1
|
Ghasemi M, Mehranfard N. Neuroprotective actions of norepinephrine in neurological diseases. Pflugers Arch 2024; 476:1703-1725. [PMID: 39136758 DOI: 10.1007/s00424-024-02999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 10/09/2024]
Abstract
Precise control of norepinephrine (NE) levels and NE-receptor interaction is crucial for proper function of the brain. Much evidence for this view comes from experimental studies that indicate an important role for NE in the pathophysiology and treatment of various conditions, including cognitive dysfunction, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and sleep disorders. NE provides neuroprotection against several types of insults in multiple ways. It abrogates oxidative stress, attenuates neuroinflammatory responses in neurons and glial cells, reduces neuronal and glial cell activity, promotes autophagy, and ameliorates apoptotic responses to a variety of insults. It is beneficial for the treatment of neurodegenerative diseases because it improves the generation of neurotrophic factors, promotes neuronal survival, and plays an important role in the regulation of adult neurogenesis. This review aims to present the evidence supporting a principal role for NE in neuroprotection, and molecular mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Nanokadeh Darooee Samen Private Joint Stock Company, Shafa Street, Urmia, 5715793731, Iran.
| |
Collapse
|
2
|
Russo M, De Rosa MA, Calisi D, Consoli S, Evangelista G, Dono F, Santilli M, Granzotto A, Onofrj M, Sensi SL. Migraine Pharmacological Treatment and Cognitive Impairment: Risks and Benefits. Int J Mol Sci 2022; 23:11418. [PMID: 36232720 PMCID: PMC9569564 DOI: 10.3390/ijms231911418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Migraine is a common neurological disorder impairing the quality of life of patients. The condition requires, as an acute or prophylactic line of intervention, the frequent use of drugs acting on the central nervous system (CNS). The long-term impact of these medications on cognition and neurodegeneration has never been consistently assessed. The paper reviews pharmacological migraine treatments and discusses their biological and clinical effects on the CNS. The different anti-migraine drugs show distinct profiles concerning neurodegeneration and the risk of cognitive deficits. These features should be carefully evaluated when prescribing a pharmacological treatment as many migraineurs are of scholar or working age and their performances may be affected by drug misuse. Thus, a reconsideration of therapy guidelines is warranted. Furthermore, since conflicting results have emerged in the relationship between migraine and dementia, future studies must consider present and past pharmacological regimens as potential confounding factors.
Collapse
Affiliation(s)
- Mirella Russo
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Matteo A. De Rosa
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Dario Calisi
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Consoli
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giacomo Evangelista
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Fedele Dono
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Matteo Santilli
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alberto Granzotto
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Onofrj
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano L. Sensi
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Institute for Mind Impairments and Neurological Disorders-iMIND, University of California, Irvine, Irvine, CA 92697, USA
- ITAB—Institute of Advanced Biomedical Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
3
|
Sobolczyk M, Boczek T. Astrocytic Calcium and cAMP in Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:889939. [PMID: 35663426 PMCID: PMC9161693 DOI: 10.3389/fncel.2022.889939] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/05/2022] [Indexed: 12/18/2022] Open
Abstract
It is commonly accepted that the role of astrocytes exceeds far beyond neuronal scaffold and energy supply. Their unique morphological and functional features have recently brough much attention as it became evident that they play a fundamental role in neurotransmission and interact with synapses. Synaptic transmission is a highly orchestrated process, which triggers local and transient elevations in intracellular Ca2+, a phenomenon with specific temporal and spatial properties. Presynaptic activation of Ca2+-dependent adenylyl cyclases represents an important mechanism of synaptic transmission modulation. This involves activation of the cAMP-PKA pathway to regulate neurotransmitter synthesis, release and storage, and to increase neuroprotection. This aspect is of paramount importance for the preservation of neuronal survival and functionality in several pathological states occurring with progressive neuronal loss. Hence, the aim of this review is to discuss mutual relationships between cAMP and Ca2+ signaling and emphasize those alterations at the Ca2+/cAMP crosstalk that have been identified in neurodegenerative disorders, such as Alzheimer's and Parkinson's disease.
Collapse
|
4
|
Chami M, Checler F. Targeting Post-Translational Remodeling of Ryanodine Receptor: A New Track for Alzheimer's Disease Therapy? Curr Alzheimer Res 2021; 17:313-323. [PMID: 32096743 DOI: 10.2174/1567205017666200225102941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/08/2020] [Accepted: 02/24/2020] [Indexed: 01/20/2023]
Abstract
Pathologic calcium (Ca2+) signaling linked to Alzheimer's Disease (AD) involves the intracellular Ca2+ release channels/ryanodine receptors (RyRs). RyRs are macromolecular complexes where the protein-protein interactions between RyRs and several regulatory proteins impact the channel function. Pharmacological and genetic approaches link the destabilization of RyRs macromolecular complexes to several human pathologies including brain disorders. In this review, we discuss our recent data, which demonstrated that enhanced neuronal RyR2-mediated Ca2+ leak in AD is associated with posttranslational modifications (hyperphosphorylation, oxidation, and nitrosylation) leading to RyR2 macromolecular complex remodeling, and dissociation of the stabilizing protein Calstabin2 from the channel. We describe RyR macromolecular complex structure and discuss the molecular mechanisms and signaling cascade underlying neuronal RyR2 remodeling in AD. We provide evidence linking RyR2 dysfunction with β-adrenergic signaling cascade that is altered in AD. RyR2 remodeling in AD leads to histopathological lesions, alteration of synaptic plasticity, learning and memory deficits. Targeting RyR macromolecular complex remodeling should be considered as a new therapeutic window to treat/or prevent AD setting and/or progression.
