of TNFα was detected in the ipsilateral hippocampus and FC in the MCAO-KM group. Thus, unlike the MCAO-LM, the MCAO-KM may predispose the hippocampus and FC of rats to long-lasting bilateral corticosterone-dependent distant neuroinflammatory damage. Unexpectedly, only the MCAO-LM rats demonstrated some memory deficit in a one-trial step-through passive avoidance test. The differences between the two MCAO models, particularly associated with the long-lasting increase in glucocorticoid and proinflammatory cytokine accumulation in the limbic structures in the MCAO-KM, should be considered in the planning of preclinical experiments, and the interpretation and translation of received results.
Collapse
Affiliation(s)
- Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Mikhail Y. Stepanichev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Yulia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Marina Y. Zhanina
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Olga A. Nedogreeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Pavel A. Kostryukov
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Natalia A. Lazareva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-952-4007
| |
Collapse
|
2
|
Kim S, Park ES, Chen PR, Kim E. Dysregulated Hypothalamic–Pituitary–Adrenal Axis Is Associated With Increased Inflammation and Worse Outcomes After Ischemic Stroke in Diabetic Mice. Front Immunol 2022; 13:864858. [PMID: 35784349 PMCID: PMC9243263 DOI: 10.3389/fimmu.2022.864858] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
Diabetic patients have larger infarcts, worse neurological deficits, and higher mortality rate after an ischemic stroke. Evidence shows that in diabetes, the hypothalamic–pituitary–adrenal (HPA) axis was dysregulated and levels of cortisol increased. Based on the role of the HPA axis in immunity, we hypothesized that diabetes-dysregulated stress response exacerbates stroke outcomes via regulation of inflammation. To test this hypothesis, we assessed the regulation of the HPA axis in diabetic mice before and after stroke and determined its relevance in the regulation of post-stroke injury and inflammation. Diabetes was induced in C57BL/6 mice by feeding a high-fat diet and intraperitoneal injection of streptozotocin (STZ), and then the mice were subjected to 30 min of middle cerebral artery occlusion (MCAO). Infarct volume and neurological scores were measured in the ischemic mice. The inflammatory cytokine and chemokine levels were also determined in the ischemic brain. To assess the effect of diabetes on the stroke-modulated HPA axis, we measured the expression of components in the HPA axis including corticotropin-releasing hormone (CRH) in the hypothalamus, proopiomelanocortin (POMC) in the pituitary, and plasma adrenocorticotropic hormone (ACTH) and corticosterone. Diabetic mice had larger infarcts and worse neurological scores after stroke. The exacerbated stroke outcomes in diabetic mice were accompanied by the upregulated expression of inflammatory factors (including IL-1β, TNF-α, IL-6, CCR2, and MCP-1) in the ischemic brain. We also confirmed increased levels of hypothalamic CRH, pituitary POMC, and plasma corticosterone in diabetic mice before and after stroke, suggesting the hyper-activated HPA axis in diabetic conditions. Finally, we confirmed that post-stroke treatment of metyrapone (an inhibitor of glucocorticoid synthesis) reduced IL-6 expression and the infarct size in the ischemic brain of diabetic mice. These results elucidate the mechanisms in which the HPA axis in diabetes exacerbates ischemic stroke. Maintaining an optimal level of the stress response by regulating the HPA axis may be an effective approach to improving stroke outcomes in patients with diabetes.
Collapse
|
3
|
Kemp GM, Altimimi HF, Nho Y, Heir R, Klyczek A, Stellwagen D. Sustained TNF signaling is required for the synaptic and anxiety-like behavioral response to acute stress. Mol Psychiatry 2022; 27:4474-4484. [PMID: 36104437 PMCID: PMC9734040 DOI: 10.1038/s41380-022-01737-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
Acute stress triggers plasticity of forebrain synapses as well as behavioral changes. Here we reveal that Tumor Necrosis Factor α (TNF) is a required downstream mediator of the stress response in mice, necessary for stress-induced synaptic potentiation in the ventral hippocampus and for an increase in anxiety-like behaviour. Acute stress is sufficient to activate microglia, triggering the long-term release of TNF. Critically, on-going TNF signaling specifically in the ventral hippocampus is necessary to sustain both the stress-induced synaptic and behavioral changes, as these could be reversed hours after induction by antagonizing TNF signaling. This demonstrates that TNF maintains the synaptic and behavioral stress response in vivo, making TNF a potential novel therapeutic target for stress disorders.
Collapse
Affiliation(s)
- Gina M. Kemp
- grid.63984.300000 0000 9064 4811Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, QC Canada
| | - Haider F. Altimimi
- grid.63984.300000 0000 9064 4811Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, QC Canada
| | - Yoonmi Nho
- grid.63984.300000 0000 9064 4811Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, QC Canada
| | - Renu Heir
- grid.63984.300000 0000 9064 4811Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, QC Canada
| | - Adam Klyczek
- grid.63984.300000 0000 9064 4811Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, QC Canada
| | - David Stellwagen
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, QC, Canada.
| |
Collapse
|
4
|
Gulyaeva NV, Onufriev MV, Moiseeva YV. Ischemic Stroke, Glucocorticoids, and Remote Hippocampal Damage: A Translational Outlook and Implications for Modeling. Front Neurosci 2021; 15:781964. [PMID: 34955730 PMCID: PMC8695719 DOI: 10.3389/fnins.2021.781964] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Progress in treating ischemic stroke (IS) and its delayed consequences has been frustratingly slow due to the insufficient knowledge on the mechanism. One important factor, the hypothalamic-pituitary-adrenocortical (HPA) axis is mostly neglected despite the fact that both clinical data and the results from rodent models of IS show that glucocorticoids, the hormones of this stress axis, are involved in IS-induced brain dysfunction. Though increased cortisol in IS is regarded as a biomarker of higher mortality and worse recovery prognosis, the detailed mechanisms of HPA axis dysfunction involvement in delayed post-stroke cognitive and emotional disorders remain obscure. In this review, we analyze IS-induced HPA axis alterations and supposed association of corticoid-dependent distant hippocampal damage to post-stroke brain disorders. A translationally important growing point in bridging the gap between IS pathogenesis and clinic is to investigate the involvement of the HPA axis disturbances and related hippocampal dysfunction at different stages of SI. Valid models that reproduce the state of the HPA axis in clinical cases of IS are needed, and this should be considered when planning pre-clinical research. In clinical studies of IS, it is useful to reinforce diagnostic and prognostic potential of cortisol and other HPA axis hormones. Finally, it is important to reveal IS patients with permanently disturbed HPA axis. Patients-at-risk with high cortisol prone to delayed remote hippocampal damage should be monitored since hippocampal dysfunction may be the basis for development of post-stroke cognitive and emotional disturbances, as well as epilepsy.
