1
|
Malone IG, Hunter BK, Rossow HL, Herzog H, Zolotukhin S, Munger SD, Dotson CD. Y1 receptors modulate taste-related behavioral responsiveness in male mice to prototypical gustatory stimuli. Horm Behav 2021; 136:105056. [PMID: 34509673 PMCID: PMC8640844 DOI: 10.1016/j.yhbeh.2021.105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Mammalian taste bud cells express receptors for numerous peptides implicated elsewhere in the body in the regulation of metabolism, nutrient assimilation, and satiety. The perturbation of several peptide signaling pathways in the gustatory periphery results in changes in behavioral and/or physiological responsiveness to subsets of taste stimuli. We previously showed that Peptide YY (PYY) - which is present in both saliva and in subsets of taste cells - can affect behavioral taste responsiveness and reduce food intake and body weight. Here, we investigated the contributions of taste bud-localized receptors for PYY and the related Neuropeptide Y (NPY) on behavioral taste responsiveness. Y1R, but not Y2R, null mice show reduced responsiveness to sweet, bitter, and salty taste stimuli in brief-access taste tests; similar results were seen when wildtype mice were exposed to Y receptor antagonists in the taste stimuli. Finally, mice in which the gene encoding the NPY propeptide was deleted also showed reduced taste responsiveness to sweet and bitter taste stimuli. Collectively, these results suggest that Y1R signaling, likely through its interactions with NPY, can modulate peripheral taste responsiveness in mice.
Collapse
Affiliation(s)
- Ian G Malone
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Brianna K Hunter
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Heidi L Rossow
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | - Sergei Zolotukhin
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA; Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Steven D Munger
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA; Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Cedrick D Dotson
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
2
|
Nilholm C, Roth B, Ohlsson B. A Dietary Intervention with Reduction of Starch and Sucrose Leads to Reduced Gastrointestinal and Extra-Intestinal Symptoms in IBS Patients. Nutrients 2019; 11:nu11071662. [PMID: 31330810 PMCID: PMC6682926 DOI: 10.3390/nu11071662] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Patients with irritable bowel syndrome (IBS) exhibit low-grade inflammation and increased gut permeability. Dietary sugar has been shown to contribute to low-grade inflammation and increased gut permeability, and to correlate with gastrointestinal (GI) symptoms. The aim of the present study was to examine the effect of a starch- and sucrose-reduced diet (SSRD) on gastrointestinal (GI) and extra-intestinal symptoms in IBS. One hundred and five IBS patients (82 women, 46.06 ± 13.11 years), with irritable bowel syndrome-symptom severity scale (IBS-SSS) > 175, were randomized to SSRD for 4 weeks or continued ordinary eating habits. The visual analog scale for irritable bowel syndrome (VAS-IBS), IBS-SSS, and 4-day food diaries were collected at baseline and after 2 and 4 weeks. After the intervention, one-third of the patients did not fulfill the criteria for IBS/functional gastrointestinal disorder. Half of the participants changed from moderate/severe disease to no/mild disease according to IBS-SSS. Comparisons between the groups showed decreased weight and sweet cravings, and parallel decreases in total IBS-SSS and extra-intestinal IBS-SSS scores, in the intervention group compared to controls (p < 0.001 for all). When calculating separate extra-intestinal symptoms, belching (p = 0.001), muscle/joint pain (p = 0.029), urinary urgency (p = 0.017), and tiredness (p = 0.011) were decreased after introduction of SSRD compared to controls. In conclusion, SSRD improves both GI and extra-intestinal symptoms in IBS.