Collapse
Affiliation(s)
- Mounia Chami
- Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, F-06560, France.,CNRS, IPMC, Sophia Antipolis, F-06560, France
| | - Frédéric Checler
- Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, F-06560, France.,CNRS, IPMC, Sophia Antipolis, F-06560, France
| |
Collapse
|
5
|
Chami M, Checler F. Alterations of the Endoplasmic Reticulum (ER) Calcium Signaling Molecular Components in Alzheimer's Disease. Cells 2020; 9:cells9122577. [PMID: 33271984 PMCID: PMC7760721 DOI: 10.3390/cells9122577] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Sustained imbalance in intracellular calcium (Ca2+) entry and clearance alters cellular integrity, ultimately leading to cellular homeostasis disequilibrium and cell death. Alzheimer’s disease (AD) is the most common cause of dementia. Beside the major pathological features associated with AD-linked toxic amyloid beta (Aβ) and hyperphosphorylated tau (p-tau), several studies suggested the contribution of altered Ca2+ handling in AD development. These studies documented physical or functional interactions of Aβ with several Ca2+ handling proteins located either at the plasma membrane or in intracellular organelles including the endoplasmic reticulum (ER), considered the major intracellular Ca2+ pool. In this review, we describe the cellular components of ER Ca2+ dysregulations likely responsible for AD. These include alterations of the inositol 1,4,5-trisphosphate receptors’ (IP3Rs) and ryanodine receptors’ (RyRs) expression and function, dysfunction of the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) activity and upregulation of its truncated isoform (S1T), as well as presenilin (PS1, PS2)-mediated ER Ca2+ leak/ER Ca2+ release potentiation. Finally, we highlight the functional consequences of alterations of these ER Ca2+ components in AD pathology and unravel the potential benefit of targeting ER Ca2+ homeostasis as a tool to alleviate AD pathogenesis.
Collapse
Affiliation(s)
- Mounia Chami
- Correspondence: ; Tel.: +33-4939-53457; Fax: +33-4939-53408
| | | |
Collapse
|
6
|
|
7
|
Byman E, Schultz N, Blom AM, Wennström M. A Potential Role for α-Amylase in Amyloid-β-Induced Astrocytic Glycogenolysis and Activation. J Alzheimers Dis 2020; 68:205-217. [PMID: 30775997 DOI: 10.3233/jad-180997] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Astrocytes produce and store the energy reserve glycogen. However, abnormal large glycogen units accumulate if the production or degradation of glycogen is disturbed, a finding often seen in patients with Alzheimer's disease (AD). We have shown increased activity of glycogen degrading α-amylase in AD patients and α-amylase positive glial cells adjacent to AD characteristic amyloid-β (Aβ) plaques. OBJECTIVES Investigate the role of α-amylase in astrocytic glycogenolysis in presence of Aβ. METHODS Presence of α-amylase and large glycogen units in postmortem entorhinal cortex from AD patients and non-demented controls were analyzed by immunohistological stainings. Impact of different Aβ42 aggregation forms on enzymatic activity (α-amylase, pyruvate kinase, and lactate dehydrogenase), lactate secretion, and accumulation of large glycogen units in cultured astrocytes were analyzed by activity assays, ELISA, and immunocytochemistry, respectively. RESULTS AD patients showed increased number of α-amylase positive glial cells. The glial cells co-expressed the astrocytic marker glial fibrillary acidic protein, displayed hypertrophic features, and increased amount of large glycogen units. We further found increased load of large glycogen units, α-amylase immunoreactivity and α-amylase activity in cultured astrocytes stimulated with fibril Aβ42, with increased pyruvate kinase activity, but unaltered lactate release as downstream events. The fibril Aβ42-induced α-amylase activity was attenuated by β-adrenergic receptor antagonist propranolol. DISCUSSION We hypothesize that astrocytes respond to fibril Aβ42 in Aβ plaques by increasing their α-amylase production to either liberate energy or regulate functions needed in reactive processes. These findings indicate α-amylase as an important actor involved in AD associated neuroinflammation.
Collapse
Affiliation(s)
- Elin Byman
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | - Nina Schultz
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | | | - Anna M Blom
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Malin Wennström
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| |
Collapse
|
8
|
Wu H, Wei S, Huang Y, Chen L, Wang Y, Wu X, Zhang Z, Pei Y, Wang D. Aβ monomer induces phosphorylation of Tau at Ser-214 through β2AR-PKA-JNK signaling pathway. FASEB J 2020; 34:5092-5105. [PMID: 32067279 DOI: 10.1096/fj.201902230rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with synaptic dysfunction, pathological accumulation of β-amyloid peptide 1-42 (Aβ1-42 ), and neuronal loss. The self-association of Aβ1-42 monomers (Aβ-M) into soluble oligomers seems to be crucial for the development of neurotoxicity. Previous publications have shown that Aβ oligomers and dimers might play key roles in inducing AD. The role of Aβ-M was rarely investigated and still unclear in AD. To understand the effects of Aβ-M on neurons and other cell types in the brain could be the key to understand its function. In our study, we found that Aβ-M expression slowly induced cell apoptosis within 48 hours after transfection, β2 adrenergic receptor (β2AR) interacted with Aβ-M in the pull-down and the yeast two-hybrid assays, and Aβ-M played a major role in inducing phosphorylation of Tau at Ser-214, c-Jun N-terminal kinase (JNK) at Thr-183/Tyr-185, p70 ribosomal protein S6 kinase (p70S6K) at Thr-389. We also discovered that β2AR, G protein-coupled receptor kinase 2 (GRK2), and protein kinase A (PKA) mediated the phosphorylation of Tau and JNK. Aβ-M induced phosphorylation of Tau at Ser-214 through both β2AR-cAMP/PKA-JNK and β2AR-GRK signaling pathways. Mitogen-activated protein kinase kinase (MEK) mediated the phosphorylation of p70S6K induced by Aβ-M.