Collapse
Affiliation(s)
- Natalia V Gulyaeva
- Laboratory of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, Russia
| | - Mikhail V Onufriev
- Laboratory of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, Russia
| | - Yulia V Moiseeva
- Laboratory of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Onufriev MV, Moiseeva YV, Zhanina MY, Lazareva NA, Gulyaeva NV. A Comparative Study of Koizumi and Longa Methods of Intraluminal Filament Middle Cerebral Artery Occlusion in Rats: Early Corticosterone and Inflammatory Response in the Hippocampus and Frontal Cortex. Int J Mol Sci 2021; 22:13544. [PMID: 34948340 PMCID: PMC8703333 DOI: 10.3390/ijms222413544] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
Two classical surgical approaches for intraluminal filament middle cerebral artery occlusion (MCAO), the Longa et al. (LM) and Koizumi et al. methods (KM), are used as alternatives in preclinical studies to induce stroke in rodents. Comparisons of these MCAO models in mice showed critical differences between them along with similarities (Smith et al. 2015; Morris et al. 2016). In this study, a direct comparison of MCAO-KM and MCAO-LM in rats was performed. Three days after MCAO, infarct volume, mortality rate, neurological deficit, and weight loss were similar in these models. MCAO-LM rats showed an increase in ACTH levels, while MCAO-KM rats demonstrated elevated corticosterone and interleukin-1β in blood serum. Corticosterone accumulation was detected in the frontal cortex (FC) and the hippocampus of the MCAO-KM group. IL1β beta increased in the ipsilateral hippocampus in the MCAO-KM group and decreased in the contralateral FC of MCAO-LM rats. Differences revealed between MCAO-KM and MCAO-LM suggest that corticosterone and interleukin-1β release as well as hippocampal accumulation is more expressed in MCAO-KM rats, predisposing them to corticosterone-dependent distant neuroinflammatory hippocampal damage. The differences between two models, particularly, malfunction of the hypothalamic-pituitary-adrenal axis, should be considered in the interpretation, comparison, and translation of pre-clinical experimental results.
Collapse
Affiliation(s)
- Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 43 Donskaya Str., 115419 Moscow, Russia
| | - Yulia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
| | - Marina Y. Zhanina
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 43 Donskaya Str., 115419 Moscow, Russia
| | - Natalia A. Lazareva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 43 Donskaya Str., 115419 Moscow, Russia
| |
Collapse
|
6
|
Barakat W, Fahmy A, Askar M, El-Kannishy S. Effectiveness of arginase inhibitors against experimentally induced stroke. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:603-612. [PMID: 29600431 DOI: 10.1007/s00210-018-1489-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/22/2018] [Indexed: 01/28/2023]
Abstract
Stroke is a lethal disease, but it disables more than it kills. Stroke is the second leading cause of death and the most frequent cause of permanent disability in adults worldwide, with 90% of survivors having residual deficits. The pathophysiology of stroke is complex and involves a strong inflammatory response associated with oxidative stress and activation of several proteolytic enzymes. The current study was designed to investigate the effect of arginase inhibitors (L-citruline and L-ornithine) against ischemic stroke induced in rats by middle cerebral artery occlusion (MCAO). MCAO resulted in alteration in rat behavior, brain infarct, and edema associated with disruption of the blood-brain barrier (BBB). This was mediated through overexpression of arginase I and II, inducible NOS (iNOS), malondialdehyde (MDA), advanced glycation end products (AGEs), TNF-α, and IL-1β and downregulation of endothelial nitric oxide synthase (eNOS). Treatment with L-citruline and L-ornithine and the standard neuroprotective drug cerebrolysin ameliorated all the deleterious effects of stroke. These results indicate the possible use of arginase inhibitors in the treatment of stroke after suitable clinical trials are done.
Collapse
Affiliation(s)
- Waleed Barakat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabuk University, Tabuk, Kingdom of Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Ahmad Fahmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed Askar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Sherif El-Kannishy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabuk University, Tabuk, Kingdom of Saudi Arabia
- Analytical Toxicology - Emergency Hospital, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
7
|
Hasturk AE, Baran C, Yilmaz ER, Arikan M, Togral G, Hayirli N, Erguder BI, Evirgen O. Etanercept Prevents Histopathological Damage after Spinal Cord Injury in Rats. Asian J Neurosurg 2018; 13:37-45. [PMID: 29492118 PMCID: PMC5820892 DOI: 10.4103/ajns.ajns_307_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background The aim of our study is to assess the neuroprotective effects of the tumor necrosis factor alpha (TNF-α) inhibitor etanercept (ETA) on histopathological and biochemical changes following spinal cord injury (SCI). Patients and Methods Fifty-four male Wistar albino rats were randomly assigned into three main groups: The sham, trauma, and ETA group (n = 18 per group). Each of these groups was further divided into three subgroups (n = 6 per subgroup) based on the different tissue sampling times postinjury: 1 h, 6 h, and 24 h. Clip compression model was used for SCI. Rats in the ETA group were treated with 5 mg/kg of ETA immediately after the clip was removed. After 1, 6, and 24 h, the spinal cord was totally removed between the levels T8-T10. Sample tissue was immediately harvested and fixed for histopathological and electron microscopic examination and were analyzed for TNF-α, interleukin-1β (IL-1β), superoxide dismutase (SOD), adenosine deaminase, catalase (CAT), and malondialdehyde levels in both the tissue and serum. Results The serum and tissue levels of cytokines and enzymes were seen to change after SCI between hyperacute, acute, and subacute stages. Treatment with ETA selectively inhibited TNF-α, and IL-1β expression together with increased levels of antioxidative enzymes (SOD, CAT). Conclusion Early administration of ETA after SCI may remarkably attenuate neuronal injury by decreasing tissue and serum TNF-α and IL-1β levels, while increasing antioxidative enzymes such as SOD and CAT in subacute and acute stages, respectively.
