1
|
|
2
|
Frye SA, Lång E, Beyene GT, Balasingham SV, Homberset H, Rowe AD, Ambur OH, Tønjum T. The Inner Membrane Protein PilG Interacts with DNA and the Secretin PilQ in Transformation. PLoS One 2015; 10:e0134954. [PMID: 26248334 PMCID: PMC4527729 DOI: 10.1371/journal.pone.0134954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/15/2015] [Indexed: 11/19/2022] Open
Abstract
Expression of type IV pili (Tfp), filamentous appendages emanating from the bacterial surface, is indispensable for efficient neisserial transformation. Tfp pass through the secretin pore consisting of the membrane protein PilQ. PilG is a polytopic membrane protein, conserved in Gram-positive and Gram-negative bacteria, that is required for the biogenesis of neisserial Tfp. PilG null mutants are devoid of pili and non-competent for transformation. Here, recombinant full-length, truncated and mutated variants of meningococcal PilG were overexpressed, purified and characterized. We report that meningococcal PilG directly binds DNA in vitro, detected by both an electromobility shift analysis and a solid phase overlay assay. PilG DNA binding activity was independent of the presence of the consensus DNA uptake sequence. PilG-mediated DNA binding affinity was mapped to the N-terminus and was inactivated by mutation of residues 43 to 45. Notably, reduced meningococcal transformation of DNA in vivo was observed when PilG residues 43 to 45 were substituted by alanine in situ, defining a biologically significant DNA binding domain. N-terminal PilG also interacted with the N-terminal region of PilQ, which previously was shown to bind DNA. Collectively, these data suggest that PilG and PilQ in concert bind DNA during Tfp-mediated transformation.
Collapse
Affiliation(s)
- Stephan A. Frye
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Emma Lång
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | - Ole Herman Ambur
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- Department of Microbiology, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Gianchecchi E, Torelli A, Piccini G, Piccirella S, Montomoli E. Neisseria meningitidisinfection: who, when and where? Expert Rev Anti Infect Ther 2015; 13:1249-63. [DOI: 10.1586/14787210.2015.1070096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Nagelhus EA, Amiry-Moghaddam M, Bergersen LH, Bjaalie JG, Eriksson J, Gundersen V, Leergaard TB, Morth JP, Storm-Mathisen J, Torp R, Walhovd KB, Tønjum T. The glia doctrine: addressing the role of glial cells in healthy brain ageing. Mech Ageing Dev 2013; 134:449-59. [PMID: 24141107 DOI: 10.1016/j.mad.2013.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 01/14/2023]
Abstract
Glial cells in their plurality pervade the human brain and impact on brain structure and function. A principal component of the emerging glial doctrine is the hypothesis that astrocytes, the most abundant type of glial cells, trigger major molecular processes leading to brain ageing. Astrocyte biology has been examined using molecular, biochemical and structural methods, as well as 3D brain imaging in live animals and humans. Exosomes are extracelluar membrane vesicles that facilitate communication between glia, and have significant potential for biomarker discovery and drug delivery. Polymorphisms in DNA repair genes may indirectly influence the structure and function of membrane proteins expressed in glial cells and predispose specific cell subgroups to degeneration. Physical exercise may reduce or retard age-related brain deterioration by a mechanism involving neuro-glial processes. It is most likely that additional information about the distribution, structure and function of glial cells will yield novel insight into human brain ageing. Systematic studies of glia and their functions are expected to eventually lead to earlier detection of ageing-related brain dysfunction and to interventions that could delay, reduce or prevent brain dysfunction.