Collapse
Affiliation(s)
- Hao Wu
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Shuangshuang Wei
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Yonglin Huang
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Lintao Chen
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Yuerong Wang
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Xinli Wu
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Zhuandan Zhang
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Yechun Pei
- Department of Veterinary Sciences, College of Animal Sciences, Hainan University, Hainan, China
| | - Dayong Wang
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan, China
| |
Collapse
|
9
|
Morgese MG, Trabace L. Monoaminergic System Modulation in Depression and Alzheimer's Disease: A New Standpoint? Front Pharmacol 2019; 10:483. [PMID: 31156428 PMCID: PMC6533589 DOI: 10.3389/fphar.2019.00483] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022] Open
Abstract
The prevalence of depression has dramatically increased, and it has been estimated that over 300 million people suffer from depression all over the world. Depression is highly comorbid with many central and peripheral disorders. In this regard, depressive states have been associated with the development of neurological disorders such as Alzheimer's disease (AD). Accordingly, depression is a risk factor for AD and depressive symptomatology is common in pre-clinical AD, representing an early manifestation of this disease. Neuropsychiatric symptoms may represent prodromal symptoms of dementia deriving from neurobiological changes in specific cerebral regions; thus, the search for common biological substrates is becoming an imperative and intriguing field of research. Soluble forms of beta amyloid peptide (Aβ) have been implicated both in the development of early memory deficits and neuropsychiatric symptoms. Indeed, soluble Aβ species have been shown to induce a depressive-like phenotype in AD animal models. Alterations in monoamine content are a common feature of these neuropathologies. Interestingly, serotonergic system modulation has been implicated in alteration of Aβ production. In addition, noradrenaline is considered crucially involved in compensatory mechanisms, leading to increased Aβ degradation via several mechanisms, including microglia modulation. In further agreement, antidepressant drugs have also been shown to potentially modulate cognitive symptoms in AD and depression. Thus, the present review summarizes the main knowledge about biological and pathological substrates, such as monoamine and related molecules, commonly involved in AD and depression pathology, thus shading light on new therapeutic approaches.
Collapse
Affiliation(s)
- Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
10
|
Tang H, Ma M, Wu Y, Deng M, Hu F, Almansoub H, Huang H, Wang D, Zhou L, Wei N, Man H, Lu Y, Liu D, Zhu L. Activation of MT2 receptor ameliorates dendritic abnormalities in Alzheimer's disease via C/EBPα/miR-125b pathway. Aging Cell 2019; 18:e12902. [PMID: 30706990 PMCID: PMC6413662 DOI: 10.1111/acel.12902] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/26/2018] [Accepted: 12/16/2018] [Indexed: 01/24/2023] Open
Abstract
Impairments of dendritic trees and spines have been found in many neurodegenerative diseases, including Alzheimer's disease (AD), in which the deficits of melatonin signal pathway were reported. Melatonin receptor 2 (MT2) is widely expressed in the hippocampus and mediates the biological functions of melatonin. It is known that melatonin application is protective to dendritic abnormalities in AD. However, whether MT2 is involved in the neuroprotection and the underlying mechanisms are not clear. Here, we first found that MT2 is dramatically reduced in the dendritic compartment upon the insult of oligomer Aβ. MT2 activation prevented the Aβ-induced disruption of dendritic complexity and spine. Importantly, activation of MT2 decreased cAMP, which in turn inactivated transcriptional factor CCAAT/enhancer-binding protein α(C/EBPα) to suppress miR-125b expression and elevate the expression of its target, GluN2A. In addition, miR-125b mimics fully blocked the protective effects of MT2 activation on dendritic trees and spines. Finally, injection of a lentivirus containing a miR-125b sponge into the hippocampus of APP/PS1 mice effectively rescued the dendritic abnormalities and learning/memory impairments. Our data demonstrated that the cAMP-C/EBPα/miR-125b/GluN2A signaling pathway is important to the neuroprotective effects of MT2 activation in Aβ-induced dendritic injuries and learning/memory disorders, providing a novel therapeutic target for the treatment of AD synaptopathy.
Collapse
Affiliation(s)
- Hui Tang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Mei Ma
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Ying Wu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Man‐Fei Deng
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Fan Hu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Hasan.a.m.m. Almansoub
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - He‐Zhou Huang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Ding‐Qi Wang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Lan‐Ting Zhou
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Na Wei
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Pathology, School of Basic MedicineZhengzhou UniversityZhengzhouChina
| | - Hengye Man
- Department of BiologyBoston UniversityBostonMassachusetts
| | - Youming Lu
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Dan Liu
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
- Department of Genetics, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ling‐Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
11
|
Chernick D, Ortiz-Valle S, Jeong A, Swaminathan SK, Kandimalla KK, Rebeck GW, Li L. High-density lipoprotein mimetic peptide 4F mitigates amyloid-β-induced inhibition of apolipoprotein E secretion and lipidation in primary astrocytes and microglia. J Neurochem 2018; 147:647-662. [PMID: 30028014 DOI: 10.1111/jnc.14554] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/26/2018] [Accepted: 07/14/2018] [Indexed: 01/06/2023]
Abstract
The apolipoprotein E (apoE) ε4 allele is the primary genetic risk factor for late-onset Alzheimer's disease (AD). ApoE in the brain is produced primarily by astrocytes; once secreted from these cells, apoE binds lipids and forms high-density lipoprotein (HDL)-like particles. Accumulation of amyloid-β protein (Aβ) in the brain is a key hallmark of AD, and is thought to initiate a pathogenic cascade leading to neurodegeneration and dementia. The level and lipidation state of apoE affect Aβ aggregation and clearance pathways. Elevated levels of plasma HDL are associated with lower risk and severity of AD; the underlying mechanisms, however, have not been fully elucidated. This study was designed to investigate the impact of an HDL mimetic peptide, 4F, on the secretion and lipidation of apoE. We found that 4F significantly increases apoE secretion and lipidation in primary human astrocytes as well as in primary mouse astrocytes and microglia. Aggregated Aβ inhibits glial apoE secretion and lipidation, causing accumulation of intracellular apoE, an effect that is counteracted by co-treatment with 4F. Pharmacological and gene editing approaches show that 4F mediates its effects partially through the secretory pathway from the endoplasmic reticulum to the Golgi apparatus and requires the lipid transporter ATP-binding cassette transporter A1. We conclude that the HDL mimetic peptide 4F promotes glial apoE secretion and lipidation and mitigates the detrimental effects of Aβ on proper cellular trafficking and functionality of apoE. These findings suggest that treatment with such an HDL mimetic peptide may provide therapeutic benefit in AD. Read the Editorial Highlight for this article on page 580.