Collapse
Affiliation(s)
- Askin Esen Hasturk
- Department of Neurosurgery, Oncology Training and Research Hospital, Ankara, Turkey
| | - Cagdas Baran
- Department of Cardiovascular Surgery, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Erdal Resit Yilmaz
- Department of Neurosurgery, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Murat Arikan
- Department of Orthopaedics and Traumatology, Oncology Training and Research Hospital, Ankara, Turkey
| | - Guray Togral
- Department of Orthopaedics and Traumatology, Oncology Training and Research Hospital, Ankara, Turkey
| | - Nazli Hayirli
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Berrin Imge Erguder
- Department of Biochemistry, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Oya Evirgen
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
8
|
Espinosa-Garcia C, Sayeed I, Yousuf S, Atif F, Sergeeva EG, Neigh GN, Stein DG. Stress primes microglial polarization after global ischemia: Therapeutic potential of progesterone. Brain Behav Immun 2017. [PMID: 28648389 DOI: 10.1016/j.bbi.2017.06.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the fact that stress is associated with increased risk of stroke and worsened outcome, most preclinical studies have ignored this comorbid factor, especially in the context of testing neuroprotective treatments. Preclinical research suggests that stress primes microglia, resulting in an enhanced reactivity to a subsequent insult and potentially increasing vulnerability to stroke. Ischemia-induced activated microglia can be polarized into a harmful phenotype, M1, which produces pro-inflammatory cytokines, or a protective phenotype, M2, which releases anti-inflammatory cytokines and neurotrophic factors. Selective modulation of microglial polarization by inhibiting M1 or stimulating M2 may be a potential therapeutic strategy for treating cerebral ischemia. Our laboratory and others have shown progesterone to be neuroprotective against ischemic stroke in rodents, but it is not known whether it will be as effective under a comorbid condition of chronic stress. Here we evaluated the neuroprotective effect of progesterone on the inflammatory response in the hippocampus after exposure to stress followed by global ischemia. We focused on the effects of microglial M1/M2 polarization and pro- and anti-inflammatory mediators in stressed ischemic animals. Male Sprague-Dawley rats were exposed to 8 consecutive days of social defeat stress and then subjected to global ischemia or sham surgery. The rats received intraperitoneal injections of progesterone (8mg/kg) or vehicle at 2h post-ischemia followed by subcutaneous injections at 6h and once every 24h post-injury for 7days. The animals were killed at 7 and 14days post-ischemia, and brains were removed and processed to assess outcome measures using histological, immunohistochemical and molecular biology techniques. Pre-ischemic stress (1) exacerbated neuronal loss and neurodegeneration as well as microglial activation in the selectively vulnerable CA1 hippocampal region, (2) dysregulated microglial polarization, leading to upregulation of both M1 and M2 phenotype markers, (3) increased pro-inflammatory cytokine expression, and (4) reduced anti-inflammatory cytokine and neurotrophic factor expression in the ischemic hippocampus. Treatment with progesterone significantly attenuated stress-induced microglia priming by modulating polarized microglia and the inflammatory environment in the hippocampus, the area most vulnerable to ischemic injury. Our findings can be taken to suggest that progesterone holds potential as a candidate for clinical testing in ischemic stroke where high stress may be a contributing factor.
Collapse
Affiliation(s)
| | - Iqbal Sayeed
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Seema Yousuf
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Fahim Atif
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Elena G Sergeeva
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Gretchen N Neigh
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, USA.
| | - Donald G Stein
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
9
|
Kozai TDY, Du Z, Gugel ZV, Smith MA, Chase SM, Bodily LM, Caparosa EM, Friedlander RM, Cui XT. Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays. J Neurosci Methods 2014; 242:15-40. [PMID: 25542351 DOI: 10.1016/j.jneumeth.2014.12.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Intracortical electrode arrays that can record extracellular action potentials from small, targeted groups of neurons are critical for basic neuroscience research and emerging clinical applications. In general, these electrode devices suffer from reliability and variability issues, which have led to comparative studies of existing and emerging electrode designs to optimize performance. Comparisons of different chronic recording devices have been limited to single-unit (SU) activity and employed a bulk averaging approach treating brain architecture as homogeneous with respect to electrode distribution. NEW METHOD In this study, we optimize the methods and parameters to quantify evoked multi-unit (MU) and local field potential (LFP) recordings in eight mice visual cortices. RESULTS These findings quantify the large recording differences stemming from anatomical differences in depth and the layer dependent relative changes to SU and MU recording performance over 6-months. For example, performance metrics in Layer V and stratum pyramidale were initially higher than Layer II/III, but decrease more rapidly. On the other hand, Layer II/III maintained recording metrics longer. In addition, chronic changes at the level of layer IV are evaluated using visually evoked current source density. COMPARISON WITH EXISTING METHOD(S) The use of MU and LFP activity for evaluation and tracking biological depth provides a more comprehensive characterization of the electrophysiological performance landscape of microelectrodes. CONCLUSIONS A more extensive spatial and temporal insight into the chronic electrophysiological performance over time will help uncover the biological and mechanical failure mechanisms of the neural electrodes and direct future research toward the elucidation of design optimization for specific applications.
Collapse
Affiliation(s)
- Takashi D Y Kozai
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States.
| | - Zhanhong Du
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States
| | - Zhannetta V Gugel
- Bioengineering, University of Pittsburgh, United States; Division of Biology and Biological Engineering, California Institute of Technology, United States
| | - Matthew A Smith
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States; Ophthalmology, University of Pittsburgh, United States
| | - Steven M Chase
- Center for the Neural Basis of Cognition, United States; Biomedical Engineering, Carnegie Mellon University, United States
| | - Lance M Bodily
- Neurological Surgery, University of Pittsburgh, United States
| | | | | | - X Tracy Cui
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States
| |
Collapse
|
10
|
Kronenberg G, Gertz K, Heinz A, Endres M. Of mice and men: modelling post-stroke depression experimentally. Br J Pharmacol 2014; 171:4673-89. [PMID: 24838087 DOI: 10.1111/bph.12775] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/21/2014] [Accepted: 05/04/2014] [Indexed: 12/14/2022] Open
Abstract
At least one-third of stroke survivors suffer from depression. The development of comorbid depression after stroke is clinically highly significant because post-stroke depression is associated with increased mortality, slows recovery and leads to worse functional outcomes. Here, we review the evidence that post-stroke depression can be effectively modelled in experimental rodents via a variety of approaches. This opens an exciting new window onto the neurobiology of depression and permits probing potential underlying mechanisms such as disturbed cellular plasticity, neuroendocrine dysregulation, neuroinflammation, and neurodegeneration in a novel context. From the point of view of translational stroke research, extending the scope of experimental investigations beyond the study of short-term end points and, in particular, acute lesion size, may help improve the relevance of preclinical results to human disease. Furthermore, accumulating evidence from both clinical and experimental studies offers the tantalizing prospect of 5-hydroxytryptaminergic antidepressants as the first pharmacological therapy for stroke that would be available during the subacute and chronic phases of recovery. Interdisciplinary neuropsychiatric research will be called on to dissect the mechanisms underpinning the beneficial effects of antidepressants on stroke recovery.