Collapse
Affiliation(s)
- Erlend A Nagelhus
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway; Centre for Molecular Medicine Norway (NCMM), The Nordic EMBL Partnership, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Rasmussen LJ, Shiloh Y, Bergersen LH, Sander M, Bohr VA, Tønjum T. DNA damage response, bioenergetics, and neurological disease: the challenge of maintaining brain health in an aging human population. Mech Ageing Dev 2013; 134:427-33. [PMID: 23665461 PMCID: PMC5903438 DOI: 10.1016/j.mad.2013.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Lene Juel Rasmussen
- Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel
| | - Linda H. Bergersen
- Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark
- Department of Anatomy, Centre for Molecular Biology and Neuroscience, University of Oslo, Norway
| | | | - Vilhelm A. Bohr
- Department of Molecular Gerontology, National Institute on Aging, National Institutes of Health, USA
| | - Tone Tønjum
- Centre for Molecular Biology and Neuroscience, Department of Microbiology, University of Oslo, Norway
- Centre for Molecular Biology and Neuroscience, Department of Microbiology, Oslo University Hospital, Norway
| |
Collapse
|
6
|
Seitz P, Blokesch M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol Rev 2012; 37:336-63. [PMID: 22928673 DOI: 10.1111/j.1574-6976.2012.00353.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/27/2012] [Accepted: 08/21/2012] [Indexed: 12/23/2022] Open
Abstract
Bacterial genomics is flourishing, as whole-genome sequencing has become affordable, readily available and rapid. As a result, it has become clear how frequently horizontal gene transfer (HGT) occurs in bacteria. The potential implications are highly significant because HGT contributes to several processes, including the spread of antibiotic-resistance cassettes, the distribution of toxin-encoding phages and the transfer of pathogenicity islands. Three modes of HGT are recognized in bacteria: conjugation, transduction and natural transformation. In contrast to the first two mechanisms, natural competence for transformation does not rely on mobile genetic elements but is driven solely by a developmental programme in the acceptor bacterium. Once the bacterium becomes competent, it is able to take up DNA from the environment and to incorporate the newly acquired DNA into its own chromosome. The initiation and duration of competence differ significantly among bacteria. In this review, we outline the latest data on representative naturally transformable Gram-negative bacteria and how their competence windows differ. We also summarize how environmental cues contribute to the initiation of competence in a subset of naturally transformable Gram-negative bacteria and how the complexity of the niche might dictate the fine-tuning of the competence window.
Collapse
Affiliation(s)
- Patrick Seitz
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
7
|
Zelmer A, Martin MJ, Gundogdu O, Birchenough G, Lever R, Wren BW, Luzio JP, Taylor PW. Administration of capsule-selective endosialidase E minimizes upregulation of organ gene expression induced by experimental systemic infection with Escherichia coli K1. MICROBIOLOGY-SGM 2010; 156:2205-2215. [PMID: 20395269 DOI: 10.1099/mic.0.036145-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Many neurotropic strains of Escherichia coli cause potentially lethal bacteraemia and meningitis in newborn infants by virtue of their capacity to elaborate the protective polysialic acid (polySia) K1 capsule. Recombinant capsule depolymerase, endosialidase E (endoE), selectively removes polySia from the bacterial surface; when administered intraperitoneally to infected neonatal rats, the enzyme interrupts the transit of E. coli K1 from gut to brain via the blood circulation and prevents death from systemic infection. We now show that experimental E. coli K1 infection is accompanied by extensive modulation of host gene expression in the liver, spleen and brain tissues of neonatal rats. Bacterial invasion of the brain resulted in a threefold or greater upregulation of approximately 400 genes, a large number of which were associated with the induction of inflammation and the immune and stress responses: these included genes encoding C-X-C and C-C chemokines, lipocalins, cytokines, apolipoproteins and enzymes involved in the synthesis of low-molecular-mass inflammatory mediators. Administration of a single dose of endoE, 24 h after initiation of systemic infection, markedly reduced, but did not completely abrogate, these changes in gene expression, suggesting that attenuation of E. coli K1 virulence by removal of the polySia capsule may minimize the attendant inflammatory processes that contribute to poor outcome in these severe systemic infections.