Collapse
Affiliation(s)
- Dustin Chernick
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Suresh K Swaminathan
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karunya K Kandimalla
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Ling Li
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Jang C, Yadav DK, Subedi L, Venkatesan R, Venkanna A, Afzal S, Lee E, Yoo J, Ji E, Kim SY, Kim MH. Identification of novel acetylcholinesterase inhibitors designed by pharmacophore-based virtual screening, molecular docking and bioassay. Sci Rep 2018; 8:14921. [PMID: 30297729 PMCID: PMC6175823 DOI: 10.1038/s41598-018-33354-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/06/2018] [Indexed: 11/30/2022] Open
Abstract
In this study, pharmacophore based 3D QSAR models for human acetylcholinesterase (AChE) inhibitors were generated, with good significance, statistical values (r2training = 0.73) and predictability (q2training = 0.67). It was further validated by three methods (Fischer's test, decoy set and Güner-Henry scoring method) to show that the models can be used to predict the biological activities of compounds without costly and time-consuming synthesis. The criteria for virtual screening were also validated by testing the selective AChE inhibitors. Virtual screening experiments and subsequent in vitro evaluation of promising hits revealed a novel and selective AChE inhibitor. Thus, the findings reported herein may provide a new strategy for the discovery of selective AChE inhibitors. The IC50 value of compounds 5c and 6a presented selective inhibition of AChE without inhibiting butyrylcholinesterase (BChE) at uM level. Molecular docking studies were performed to explain the potent AChE inhibition of the target compounds studies to explain high affinity.
Collapse
Affiliation(s)
- Cheongyun Jang
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
| | - Dharmendra K Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
| | - Lalita Subedi
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
| | - Ramu Venkatesan
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
| | - Arramshetti Venkanna
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
| | - Sualiha Afzal
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
| | - Eunhee Lee
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
| | - Jaewook Yoo
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
| | - Eunhee Ji
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
| | - Mi-Hyun Kim
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea.
| |
Collapse
|
13
|
Lacampagne A, Liu X, Reiken S, Bussiere R, Meli AC, Lauritzen I, Teich AF, Zalk R, Saint N, Arancio O, Bauer C, Duprat F, Briggs CA, Chakroborty S, Stutzmann GE, Shelanski ML, Checler F, Chami M, Marks AR. Post-translational remodeling of ryanodine receptor induces calcium leak leading to Alzheimer's disease-like pathologies and cognitive deficits. Acta Neuropathol 2017. [PMID: 28631094 DOI: 10.1007/s00401-017-1733-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms underlying ryanodine receptor (RyR) dysfunction associated with Alzheimer disease (AD) are still not well understood. Here, we show that neuronal RyR2 channels undergo post-translational remodeling (PKA phosphorylation, oxidation, and nitrosylation) in brains of AD patients, and in two murine models of AD (3 × Tg-AD, APP +/- /PS1 +/-). RyR2 is depleted of calstabin2 (KFBP12.6) in the channel complex, resulting in endoplasmic reticular (ER) calcium (Ca2+) leak. RyR-mediated ER Ca2+ leak activates Ca2+-dependent signaling pathways, contributing to AD pathogenesis. Pharmacological (using a novel RyR stabilizing drug Rycal) or genetic rescue of the RyR2-mediated intracellular Ca2+ leak improved synaptic plasticity, normalized behavioral and cognitive functions and reduced Aβ load. Genetically altered mice with congenitally leaky RyR2 exhibited premature and severe defects in synaptic plasticity, behavior and cognitive function. These data provide a mechanism underlying leaky RyR2 channels, which could be considered as potential AD therapeutic targets.
Collapse
|
14
|
Bussiere R, Lacampagne A, Reiken S, Liu X, Scheuerman V, Zalk R, Martin C, Checler F, Marks AR, Chami M. Amyloid β production is regulated by β2-adrenergic signaling-mediated post-translational modifications of the ryanodine receptor. J Biol Chem 2017; 292:10153-10168. [PMID: 28476886 PMCID: PMC5473221 DOI: 10.1074/jbc.m116.743070] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 05/02/2017] [Indexed: 11/06/2022] Open
Abstract
Alteration of ryanodine receptor (RyR)-mediated calcium (Ca2+) signaling has been reported in Alzheimer disease (AD) models. However, the molecular mechanisms underlying altered RyR-mediated intracellular Ca2+ release in AD remain to be fully elucidated. We report here that RyR2 undergoes post-translational modifications (phosphorylation, oxidation, and nitrosylation) in SH-SY5Y neuroblastoma cells expressing the β-amyloid precursor protein (βAPP) harboring the familial double Swedish mutations (APPswe). RyR2 macromolecular complex remodeling, characterized by depletion of the regulatory protein calstabin2, resulted in increased cytosolic Ca2+ levels and mitochondrial oxidative stress. We also report a functional interplay between amyloid β (Aβ), β-adrenergic signaling, and altered Ca2+ signaling via leaky RyR2 channels. Thus, post-translational modifications of RyR occur downstream of Aβ through a β2-adrenergic signaling cascade that activates PKA. RyR2 remodeling in turn enhances βAPP processing. Importantly, pharmacological stabilization of the binding of calstabin2 to RyR2 channels, which prevents Ca2+ leakage, or blocking the β2-adrenergic signaling cascade reduced βAPP processing and the production of Aβ in APPswe-expressing SH-SY5Y cells. We conclude that targeting RyR-mediated Ca2+ leakage may be a therapeutic approach to treat AD.