Collapse
Affiliation(s)
- G Kronenberg
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Berlin, Berlin, Germany; Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
11
|
The neurobiological pathogenesis of poststroke depression. ScientificWorldJournal 2014; 2014:521349. [PMID: 24744682 PMCID: PMC3973123 DOI: 10.1155/2014/521349] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/28/2014] [Indexed: 12/14/2022] Open
Abstract
Poststroke depression (PSD) is an important consequence after stroke, with negative impact on stroke outcome. The pathogenesis of PSD is complicated, with some special neurobiological mechanism, which mainly involves neuroanatomical, neuron, and biochemical factors and neurogenesis which interact in complex ways. Abundant studies suggested that large lesions in critical areas such as left frontal lobe and basal ganglia or accumulation of silent cerebral lesions might interrupt the pathways of monoamines or relevant pathways of mood control, thus leading to depression. Activation of immune system after stroke produces more cytokines which increase glutamate excitotoxicity, results in more cell deaths of critical areas and enlargement of infarctions, and, together with hypercortisolism induced by stress or inflammation after stroke which could decrease intracellular serotonin transporters, might be the key biochemical change of PSD. The interaction among cytokines, glucocorticoid, and neurotrophin results in the decrease of hippocampal neurogenesis which has been proved to be important for mood control and pharmaceutical effect of selective serotonin reuptake inhibitors and might be another promising pathway to understand the pathogenesis of PSD. In order to reduce the prevalence of PSD and improve the outcome of stroke, more relevant studies are still required to clarify the pathogenesis of PSD.
Collapse
|
12
|
Walker FR, Jones KA, Patience MJ, Zhao Z, Nilsson M. Stress as necessary component of realistic recovery in animal models of experimental stroke. J Cereb Blood Flow Metab 2014; 34:208-14. [PMID: 24326386 PMCID: PMC3915218 DOI: 10.1038/jcbfm.2013.211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/25/2013] [Accepted: 10/31/2013] [Indexed: 11/09/2022]
Abstract
Over the last decade there has been a considerable effort directed toward reformulating the standard approach taken to preclinically model stroke and stroke recovery. The principal objective of this undertaking has been to improve the success with which preclinical findings can be translated. Although several advancements have already been introduced, one potentially critical feature that appears to have been overlooked is psychological stress. Stroke is well recognized to produce high levels of stress in patients, and ongoing exposure to stress is recognized to deleteriously interfere with recovery. The presence of high levels of stress (distress) in stroke patients is also relevant because nearly all clinically deployed neurorestorative interventions occur against this background. Somewhat perplexingly, however, we could find no preclinical stroke studies concerned with investigating the efficacy of putative neurorestorative compounds that did so in the presence of stress. The following article will make the case that failure to recognize or compensate for the effects of ongoing stress in standard preclinical experimental models of recovery is likely to result in overestimation of the effectiveness of pharmacological or behavioral neurorestorative interventions.
Collapse
Affiliation(s)
- Frederick R Walker
- 1] School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia [2] Centre for Translational Neuroscience, Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia [3] Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, New South Wales, Australia
| | - Kimberley A Jones
- 1] School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia [2] Centre for Translational Neuroscience, Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia [3] Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, New South Wales, Australia
| | - Madeleine J Patience
- 1] School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia [2] Centre for Translational Neuroscience, Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia [3] Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, New South Wales, Australia
| | - Zidan Zhao
- 1] School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia [2] Centre for Translational Neuroscience, Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia [3] Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, New South Wales, Australia
| | - Michael Nilsson
- 1] Centre for Translational Neuroscience, Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia [2] Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
13
|
Abstract
Reperfusion of ischemic brain can reduce injury and improve outcome, but secondary injury due to inflammatory mechanisms limits the efficacy and time window of such treatments for stroke. This review summarizes the cellular and molecular basis of inflammation in ischemic injury as well as possible therapeutic strategies.
Collapse
Affiliation(s)
- Muzamil Ahmad
- Geriatric Research Educational and Clinical Center (00-GR-H), V.A. Pittsburgh Healthcare System, 7180 Highland Drive, Pittsburgh, PA 15206, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
14
|
Smith CJ, Lawrence CB, Rodriguez-Grande B, Kovacs KJ, Pradillo JM, Denes A. The immune system in stroke: clinical challenges and their translation to experimental research. J Neuroimmune Pharmacol 2013; 8:867-87. [PMID: 23673977 DOI: 10.1007/s11481-013-9469-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/28/2013] [Indexed: 12/27/2022]
Abstract
Stroke represents an unresolved challenge for both developed and developing countries and has a huge socio-economic impact. Although considerable effort has been made to limit stroke incidence and improve outcome, strategies aimed at protecting injured neurons in the brain have all failed. This failure is likely to be due to both the incompleteness of modelling the disease and its causes in experimental research, and also the lack of understanding of how systemic mechanisms lead to an acute cerebrovascular event or contribute to outcome. Inflammation has been implicated in all forms of brain injury and it is now clear that immune mechanisms profoundly influence (and are responsible for the development of) risk and causation of stroke, and the outcome following the onset of cerebral ischemia. Until very recently, systemic inflammatory mechanisms, with respect to common comorbidities in stroke, have largely been ignored in experimental studies. The main aim is therefore to understand interactions between the immune system and brain injury in order to develop novel therapeutic approaches. Recent data from clinical and experimental research clearly show that systemic inflammatory diseases -such as atherosclerosis, obesity, diabetes or infection - similar to stress and advanced age, are associated with dysregulated immune responses which can profoundly contribute to cerebrovascular inflammation and injury in the central nervous system. In this review, we summarize recent advances in the field of inflammation and stroke, focusing on the challenges of translation between pre-clinical and clinical studies, and potential anti-inflammatory/immunomodulatory therapeutic approaches.
Collapse
Affiliation(s)
- Craig J Smith
- Stroke and Vascular Research Centre, Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Science Centre, Salford Royal Foundation Trust, Salford M6 8HD, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Murray KN, Buggey HF, Denes A, Allan SM. Systemic immune activation shapes stroke outcome. Mol Cell Neurosci 2012; 53:14-25. [PMID: 23026562 DOI: 10.1016/j.mcn.2012.09.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 09/11/2012] [Accepted: 09/21/2012] [Indexed: 02/07/2023] Open
Abstract
Stroke is a major cause of morbidity and mortality, and activation of the immune system can impact on stroke outcome. Although the majority of research has focused on the role of the immune system after stroke there is increasing evidence to suggest that inflammation and immune activation prior to brain injury can influence stroke risk and outcome. With the high prevalence of co-morbidities in the Western world such as obesity, hypertension and diabetes, pre-existing chronic 'low-grade' systemic inflammation has become a customary characteristic of stroke pathophysiology that needs to be considered in the search for new therapies. The importance of the immune system in stroke has been demonstrated in a number of ways, both experimentally and in the clinical setting. This review will focus on the effect of immune activation arising from systemic inflammatory conditions and infection, how it affects the incidence and outcomes of stroke, and the possible underlying mechanisms involved. This article is part of a Special Issue entitled 'Neuroinflammation in neurodegeneration and neurodysfunction'.