Collapse
Affiliation(s)
- Clara Nilholm
- Department of Internal Medicine, Lund University, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Bodil Roth
- Department of Internal Medicine, Lund University, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Bodil Ohlsson
- Department of Internal Medicine, Lund University, Skåne University Hospital, 205 02 Malmö, Sweden.
| |
Collapse
|
3
|
Barnea R, Bekker L, Zifman N, Marco A, Yadid G, Weller A. Trait and state binge eating predispose towards cocaine craving. Addict Biol 2017; 22:163-171. [PMID: 26419743 DOI: 10.1111/adb.12315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 12/28/2022]
Abstract
Binge eating (BE) and drug seeking share similar behavioral features, including loss of control over consumption and compulsive seeking of the craved substance. Previous studies in animal models have demonstrated a complex interaction between 'state' BE, produced by intermittent access to a palatable diet, and 'trait' BE, a phenotypical proneness towards overeating. In the present study, we examined the relationship between state and trait BE and cocaine seeking. We used Otsuka Long Evans Tokushima Fatty rats, a genetic model for obesity that demonstrates BE-like behavior, and Long Evans Tokushima Otsuka controls. They received a schedule of limited access to a palatable diet (3 days/week or 5 days/week access to Ensure for a month). Next, they underwent cocaine self-administration training (1 mg/kg, 1 hour/day for 10 days) followed by extinction sessions (7 days). We found that the degree of BE-like behavior and the state and trait BE combination predicted cocaine craving patterns. Lower levels of dopamine D2 receptors in the prefrontal cortex were correlated with increased drug craving. Moreover, restricted access to an attractive diet was found to be a risk factor for heightened cocaine craving, particularly in trait binge eaters, as rats on the 3 days/week access schedule persistently failed to cease cocaine seeking throughout extinction. Hence, we postulate a joint role of state and trait BE as risk factors for heightened cocaine craving.
Collapse
Affiliation(s)
- Royi Barnea
- Gonda (Goldschmied) Brain Research Center; Bar Ilan University; Ramat Gan Israel
- Faculty of Life Sciences; Bar Ilan University; Ramat Gan Israel
| | - Liza Bekker
- Gonda (Goldschmied) Brain Research Center; Bar Ilan University; Ramat Gan Israel
- Psychology Department; Bar Ilan University; Ramat Gan Israel
| | - Noa Zifman
- Gonda (Goldschmied) Brain Research Center; Bar Ilan University; Ramat Gan Israel
- Faculty of Life Sciences; Bar Ilan University; Ramat Gan Israel
| | - Asaf Marco
- Gonda (Goldschmied) Brain Research Center; Bar Ilan University; Ramat Gan Israel
- Faculty of Life Sciences; Bar Ilan University; Ramat Gan Israel
| | - Gal Yadid
- Gonda (Goldschmied) Brain Research Center; Bar Ilan University; Ramat Gan Israel
- Faculty of Life Sciences; Bar Ilan University; Ramat Gan Israel
| | - Aron Weller
- Gonda (Goldschmied) Brain Research Center; Bar Ilan University; Ramat Gan Israel
- Psychology Department; Bar Ilan University; Ramat Gan Israel
| |
Collapse
|
4
|
Dietary sugars: their detection by the gut-brain axis and their peripheral and central effects in health and diseases. Eur J Nutr 2014; 54:1-24. [PMID: 25296886 PMCID: PMC4303703 DOI: 10.1007/s00394-014-0776-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/24/2014] [Indexed: 12/25/2022]
Abstract
Background Substantial increases in dietary sugar intake together with the increasing prevalence of obesity worldwide, as well as the parallels found between sugar overconsumption and drug abuse, have motivated research on the adverse effects of sugars on health and eating behaviour. Given that the gut–brain axis depends on multiple interactions between peripheral and central signals, and because these signals are interdependent, it is crucial to have a holistic view about dietary sugar effects on health. Methods Recent data on the effects of dietary sugars (i.e. sucrose, glucose, and fructose) at both peripheral and central levels and their interactions will be critically discussed in order to improve our understanding of the effects of sugars on health and diseases. This will contribute to the development of more efficient strategies for the prevention and treatment for obesity and associated co-morbidities. Results This review highlights opposing effects of glucose and fructose on metabolism and eating behaviour. Peripheral glucose and fructose sensing may influence eating behaviour by sweet-tasting mechanisms in the mouth and gut, and by glucose-sensing mechanisms in the gut. Glucose may impact brain reward regions and eating behaviour directly by crossing the blood–brain barrier, and indirectly by peripheral neural input and by oral and intestinal sweet taste/sugar-sensing mechanisms, whereas those promoted by fructose orally ingested seem to rely only on these indirect mechanisms. Conclusions Given the discrepancies between studies regarding the metabolic effects of sugars, more studies using physiological experimental conditions and in animal models closer to humans are needed. Additional studies directly comparing the effects of sucrose, glucose, and fructose should be performed to elucidate possible differences between these sugars on the reward circuitry.