Collapse
Affiliation(s)
- Renaud Bussiere
- From the Université Côte d'Azur, CNRS, IPMC, France, "Labex Distalz," 660 route des Lucioles, 06560 Sophia-Antipolis, Valbonne, France
| | - Alain Lacampagne
- INSERM U1046, CNRS UMR9214, CNRS LIA1185, Université de Montpellier, CHRU Montpellier, 34295 Montpellier, France, and
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Xiaoping Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Valerie Scheuerman
- INSERM U1046, CNRS UMR9214, CNRS LIA1185, Université de Montpellier, CHRU Montpellier, 34295 Montpellier, France, and
| | - Ran Zalk
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Cécile Martin
- From the Université Côte d'Azur, CNRS, IPMC, France, "Labex Distalz," 660 route des Lucioles, 06560 Sophia-Antipolis, Valbonne, France
| | - Frederic Checler
- From the Université Côte d'Azur, CNRS, IPMC, France, "Labex Distalz," 660 route des Lucioles, 06560 Sophia-Antipolis, Valbonne, France
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Mounia Chami
- From the Université Côte d'Azur, CNRS, IPMC, France, "Labex Distalz," 660 route des Lucioles, 06560 Sophia-Antipolis, Valbonne, France,
| |
Collapse
|
15
|
Morgese MG, Colaianna M, Mhillaj E, Zotti M, Schiavone S, D'Antonio P, Harkin A, Gigliucci V, Campolongo P, Trezza V, De Stradis A, Tucci P, Cuomo V, Trabace L. Soluble beta amyloid evokes alteration in brain norepinephrine levels: role of nitric oxide and interleukin-1. Front Neurosci 2015; 9:428. [PMID: 26594145 PMCID: PMC4633524 DOI: 10.3389/fnins.2015.00428] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/21/2015] [Indexed: 12/31/2022] Open
Abstract
Strong evidence showed neurotoxic properties of beta amyloid (Aβ) and its pivotal role in the Alzheimer's disease (AD) pathogenesis. Beside, experimental data suggest that Aβ may have physiological roles considering that such soluble peptide is produced and secreted during normal cellular activity. There is now suggestive evidence that neurodegenerative conditions, like AD, involve nitric oxide (NO) in their pathogenesis. Nitric oxide also possess potent neuromodulatory actions in brain regions, such as prefrontal cortex (PFC), hippocampus (HIPP), and nucleus accumbens (NAC). In the present study, we evaluated the effect of acute Aβ injection on norepinephrine (NE) content before and after pharmacological manipulations of nitrergic system in above mentioned areas. Moreover, effects of the peptide on NOS activity were evaluated. Our data showed that 2 h after i.c.v. soluble Aβ administration, NE concentrations were significantly increased in the considered areas along with increased iNOS activity. Pre-treatment with NOS inhibitors, 7-Nitroindazole (7-NI), and N6-(1-iminoethyl)-L-lysine-dihydrochloride (L-NIL), reversed Aβ-induced changes. Ultimately, pharmacological block of interleukin1 (IL-1) receptors prevented NE increase in all brain regions. Taken together our findings suggest that NO and IL-1 are critically involved in regional noradrenergic alterations induced by soluble Aβ injection.
Collapse
Affiliation(s)
- Maria G Morgese
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Marilena Colaianna
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy ; Department of Pathology and Immunology, University of Geneva Geneva, Switzerland
| | - Emanuela Mhillaj
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy ; Department of Physiology and Pharmacology, La Sapienza, University of Rome Rome, Italy
| | - Margherita Zotti
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Palma D'Antonio
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College Dublin Dublin, Ireland
| | - Valentina Gigliucci
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College Dublin Dublin, Ireland
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, La Sapienza, University of Rome Rome, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Department of Science, University "Roma Tre," Rome, Italy
| | - Angelo De Stradis
- Department of Bio Agro-Food Sciences, The Institute of Sustainable Plant Protection, National Research Council Bari, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology, La Sapienza, University of Rome Rome, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| |
Collapse
|
16
|
The Binding Receptors of Aβ: an Alternative Therapeutic Target for Alzheimer's Disease. Mol Neurobiol 2014; 53:455-471. [PMID: 25465238 DOI: 10.1007/s12035-014-8994-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/06/2014] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, which causes the deterioration of memory and other cognitive abilities of the elderly. Previous lines of research have shown that Aβ is an essential factor in AD pathology and the soluble oligomeric species of Aβ peptide is presumed to be the drivers of synaptic impairment in AD. However, the exact mechanisms underlying Aβ-induced synapse dysfunction are still not fully understood. Recently, increasing evidence suggests that some potential receptors which bind specifically with Aβ may play important roles in inducing the toxicity of the neurons in AD pathology. These receptors include the cellular prion protein (PrPc), the α7 nicotinic acetylcholine receptor (α7nAChR), the p75 neurotrophin receptor (p75(NTR)), the beta-adrenergic receptors (β-ARs), the Eph receptors, the paired immunoglobulin-like receptor B (PirB), the PirB's human ortholog receptor (LilrB2), and the Fcγ receptor II-b (FcγRIIb). This review summarizes the characters of these prominent receptors and how the bindings of them with Aβ inhibit the LTP, decrease the number of dendritic spine, damage the neurons, and so on in AD pathogenesis. Blocking or rescuing these receptors may have significant importance for AD treatments.
Collapse
|
17
|
Wood WG, Li L, Müller WE, Eckert GP. Cholesterol as a causative factor in Alzheimer's disease: a debatable hypothesis. J Neurochem 2014; 129:559-72. [PMID: 24329875 PMCID: PMC3999290 DOI: 10.1111/jnc.12637] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/24/2013] [Accepted: 12/09/2013] [Indexed: 12/17/2022]
Abstract
High serum/plasma cholesterol levels have been suggested as a risk factor for Alzheimer's disease (AD). Some reports, mostly retrospective epidemiological studies, have observed a decreased prevalence of AD in patients taking the cholesterol lowering drugs, statins. The strongest evidence causally linking cholesterol to AD is provided by experimental studies showing that adding/reducing cholesterol alters amyloid precursor protein (APP) and amyloid beta-protein (Ab) levels. However, there are problems with the cholesterol-AD hypothesis. Cholesterol levels in serum/plasma and brain of AD patients do not support cholesterol as a causative factor in AD.Prospective studies on statins and AD have largely failed to show efficacy. Even the experimental data are open to interpretation given that it is well-established that modification of cholesterol levels has effects on multiple proteins, not only amyloid precursor protein and Ab. The purpose of this review, therefore, was to examine the above-mentioned issues, discuss the pros and cons of the cholesterol-AD hypothesis, involvement of other lipids in the mevalonate pathway, and consider that AD may impact cholesterol homeostasis.