Collapse
Affiliation(s)
- Katie N Murray
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
16
|
Stress and social isolation increase vulnerability to stroke. Exp Neurol 2012; 233:33-9. [DOI: 10.1016/j.expneurol.2011.01.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 01/24/2011] [Indexed: 01/18/2023]
|
17
|
Faraji J, Sutherland RJ, Metz GA. Stress precipitates functional deficits following striatal silent stroke: A synergistic effect. Exp Neurol 2011; 232:251-60. [DOI: 10.1016/j.expneurol.2011.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 09/03/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
|
18
|
Márquez L, García-Bueno B, Madrigal JLM, Leza JC. Mangiferin decreases inflammation and oxidative damage in rat brain after stress. Eur J Nutr 2011; 51:729-39. [PMID: 21986672 DOI: 10.1007/s00394-011-0252-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/26/2011] [Indexed: 01/03/2023]
Abstract
PURPOSE Stress exposure elicits neuroinflammation and oxidative damage in brain, and stress-related neurological and neuropsychiatric diseases have been associated with cell damage and death. Mangiferin (MAG) is a polyphenolic compound abundant in the stem bark of Mangifera indica L. with antioxidant and anti-inflammatory properties in different experimental settings. In this study, the capacity of MAG to prevent neuroinflammation and brain oxidative damage induced by stress exposure was investigated. METHODS Young-adult male Wistar rats immobilized during 6 h were administered by oral gavage with increasing doses of MAG (15, 30, and 60 mg/Kg), respectively, 7 days before stress. RESULTS Prior treatment with MAG prevented all of the following stress-induced effects: (1) increase in glucocorticoids (GCs) and interleukin-1β (IL-1β) plasma levels, (2) loss of redox balance and reduction in catalase brain levels, (3) increase in pro-inflammatory mediators, such as tumor necrosis factor alpha TNF-α and its receptor TNF-R1, nuclear factor-kappa B (NF-κB) and synthesis enzymes, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), (4) increase in lipid peroxidation. CONCLUSIONS These multifaceted protective effects suggest that MAG administration could be a new therapeutic strategy in neurological/neuropsychiatric pathologies in which hypothalamic/pituitary/adrenal (HPA) stress axis dysregulation, neuroinflammation, and oxidative damage take place in their pathophysiology.
Collapse
Affiliation(s)
- Lucía Márquez
- Department of Pharmacology, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | | | | |
Collapse
|
19
|
Prior exposure to glucocorticoids potentiates lipopolysaccharide induced mechanical allodynia and spinal neuroinflammation. Brain Behav Immun 2011; 25:1408-15. [PMID: 21536123 PMCID: PMC3166396 DOI: 10.1016/j.bbi.2011.04.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/16/2011] [Accepted: 04/18/2011] [Indexed: 01/07/2023] Open
Abstract
While stress and stress-induced glucocorticoids are classically considered immunosuppressive, they can also enhance proinflammatory responses to subsequent challenges. Corticosterone (CORT) primes rat immune cells, exacerbating pro-inflammatory responses to subsequent immune challenges. Stress can also sensitize pain. One possibility is that stress primes spinal immune cells, predominantly glia, which are key mediators in pain enhancement through their release of proinflammatory cytokines. Therefore, we aimed to identify whether prior CORT sensitizes spinal cord glia such that a potentiated pro-inflammatory response occurs to later intrathecal (IT) lipopolysaccharide (LPS), thereby enhancing pain. Rats received subcutaneous CORT/vehicle 24 h before IT LPS/vehicle. Hind paw pain thresholds were measured before CORT/vehicle, before and up to 48 h after IT LPS/vehicle. In separate rats treated as above, lumbar spinal cord tissue was collected and processed for proinflammatory mediators. CORT alone had no effect on pain responses, nor on any pro-inflammatory cytokines measured. LPS induced allodynia (decreased pain threshold) lasting <4 h and elevated spinal IL-1β and IL-6 protein. Prior CORT potentiated allodynia, lasting >24 h following LPS and potentiated spinal IL-1 and IL-6 protein. Coadministration of IL-1 receptor antagonist with LPS IT completely blocked the allodynia irrespective of whether the system was primed by CORT or not. At 24 h, TLR2, TLR4, MD2, and CD14 mRNAs were significantly elevated within the spinal cord in the CORT+LPS group compared to all other groups. Prior CORT before a direct spinal immune challenge is able to potentiate pain responses and pro-inflammatory cytokine production.
Collapse
|
20
|
Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M. In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:744-59. [PMID: 20828592 DOI: 10.1016/j.pnpbp.2010.08.026] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 08/28/2010] [Accepted: 08/29/2010] [Indexed: 12/13/2022]
Abstract
Recently, the inflammatory and neurodegenerative (I&ND) hypothesis of depression was formulated (Maes et al., 2009), i.e. the neurodegeneration and reduced neurogenesis that characterize depression are caused by inflammation, cell-mediated immune activation and their long-term sequels. The aim of this paper is to review the body of evidence that external stressors may induce (neuro)inflammation, neurodegeneration and reduced neurogenesis; and that antidepressive treatments may impact on these pathways. The chronic mild stress (CMS) and learned helplessness (LH) models show that depression-like behaviors are accompanied by peripheral and central inflammation, neuronal cell damage, decreased neurogenesis and apoptosis in the hippocampus. External stress-induced depression-like behaviors are associated with a) increased interleukin-(IL)1β, tumor necrosis factor-α, IL-6, nuclear factor κB, cyclooxygenase-2, expression of Toll-like receptors and lipid peroxidation; b) antineurogenic effects and reduced brain-derived neurotrophic factor (BDNF) levels; and c) apoptosis with reduced levels of Bcl-2 and BAG1 (Bcl-2 associated athanogene 1), and increased levels of caspase-3. Stress-induced inflammation, e.g. increased IL-1β, but not reduced neurogenesis, is sufficient to cause depression. Antidepressants a) reduce peripheral and central inflammatory pathways by decreasing IL-1β, TNFα and IL-6 levels; b) stimulate neuronal differentiation, synaptic plasticity, axonal growth and regeneration through stimulatory effects on the expression of different neurotrophic factors, e.g. trkB, the receptor for brain-derived neurotrophic factor; and c) attenuate apoptotic pathways by activating Bcl-2 and Bcl-xl proteins, and suppressing caspase-3. It is concluded that external stressors may provoke depression-like behaviors through activation of inflammatory, oxidative, apoptotic and antineurogenic mechanisms. The clinical efficacity of antidepressants may be ascribed to their ability to reverse these different pathways.