Collapse
Affiliation(s)
- Andrea Zelmer
- School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Melissa J Martin
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Ozan Gundogdu
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | - Rebecca Lever
- School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Brendan W Wren
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - J Paul Luzio
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Peter W Taylor
- School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
8
|
van Putten J, Tønjum T. Neisseria. Infect Dis (Lond) 2010. [DOI: 10.1016/b978-0-323-04579-7.00168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
9
|
Ambur OH, Davidsen T, Frye SA, Balasingham SV, Lagesen K, Rognes T, Tønjum T. Genome dynamics in major bacterial pathogens. FEMS Microbiol Rev 2009; 33:453-70. [PMID: 19396949 PMCID: PMC2734928 DOI: 10.1111/j.1574-6976.2009.00173.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pathogenic bacteria continuously encounter multiple forms of stress in their hostile environments, which leads to DNA damage. With the new insight into biology offered by genome sequences, the elucidation of the gene content encoding proteins provides clues toward understanding the microbial lifestyle related to habitat and niche. Campylobacter jejuni, Haemophilus influenzae, Helicobacter pylori, Mycobacterium tuberculosis, the pathogenic Neisseria, Streptococcus pneumoniae, Streptococcus pyogenes and Staphylococcus aureus are major human pathogens causing detrimental morbidity and mortality at a global scale. An algorithm for the clustering of orthologs was established in order to identify whether orthologs of selected genes were present or absent in the genomes of the pathogenic bacteria under study. Based on the known genes for the various functions and their orthologs in selected pathogenic bacteria, an overview of the presence of the different types of genes was created. In this context, we focus on selected processes enabling genome dynamics in these particular pathogens, namely DNA repair, recombination and horizontal gene transfer. An understanding of the precise molecular functions of the enzymes participating in DNA metabolism and their importance in the maintenance of bacterial genome integrity has also, in recent years, indicated a future role for these enzymes as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ole Herman Ambur
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, Oslo University Hospital, Norway
| | | | | | | | | | | | | |
Collapse
|
10
|
Lång E, Haugen K, Fleckenstein B, Homberset H, Frye SA, Ambur OH, Tønjum T. Identification of neisserial DNA binding components. MICROBIOLOGY-SGM 2009; 155:852-862. [PMID: 19246756 PMCID: PMC2885667 DOI: 10.1099/mic.0.022640-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neisseria meningitidis, a causative agent of meningitis and septicaemia, expresses type IV pili, a feature correlating with the uptake of exogenous DNA from the environment by natural transformation. The outer membrane complex PilQ, through which pili are extruded and retracted, has previously been shown to bind DNA in its pore region. In order to further elucidate how DNA is transported across the membranes, we searched for DNA binding proteins within the meningococcal inner membrane. Inner membrane fractions from a panel of neisserial strains were subjected to a solid-phase overlay assay with DNA substrates, and MS was subsequently employed to identify proteins that bind DNA. A number of DNA binding components were detected, including the pilus biogenesis component PilG, the competence protein ComL, and the cell division ATP-binding protein FtsE, as well as two hypothetical proteins. The DNA binding activity of these components was not dependent on the presence of the neisserial DNA uptake sequence. Null mutants, corresponding to each of the proteins identified, were constructed to assess their phenotypes. Only mutants defective in pilus biogenesis were non-competent and non-piliated. The DNA binding activity of the pilus biogenesis components PilQ and PilG and the phenotypes of their respective null mutants suggest that these proteins are directly involved as players in natural transformation, and not only indirectly, through pilus biogenesis.
Collapse
Affiliation(s)
- Emma Lång
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, Rikshospitalet, Oslo, Norway.,Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, N-0027 Oslo, Norway
| | - Kristine Haugen
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, Rikshospitalet, Oslo, Norway
| | | | - Håvard Homberset
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, N-0027 Oslo, Norway
| | - Stephan A Frye
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, Rikshospitalet, Oslo, Norway.,Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, N-0027 Oslo, Norway
| | - Ole Herman Ambur
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, Rikshospitalet, Oslo, Norway.,Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, N-0027 Oslo, Norway
| | - Tone Tønjum
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, Rikshospitalet, Oslo, Norway.,Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, N-0027 Oslo, Norway
| |
Collapse
|
11
|
Affiliation(s)
- Xiaonan Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and National Engineering Center for BioChip at Shanghai, Shanghai 201203, China;
- Laboratory of Microbial Molecular Physiology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongliang Yang
- Laboratory of Microbial Molecular Physiology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Guo-Ping Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and National Engineering Center for BioChip at Shanghai, Shanghai 201203, China;
- Laboratory of Microbial Molecular Physiology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|