Collapse
Affiliation(s)
- W. Gibson Wood
- Geriatric Research, Education and Clinical Center, VAMC, Department of Pharmacology, University of Minnesota School of Medicine, Minneapolis, MN 55455 USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Walter E. Müller
- Department of Pharmacology, Biocenter Niederursel, Goethe University, Max-von-Laue-St. 9, 60438 Frankfurt, Germany
| | - Gunter P. Eckert
- Department of Pharmacology, Biocenter Niederursel, Goethe University, Max-von-Laue-St. 9, 60438 Frankfurt, Germany
| |
Collapse
|
18
|
Cheng X, Wu J, Geng M, Xiong J. Role of synaptic activity in the regulation of amyloid beta levels in Alzheimer's disease. Neurobiol Aging 2013; 35:1217-32. [PMID: 24368087 DOI: 10.1016/j.neurobiolaging.2013.11.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 11/03/2013] [Accepted: 11/24/2013] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Accumulation of amyloid-beta (Aβ) peptides is regarded as the critical component associated with AD pathogenesis, which is derived from the amyloid precursor protein (APP) cleavage. Recent studies suggest that synaptic activity is one of the most important factors that regulate Aβ levels. It has been found that synaptic activity facilitates APP internalization and influences APP cleavage. Glutamatergic, cholinergic, serotonergic, leptin, adrenergic, orexin, and gamma-amino butyric acid receptors, as well as the activity-regulated cytoskeleton-associated protein (Arc) are all involved in these processes. The present review summarizes the evidence for synaptic activity-modulated Aβ levels and the mechanisms underlying this regulation. Interestingly, the immediate early gene product Arc may also be the downstream signaling molecule of several receptors in the synaptic activity-modulated Aβ levels. Elucidating how Aβ levels are regulated by synaptic activity may provide new insights in both the understanding of the pathogenesis of AD and in the development of therapies to slow down the progression of AD.
Collapse
Affiliation(s)
- Xiaofang Cheng
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jian Wu
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Miao Geng
- Institute of Geriatrics, General Hospital of Chinese PLA, Beijing, China
| | - Jiaxiang Xiong
- Department of Physiology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
19
|
Wang D, Fu Q, Zhou Y, Xu B, Shi Q, Igwe B, Matt L, Hell JW, Wisely EV, Oddo S, Xiang YK. β2 adrenergic receptor, protein kinase A (PKA) and c-Jun N-terminal kinase (JNK) signaling pathways mediate tau pathology in Alzheimer disease models. J Biol Chem 2013; 288:10298-307. [PMID: 23430246 DOI: 10.1074/jbc.m112.415141] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer disease (AD) is characterized by neurodegeneration marked by loss of synapses and spines associated with hyperphosphorylation of tau protein. Accumulating amyloid β peptide (Aβ) in brain is linked to neurofibrillary tangles composed of hyperphosphorylated tau in AD. Here, we identify β2-adrenergic receptor (β2AR) that mediates Aβ-induced tau pathology. In the prefrontal cortex (PFC) of 1-year-old transgenic mice with human familial mutant genes of presenilin 1 and amyloid precursor protein (PS1/APP), the phosphorylation of tau at Ser-214 Ser-262 and Thr-181, and the protein kinases including JNK, GSK3α/β, and Ca(2+)/calmodulin-dependent protein kinase II is increased significantly. Deletion of the β2AR gene in PS1/APP mice greatly decreases the phosphorylation of these proteins. Further analysis reveals that in primary PFC neurons, Aβ signals through a β2AR-PKA-JNK pathway, which is responsible for most of the phosphorylation of tau at Ser-214 and Ser-262 and a significant portion of phosphorylation at Thr-181. Aβ also induces a β2AR-dependent arrestin-ERK1/2 activity that does not participate in phosphorylation of tau. However, inhibition of the activity of MEK, an upstream enzyme of ERK1/2, partially blocks Aβ-induced tau phosphorylation at Thr-181. The density of dendritic spines and synapses is decreased in the deep layer of the PFC of 1-year-old PS1/APP mice, and the mice exhibit impairment of learning and memory in a novel object recognition paradigm. Deletion of the β2AR gene ameliorates pathological effects in these senile PS1/APP mice. The study indicates that β2AR may represent a potential therapeutic target for preventing the development of AD.
Collapse
Affiliation(s)
- Dayong Wang
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rossello XS, Igbavboa U, Weisman GA, Sun GY, Wood WG. AP-2β regulates amyloid beta-protein stimulation of apolipoprotein E transcription in astrocytes. Brain Res 2012; 1444:87-95. [PMID: 22325097 DOI: 10.1016/j.brainres.2012.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/04/2012] [Accepted: 01/08/2012] [Indexed: 02/04/2023]
Abstract
Two key players involved in Alzheimer's disease (AD) are amyloid beta protein (Aβ) and apolipoprotein E (apoE). Aβ increases apoE protein levels in astrocytes which is associated with cholesterol trafficking, neuroinflammatory responses and Aβ clearance. The mechanism for the increase in apoE protein abundance is not understood. Based on different lines of evidence, we propose that the beta-adrenergic receptor (βAR), cAMP and the transcription factor activator protein-2 (AP-2) are contributors to the Aβ-induced increase in apoE abundance. This hypothesis was tested in mouse primary astrocytes and in cells transfected with an apoE promoter fragment with binding sites for AP-2. Aβ(42) induced a time-dependent increase in apoE mRNA and protein levels which were significantly inhibited by βAR antagonists. A novel finding was that Aβ incubation significantly reduced AP-2α levels and significantly increased AP-2β levels in the nuclear fraction. The impact of Aβ-induced translocation of AP-2 into the nucleus was demonstrated in cells expressing AP-2 and incubated with Aβ(42). AP-2 expressing cells had enhanced activation of the apoE promoter region containing AP-2 binding sites in contrast to AP-2 deficient cells. The transcriptional upregulation of apoE expression by Aβ(42) may be a neuroprotective response to Aβ-induced cytotoxicity, consistent with apoE's role in cytoprotection.