Collapse
Affiliation(s)
- Marta Kubera
- Department of Experimental Endocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Kraków, Poland.
| | | | | | | | | |
Collapse
|
21
|
Elucidating the Complex Interactions between Stress and Epileptogenic Pathways. Cardiovasc Psychiatry Neurol 2011; 2011:461263. [PMID: 21547249 PMCID: PMC3085328 DOI: 10.1155/2011/461263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 01/22/2011] [Indexed: 11/24/2022] Open
Abstract
Clinical and experimental data suggest that stress contributes to the pathology of epilepsy. We review mechanisms by which stress, primarily via stress hormones, may exacerbate epilepsy, focusing on the intersection between stress-induced pathways and the progression of pathological events that occur before, during, and after the onset of epileptogenesis. In addition to this temporal nuance, we discuss other complexities in stress-epilepsy interactions, including the role of blood-brain barrier dysfunction, neuron-glia interactions, and inflammatory/cytokine pathways that may be protective or damaging depending on context. We advocate the use of global analytical tools, such as microarray, in support of a shift away from a narrow focus on seizures and towards profiling the complex, early process of epileptogenesis, in which multiple pathways may interact to dictate the ultimate onset of chronic, recurring seizures.
Collapse
|
22
|
Adén U, Favrais G, Plaisant F, Winerdal M, Felderhoff-Mueser U, Lampa J, Lelièvre V, Gressens P. Systemic inflammation sensitizes the neonatal brain to excitotoxicity through a pro-/anti-inflammatory imbalance: key role of TNFalpha pathway and protection by etanercept. Brain Behav Immun 2010; 24:747-58. [PMID: 19861157 DOI: 10.1016/j.bbi.2009.10.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022] Open
Abstract
Systemic inflammation sensitizes the perinatal brain to an ischemic/excitotoxic insult but the mechanisms are poorly understood. We hypothesized that the mechanisms involve an imbalance between pro- and anti-inflammatory factors. A well characterized mouse model where a systemic injection of IL-1beta during the first five postnatal days (inflammatory insult) is combined with an intracerebral injection of the glutamatergic analogue ibotenate (excitotoxic insult) at postnatal day 5 was used. Following the inflammatory insult alone, there was a transient induction of IL-1beta and TNFalpha, compared with controls measured by quantitative PCR, ELISA, and Western blot. Following the combined inflammatory and excitotoxic insult, there was an induction of IL-1beta, TNFalpha, and IL-6 but not of IL-10 and TNFR1, indicating an altered pro-/anti-inflammatory balance after IL-1beta sensitized lesion. We then tested the hypothesis that the TNFalpha pathway plays a key role in the sensitization and insult using TNFalpha blockade (etanercept) and TNFalpha(-/-) mice. Etanercept given before the insult did not affect brain damage, but genetic deletion of TNFalpha or TNFalpha blockade by etanercept given after the combined inflammatory and excitotoxic insult reduced brain damage by 50%. We suggest this protective effect was centrally mediated, since systemic TNFalpha administration in the presence of an intact blood-brain barrier did not aggravate the damage and etanercept almost abolished cerebral TNFalpha production. In summary, sensitization was, at least partly, mediated by an imbalance between pro- and anti-inflammatory cytokines. Cerebral TNFalpha played a key role in mediating brain damage after the combined inflammatory and excitatory insult.
Collapse
|
23
|
Abstract
This review focuses on the role of ADAM-17 in disease. Since its debut as the tumor necrosis factor converting enzyme (TACE), ADAM-17 has been reported to be an indispensible regulator of almost every cellular event from proliferation to migration. The central role of ADAM-17 in cell regulation is rooted in its diverse array of substrates: cytokines, growth factors, and their receptors as well as adhesion molecules are activated or inactivated by their cleavage with ADAM-17. It is therefore not surprising that ADAM-17 is implicated in numerous human diseases including cancer, heart disease, diabetes, rheumatoid arthritis, kidney fibrosis, Alzheimer's disease, and is a promising target for future treatments. The specific role of ADAM-17 in the pathophysiology of these diseases is very complex and depends on the cellular context. To exploit the therapeutic potential of ADAM-17, it is important to understand how its activity is regulated and how specific organs and cells can be targeted to inactivate or activate the enzyme.
Collapse
Affiliation(s)
- Monika Gooz
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
24
|
Craft TKS, Devries AC. Vulnerability to stroke: implications of perinatal programming of the hypothalamic-pituitary-adrenal axis. Front Behav Neurosci 2009; 3:54. [PMID: 20057937 PMCID: PMC2802556 DOI: 10.3389/neuro.08.054.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 11/23/2009] [Indexed: 12/11/2022] Open
Abstract
Chronic stress is capable of exacerbating each major, modifiable, endogenous risk factor for cerebrovascular and cardiovascular disease. Indeed, exposure to stress can increase both the incidence and severity of stroke, presumably through activation of the hypothalamic-pituitary-adrenal (HPA) axis. Now that characterization of the mechanisms underlying epigenetic programming of the HPA axis is well underway, there has been renewed interest in examining the role of early environment on the evolution of health conditions across the entire lifespan. Indeed, neonatal manipulations in rodents that reduce stress responsivity, and subsequent life-time exposure to glucocorticoids, are associated with a reduction in the development of neuroendocrine, neuroanatomical, and cognitive dysfunctions that typically progress with age. Although improved day to day regulation of the HPA axis also may be accompanied by a decrease in stroke risk, evidence from rodent studies suggest that an associated cost could be increased susceptibility to inflammation and neuronal death in the event that a stroke does occur and the individual is exposed to persistently elevated corticosteroids. Given its importance in regulation of health and disease states, any long-term modulation of the HPA axis is likely to be associated with both benefits and potential risks. The goals of this review article are to examine (1) the clinical and experimental data suggesting that neonatal experiences can shape HPA axis regulation, (2) the influence of stress and the HPA axis on stroke incidence and severity, and (3) the potential for neonatal programming of the HPA axis to impact adult cerebrovascular health.
Collapse
Affiliation(s)
- Tara K S Craft
- Departments of Psychology, The Ohio State University Columbus, OH, USA
| | | |
Collapse
|
25
|
Sorrells SF, Caso JR, Munhoz CD, Sapolsky RM. The stressed CNS: when glucocorticoids aggravate inflammation. Neuron 2009; 64:33-9. [PMID: 19840546 DOI: 10.1016/j.neuron.2009.09.032] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glucocorticoids (GCs) are hormones released during the stress response that are well known for their immunosuppressive and anti-inflammatory properties; however, recent advances have uncovered situations wherein they have effects in the opposite direction. The CNS is a particularly interesting example, both because of its unique immune environment, and because GCs affect immune responses differently in different brain regions. In this minireview we discuss the contexts wherein GCs increase CNS inflammation and point out directions for future investigation.