Collapse
Affiliation(s)
- Ximena S Rossello
- Department of Pharmacology, University of Minnesota School of Medicine, Geriatric Research Education and Clinical Center, VAMC, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
21
|
Wang D, Yuen EY, Zhou Y, Yan Z, Xiang YK. Amyloid beta peptide-(1-42) induces internalization and degradation of beta2 adrenergic receptors in prefrontal cortical neurons. J Biol Chem 2011; 286:31852-63. [PMID: 21757762 DOI: 10.1074/jbc.m111.244335] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence indicates that amyloid β peptide (Aβ) initially induces subtle alterations in synaptic function in Alzheimer disease. We have recently shown that Aβ binds to β(2) adrenergic receptor (β(2)AR) and activates protein kinase A (PKA) signaling for glutamatergic regulation of synaptic activities. Here we show that in the cerebrums of mice expressing human familial mutant presenilin 1 and amyloid precursor protein genes, the levels of β(2)AR are drastically reduced. Moreover, Aβ induces internalization of transfected human β(2)AR in fibroblasts and endogenous β(2)AR in primary prefrontal cortical neurons. In fibroblasts, Aβ treatment also induces transportation of β(2)AR into lysosome, and prolonged Aβ treatment causes β(2)AR degradation. The Aβ-induced β(2)AR internalization requires the N terminus of the receptor containing the peptide binding sites and phosphorylation of β(2)AR by G protein-coupled receptor kinase, not by PKA. However, the G protein-coupled receptor kinase phosphorylation of β(2)AR and the receptor internalization are much slower than that induced by βAR agonist isoproterenol. The Aβ-induced β(2)AR internalization is also dependent on adaptor protein arrestin 3 and GTPase dynamin, but not arrestin 2. Functionally, pretreatment of primary prefrontal cortical neurons with Aβ induces desensitization of β(2)AR, which leads to attenuated response to subsequent stimulation with isoproterenol, including decreased cAMP levels, PKA activities, PKA phosphorylation of serine 845 on α-amino-2,3-dihydro-5-methyl-3-oxo-4-isoxazolepropanoic acid (AMPA) receptor subunit 1 (GluR1), and AMPA receptor-mediated miniature excitatory postsynaptic currents. This study indicates that Aβ induces β(2)AR internalization and degradation leading to impairment of adrenergic and glutamatergic activities.
Collapse
Affiliation(s)
- Dayong Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
22
|
Wang D, Xiang YK. β-adrenergic receptor, amyloid β-peptide, and Alzheimer's disease. CURRENT TOPICS IN MEMBRANES 2011; 67:205-28. [PMID: 21771492 DOI: 10.1016/b978-0-12-384921-2.00010-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dayong Wang
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | |
Collapse
|
23
|
Yu JT, Wang ND, Ma T, Jiang H, Guan J, Tan L. Roles of β-adrenergic receptors in Alzheimer's disease: implications for novel therapeutics. Brain Res Bull 2010; 84:111-7. [PMID: 21129453 DOI: 10.1016/j.brainresbull.2010.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/01/2010] [Accepted: 11/04/2010] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD), the most common cause of age-related dementia, is a progressive neurodegenerative disorder with an enormous unmet medical need. In recent years, several unexpected longitudinal and cross-sectional epidemiological studies reveal that beta-blockers treatment reduces the prevalence of AD in patients suffering from hypertension. Now, a newly population-based study of individuals with incident AD demonstrates that beta-blockers are also associated with delay of functional decline. Furthermore, accumulated convincing evidences from cell culture experiments and animal studies have also suggested that β-adrenergic receptors (β-ARs) may involve in the AD pathogenesis through effects on amyloid-β (Aβ) production or inflammation. This review explores clinical and experimental studies that might help to explain the roles of β-ARs in the AD pathogenesis and the potential underlying mechanisms and whether treatment with β-ARs antagonists provides a new therapeutic option for AD.
Collapse
Affiliation(s)
- Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province 266071, PR China
| | | | | | | | | | | |
Collapse
|
24
|
Wang D, Govindaiah G, Liu R, De Arcangelis V, Cox CL, Xiang YK. Binding of amyloid beta peptide to beta2 adrenergic receptor induces PKA-dependent AMPA receptor hyperactivity. FASEB J 2010; 24:3511-21. [PMID: 20395454 PMCID: PMC2923357 DOI: 10.1096/fj.10-156661] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/25/2010] [Indexed: 11/11/2022]
Abstract
Progressive decrease in neuronal function is an established feature of Alzheimer's disease (AD). Previous studies have shown that amyloid beta (Abeta) peptide induces acute increase in spontaneous synaptic activity accompanied by neurotoxicity, and Abeta induces excitotoxic neuronal death by increasing calcium influx mediated by hyperactive alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. An in vivo study has revealed subpopulations of hyperactive neurons near Abeta plaques in mutant amyloid precursor protein (APP)-transgenic animal model of Alzheimer's disease (AD) that can be normalized by an AMPA receptor antagonist. In the present study, we aim to determine whether soluble Abeta acutely induces hyperactivity of AMPA receptors by a mechanism involving beta(2) adrenergic receptor (beta(2)AR). We found that the soluble Abeta binds to beta(2)AR, and the extracellular N terminus of beta(2)AR is critical for the binding. The binding is required to induce G-protein/cAMP/protein kinase A (PKA) signaling, which controls PKA-dependent phosphorylation of GluR1 and beta(2)AR, and AMPA receptor-mediated excitatory postsynaptic currents (EPSCs). beta(2)AR and GluR1 also form a complex comprising postsynaptic density protein 95 (PSD95), PKA and its anchor AKAP150, and protein phosphotase 2A (PP2A). Both the third intracellular (i3) loop and C terminus of beta(2)AR are required for the beta(2)AR/AMPA receptor complex. Abeta acutely induces PKA phosphorylation of GluR1 in the complex without affecting the association between two receptors. The present study reveals that non-neurotransmitter Abeta has a binding capacity to beta(2)AR and induces PKA-dependent hyperactivity in AMPA receptors.