Collapse
Affiliation(s)
- Shawn F Sorrells
- Department of Biological Sciences, Stanford University, Gilbert Lab MC 5020, Stanford, CA 94305-5020, USA.
| | | | | | | |
Collapse
|
26
|
Metallic gold reduces TNFα expression, oxidative DNA damage and pro-apoptotic signals after experimental brain injury. Brain Res 2009; 1271:103-13. [DOI: 10.1016/j.brainres.2009.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/12/2009] [Accepted: 03/12/2009] [Indexed: 11/21/2022]
|
27
|
Synthesis of lipoxin A4 by 5-lipoxygenase mediates PPARgamma-dependent, neuroprotective effects of rosiglitazone in experimental stroke. J Neurosci 2009; 29:3875-84. [PMID: 19321784 DOI: 10.1523/jneurosci.5529-08.2009] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Peroxisome proliferator-activated receptors gamma (PPARgamma) are nuclear receptors with essential roles as transcriptional regulators of glucose and lipid homeostasis. PPARgamma are also potent anti-inflammatory receptors, a property that contributes to the neuroprotective effects of PPARgamma agonists in experimental stroke. The mechanism of these beneficial actions, however, is not fully elucidated. Therefore, we have explored further the actions of the PPARgamma agonist rosiglitazone in experimental stroke induced by permanent middle cerebral artery occlusion (MCAO) in rodents. Rosiglitazone induced brain 5-lipoxygenase (5-LO) expression in ischemic rat brain, concomitantly with neuroprotection. Rosiglitazone also increased cerebral lipoxin A(4) (LXA(4)) levels and inhibited MCAO-induced production of leukotriene B4 (LTB(4)). Furthermore, pharmacological inhibition and/or genetic deletion of 5-LO inhibited rosiglitazone-induced neuroprotection and downregulation of inflammatory gene expression, LXA(4) synthesis and PPARgamma transcriptional activity in rodents. Finally, LXA(4) caused neuroprotection, which was partly inhibited by the PPARgamma antagonist T0070907, and increased PPARgamma transcriptional activity in isolated nuclei, showing for the first time that LXA(4) has PPARgamma agonistic actions. Altogether, our data illustrate that some effects of rosiglitazone are attributable to de novo synthesis of 5-LO, able to induce a switch from the synthesis of proinflammatory LTB(4) to the synthesis of the proresolving LXA(4). Our study suggests novel lines of study such as the interest of lipoxin-like anti-inflammatory drugs or the use of these molecules as prognostic and/or diagnostic markers for pathologies in which inflammation is involved, such as stroke.
Collapse
|
28
|
Fries M, Stoppe C, Brücken D, Rossaint R, Kuhlen R. Influence of mild therapeutic hypothermia on the inflammatory response after successful resuscitation from cardiac arrest. J Crit Care 2009; 24:453-7. [PMID: 19327318 DOI: 10.1016/j.jcrc.2008.10.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/29/2008] [Accepted: 10/26/2008] [Indexed: 11/24/2022]
Abstract
PURPOSE Although animal studies document conflicting data on the influence of hypothermia on cytokine release in various settings, no data exist if hypothermia affects the inflammatory response after successful cardiopulmonary resuscitation. MATERIALS AND METHODS Arrest- and treatment-related variables of 71 patients were documented, and serum samples were analyzed for levels of interleukin 6, tumor necrosis factor-alpha, C-reactive protein, and procalcitonin immediately after hospital admission and after 6, 24, and 120 hours. At day 14, patients were dichotomized in those with good and bad neurological outcome. RESULTS Regardless of outcomes, interleukin 6 levels were significantly elevated by the use of hypothermia (n = 39). The rate of bacterial colonization was significantly higher in hypothermic patients (64.1 vs 12.5 %; P < .001). On the contrary, procalcitonin levels were, independent of the use of hypothermia, only significantly elevated in patients with bad neurological outcome. Hypothermic patients showed a strong trend to reduced mortality. However, there was no influence on neurological recovery. CONCLUSIONS In this observational study, hypothermia influenced the inflammatory response after cardiopulmonary resuscitation and lead to a higher rate of bacterial colonization without altering ultimate neurologic recovery.
Collapse
Affiliation(s)
- Michael Fries
- Department of Anesthesiology, University Hospital RWTH Aachen, 52074 Aachen, Germany.
| | | | | | | | | |
Collapse
|
29
|
Caso JR, Hurtado O, Pereira MP, García-Bueno B, Menchén L, Alou L, Gómez-Lus ML, Moro MA, Lizasoain I, Leza JC. Colonic bacterial translocation as a possible factor in stress-worsening experimental stroke outcome. Am J Physiol Regul Integr Comp Physiol 2009; 296:R979-85. [PMID: 19193944 DOI: 10.1152/ajpregu.90825.2008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stress is known to be one of the risk factors of stroke, but only a few experimental studies have examined the possible mechanisms by which prior stress may affect stroke outcome. In stroke patients, infections impede neurological recovery and increase morbidity as well as mortality. We previously reported that stress induces a bacterial translocation and that prior immobilization stress worsens experimental stroke outcome through mechanisms that involve inflammatory mediators such as release of proinflammatory cytokines and enzyme activation. We now investigate whether bacterial translocation from the intestinal flora of rats with stress before experimental ischemia is involved in stroke outcome. We used an experimental paradigm consisting of exposure of Fischer rats to repeated immobilization sessions before permanent middle cerebral artery occlusion (MCAO). The presence of bacteria and the levels and expression of different mediators involved in the bacterial translocation were analyzed. Our results indicate that stress before stroke is related to the presence of bacteria in different organs (mesenteric nodes, spleen, liver, and lung) after MCAO and increases inflammatory colonic parameters (such as cyclooxygenase-2, inducible nitric oxide synthase, and myeloperoxidase), but decreases colonic immunoglobulin A, and these results are correlated with colonic inflammation and bacterial translocation. Understanding the implication of bacterial translocation during stress-induced stroke worsening is of great potential clinical relevance, given the high incidence of infections after severe stroke and their main role in mortality and morbidity in stroke patients.
Collapse
Affiliation(s)
- Javier R Caso
- Department of Pharmacology, Univesity Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
McColl BW, Allan SM, Rothwell NJ. Systemic infection, inflammation and acute ischemic stroke. Neuroscience 2008; 158:1049-61. [PMID: 18789376 DOI: 10.1016/j.neuroscience.2008.08.019] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 12/16/2022]
Abstract
Extensive evidence implicates inflammation in multiple phases of stroke etiology and pathology. In particular, there is growing awareness that inflammatory events outside the brain have an important impact on stroke susceptibility and outcome. Numerous conditions, including infection and chronic non-infectious diseases, that are established risk factors for stroke are associated with an elevated systemic inflammatory profile. Recent clinical and pre-clinical studies support the concept that the systemic inflammatory status prior to and at the time of stroke is a key determinant of acute outcome and long-term prognosis. Here, we provide an overview of the impact of systemic inflammation on stroke susceptibility and outcome. We discuss potential mechanisms underlying the impact on ischemic brain injury and highlight the implications for stroke prevention, therapy and modeling.
Collapse
Affiliation(s)
- B W McColl
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK.
| | | | | |
Collapse
|
31
|
García-Bueno B, Caso JR, Leza JC. Stress as a neuroinflammatory condition in brain: Damaging and protective mechanisms. Neurosci Biobehav Rev 2008; 32:1136-51. [DOI: 10.1016/j.neubiorev.2008.04.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 04/02/2008] [Accepted: 04/02/2008] [Indexed: 01/07/2023]
|
32
|
Caso JR, Pradillo JM, Hurtado O, Leza JC, Moro MA, Lizasoain I. Toll-like receptor 4 is involved in subacute stress-induced neuroinflammation and in the worsening of experimental stroke. Stroke 2008; 39:1314-20. [PMID: 18309167 DOI: 10.1161/strokeaha.107.498212] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Psychological stress causes an inflammatory response in the brain and is able to exacerbate brain damage caused by experimental stroke. We previously reported that subacute immobilization stress in mice worsens stroke outcome through mechanisms that involve inflammatory mechanisms, such as accumulation of oxidative/nitrosative mediators and expression of inducible nitric oxide synthase and cyclooxygenase-2 in the brain. Some of these inflammatory mediators could be regulated by innate immunity, the activation of which takes place in the brain and produces an inflammatory response mediated by toll-like receptors (TLRs). Recently, we described the implications of TLR4 in ischemic injury, but the role of TLR4 in stress has not yet been examined. We therefore investigated whether inflammation produced by immobilization stress differs in mice that lack a functional TLR4 signaling pathway. METHODS We used an experimental paradigm consisting of the exposure of mice to repeated immobilization sessions (1 hour daily for 7 days) before permanent middle cerebral artery occlusion. RESULTS We found that TLR4-deficient mice subjected to subacute stress had a better behavioral condition compared with normal mice (C3H/HeN) and that this effect was associated with a minor inflammatory response (cyclooxygenase-2 and inducible nitric oxide synthase expression) and lipid peroxidation (malondialdehyde levels) in brain tissue. Furthermore, previous exposure to stress was followed by a smaller infarct volume after permanent middle cerebral artery occlusion in TLR4-deficient mice than in mice that express TLR4 normally. CONCLUSIONS Our results indicate that TLR4 is involved in the inflammatory response after subacute stress and its exacerbating effect on stroke. These data implicate the effects of innate immunity on inflammation and damage in the brain after stroke.
Collapse
Affiliation(s)
- Javier R Caso
- Facultad de Medicina, Universidad Complutense Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Campbell SJ, Jiang Y, Davis AEM, Farrands R, Holbrook J, Leppert D, Anthony DC. Immunomodulatory effects of etanercept in a model of brain injury act through attenuation of the acute-phase response. J Neurochem 2007; 103:2245-55. [PMID: 17883399 DOI: 10.1111/j.1471-4159.2007.04928.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
TNF-alpha has proved to be a successful target in the treatment of many peripheral inflammatory diseases, but the same interventions worsen immune-mediated CNS disease. However, anti-TNF-alpha strategies may offer promise as therapy for non-immune CNS injury. In this study, we have microinjected IL-1beta or lipopolysaccharide (LPS) into the rat brain as a simple model of brain injury and have systemically administered the TNF-alpha antagonist etanercept to discover whether hepatic TNF-alpha, produced as part of the acute-phase response to CNS injury, modulates the inflammatory response in the brain. We report a significant reduction in neutrophil numbers recruited to the IL-1beta- or LPS-challenged brain as a result of TNF-alpha inhibition. We also show an attenuation in the levels of hepatic mRNA including TNF-alpha mRNA and of TNF-alpha-induced genes, such as the chemokines CCL-2, CXCL-5, and CXCL-10, although other chemokines elevated by the injury were not significantly changed. The reduction in hepatic chemokine synthesis results in reduced numbers of circulating neutrophils, and also a reduction in the numbers recruited to the liver as a consequence of brain injury. These findings suggest that TNF-alpha inhibitors may reduce CNS inflammatory responses by targeting the hepatic acute-phase response, and thus therapies for brain injury need not cross the blood-brain barrier to be effective.
Collapse
Affiliation(s)
- Sandra J Campbell
- Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Caso JR, Moro MA, Lorenzo P, Lizasoain I, Leza JC. Involvement of IL-1beta in acute stress-induced worsening of cerebral ischaemia in rats. Eur Neuropsychopharmacol 2007; 17:600-7. [PMID: 17363226 DOI: 10.1016/j.euroneuro.2007.02.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/25/2006] [Accepted: 02/06/2007] [Indexed: 11/25/2022]
Abstract
Stress is known to be one of the risk factors of stroke. Most of the knowledge on the effects of stress on cerebrovascular disease in humans is restricted to catecholamines and glucocorticoids effects on blood pressure and/or development of atherosclerosis. However, few experimental studies have examined the possible mechanisms by which stress may affect stroke outcome. We have used an acute stress protocol consisting of the exposure of male Fischer rats to an acute, single exposure immobilisation protocol (6 h) prior to permanent middle cerebral artery occlusion (MCAO), and we have found that stress worsens behavioural and neurological outcomes and increased infarct size after MCAO. The possible regulatory role of the TNFalpha and IL-1beta was studied by looking at the release of these cytokines in brain. The results of the present study showed an increase in IL-1beta release in cerebral cortex after exposure to acute stress. Brain levels of IL-1beta are also higher in previously stressed MCAO rats than in MCAO animals without stress. Pharmacological blockade of IL-1beta with an antibody anti-IL-1beta led to a decrease in the infarct size as well as in neurological and behavioural deficits after MCAO. In summary, our results indicate that IL-1beta, but not TNFalpha, accounts at least partly for the worsening of MCAO consequences in brain of rats exposed to acute stress.
Collapse
Affiliation(s)
- Javier R Caso
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|