Collapse
Affiliation(s)
- Dayong Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, 407 S. Goodwin Ave., Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
25
|
Laureys G, Clinckers R, Gerlo S, Spooren A, Wilczak N, Kooijman R, Smolders I, Michotte Y, De Keyser J. Astrocytic beta(2)-adrenergic receptors: from physiology to pathology. Prog Neurobiol 2010; 91:189-99. [PMID: 20138112 DOI: 10.1016/j.pneurobio.2010.01.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 12/07/2009] [Accepted: 01/27/2010] [Indexed: 12/24/2022]
Abstract
Evidence accumulates for a key role of the beta(2)-adrenergic receptors in the many homeostatic and neuroprotective functions of astrocytes, including glycogen metabolism, regulation of immune responses, release of neurotrophic factors, and the astrogliosis that occurs in response to neuronal injury. A dysregulation of the astrocytic beta(2)-adrenergic-pathway is suspected to contribute to the physiopathology of a number of prevalent and devastating neurological conditions such as multiple sclerosis, Alzheimer's disease, human immunodeficiency virus encephalitis, stroke and hepatic encephalopathy. In this review we focus on the physiological functions of astrocytic beta(2)-adrenergic receptors, and their possible impact in disease states.
Collapse
Affiliation(s)
- Guy Laureys
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Igbavboa U, Sun GY, Weisman GA, He Y, Wood WG. Amyloid beta-protein stimulates trafficking of cholesterol and caveolin-1 from the plasma membrane to the Golgi complex in mouse primary astrocytes. Neuroscience 2009; 162:328-38. [PMID: 19401218 PMCID: PMC3083247 DOI: 10.1016/j.neuroscience.2009.04.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/03/2009] [Accepted: 04/20/2009] [Indexed: 11/19/2022]
Abstract
The Golgi complex plays a key role in cholesterol trafficking in cells. Our earlier study demonstrated amyloid beta-protein (Abeta) alters cholesterol distribution and abundance in the Golgi complex of astrocytes. We now test the hypothesis that the Abeta-induced increase in Golgi complex cholesterol is due to retrograde movement of the cholesterol carrier protein caveolin-1 from the cell plasma membrane to the Golgi complex in astrocytes. Results with mouse primary astrocytes indicated that Abeta(1-42)-induced increase in cholesterol and caveolin abundance in the Golgi complex was accompanied by a reduction in cholesterol and caveolin levels in the plasma membrane. Transfected rat astrocytes (DITNC1) with siRNA directed at caveolin-1 mRNA inhibited the Abeta(1-42)-induced redistribution of both cholesterol and caveolin from the plasma membrane to the Golgi complex. In astrocytes not treated with Abeta(1-42), suppression of caveolin-1 expression also significantly reduced cholesterol abundance in the Golgi complex, further demonstrating the role for caveolin in retrograde transport of cholesterol from the plasma membrane to the Golgi complex. Perturbation of this process by Abeta(1-42) could have consequences on membrane structure and cellular functions requiring optimal levels of cholesterol.
Collapse
Affiliation(s)
- U Igbavboa
- Department of Pharmacology, University of Minnesota School of Medicine and Geriatric Research, Education and Clinical Center, VA Medical Center, 6-120 Jackson Hall, 321 Church Street Southeast, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
27
|
Yu JT, Tan L, Ou JR, Zhu JX, Liu K, Song JH, Sun YP. Polymorphisms at the β2-adrenergic receptor gene influence Alzheimer's disease susceptibility. Brain Res 2008; 1210:216-22. [DOI: 10.1016/j.brainres.2008.03.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 11/26/2022]
|
28
|
Madrigal JLM, Kalinin S, Richardson JC, Feinstein DL. Neuroprotective actions of noradrenaline: effects on glutathione synthesis and activation of peroxisome proliferator activated receptor delta. J Neurochem 2007; 103:2092-101. [PMID: 17854349 DOI: 10.1111/j.1471-4159.2007.04888.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The endogenous neurotransmitter noradrenaline (NA) can protect neurons from the toxic consequences of various inflammatory stimuli, however the exact mechanisms of neuroprotection are not well known. In the current study, we examined neuroprotective effects of NA in primary cultures of rat cortical neurons. Exposure to oligomeric amyloid beta (Abeta) 1-42 peptide induced neuronal damage revealed by increased staining with fluorojade, and toxicity assessed by LDH release. Abeta-dependent neuronal death did not involve neuronal expression of the inducible nitric oxide synthase 2 (NOS2), since Abeta did not induce nitrite production from neurons, LDH release was not reduced by co-incubation with NOS2 inhibitors, and neurotoxicity was similar in wildtype and NOS2 deficient neurons. Co-incubation with NA partially reduced Abeta-induced neuronal LDH release, and completely abrogated the increase in fluorojade staining. Treatment of neurons with NA increased expression of gamma-glutamylcysteine ligase, reduced levels of GSH peroxidase, and increased neuronal GSH levels. The neuroprotective effects of NA were partially blocked by co-treatment with an antagonist of peroxisome proliferator activated receptors (PPARs), and replicated by incubation with a selective PPARdelta (PPARdelta) agonist. NA also increased expression and activation of PPARdelta. Together these data demonstrate that NA can protect neurons from Abeta-induced damage, and suggest that its actions may involve activation of PPARdelta and increases in GSH production.
Collapse
Affiliation(s)
- Jose L M Madrigal
- Department of Anesthesiology, University of Illinois & Jesse Brown Veteran's Affairs Hospital, Chicago, Illinois, USA
| | | | | | | |
Collapse
|