Collapse
|
5
|
Enhanced consumption of salient solutions following pedunculopontine tegmental lesions. Neuroscience 2014; 284:381-399. [PMID: 25305665 DOI: 10.1016/j.neuroscience.2014.09.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 12/19/2022]
Abstract
Rats with lesions of the pedunculopontine tegmental nucleus (PPTg) reliably overconsume high concentration sucrose solution. This effect is thought to be indicative of response-perseveration or loss of behavioral control in conditions of high excitement. While these theories have anatomical and behavioral support, they have never been explicitly tested. Here, we used a contact lickometer to examine the microstructure of drinking behavior to gain insight into the behavioral changes during overconsumption. Rats received either excitotoxic (ibotenic acid) damage to all PPTg neuronal subpopulations or selective depletion of the cholinergic neuronal sub-population (diphtheria toxin-urotensin II (Dtx-UII) lesions). We offered rats a variety of pleasant, neutral and aversive tastants to assess the generalizability and specificity of the overconsumption effect. Ibotenic-lesioned rats consumed significantly more 20% sucrose than sham controls, and did so through licking significantly more times. However, the behavioral microstructure during overconsumption was unaffected by the lesion and showed no indications of response-perseveration. Furthermore, the overconsumption effect did not generalize to highly consumed saccharin. In contrast, while only consuming small amounts of quinine solution, ibotenic-lesioned rats had significantly more licks and bursts for this tastant. Selective depletion of cholinergic PPTg neurons had no effect on consumption of any tastant. We then assessed whether it is the salience of the solution which determines overconsumption by ibotenic-lesioned rats. While maintained on free-food, ibotenic-lesioned rats had normal consumption of sucrose and hypertonic saline. After mild food deprivation ibotenic PPTg-lesioned rats overconsumed 20% sucrose. Subsequently, after dietary-induced sodium deficiency, lesioned rats consumed significantly more saline than controls. These results establish that it is the salience of the solution which is the determining factor leading to overconsumption following excitotoxic PPTg lesion. They also find no support for response-perseveration contributing to this effect. Results are discussed in terms of altered dopamine (DA) and salience signaling.
Collapse
|
6
|
|
7
|
Cocaine- and amphetamine-regulated transcript (CART) peptide immunoreactivity in feeding- and reward-related brain areas of young OLETF rats. J Chem Neuroanat 2013; 50-51:75-84. [PMID: 23545074 DOI: 10.1016/j.jchemneu.2013.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/21/2013] [Accepted: 03/21/2013] [Indexed: 02/06/2023]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptide is expressed in brain areas involved in the control of appetite, drug reward and homeostatic regulation and it has an overall anorexigenic effect. Recently, we have shown that CART peptide immunoreactivity was significantly reduced in the rostral part of the nucleus accumbens and in the rostro-medial part of the nucleus of the solitary tract in adult CCK-1 receptor deficient obese diabetic Otsuka Long Evans Tokushima Fatty (OLETF) rats compared to Long Evans Tokushima Otsuka (LETO) lean controls. It is not clear, however, whether altered CART expression is caused primarily by the deficiency in CCK-1 signaling or whether is related to the obese and diabetic phenotype of the OLETF strain which develops at a later age. Therefore, in the present study, CART-immunoreaction in feeding-related areas of the brain was compared in young, age-matched (6-7 weeks old) non-obese, non-diabetic OLETF rats and in LETO controls. We found that, young, non-diabetic OLETF rats revealed unaltered distribution of CART-peptide expressing neurons and axons throughout the brain when compared to age-matched LETO rats. In contrast to previous results observed in the obese diabetic adult rats, intensity of CART immunoreaction did not differ in the areas related to control of food-intake and reward in the young OLETFs compared to young LETO rats. Our findings suggest that factors secondary to obesity and/or diabetes rather than impaired CCK-1 receptor signaling may contribute to altered CART expression in the OLETF strain.
Collapse
|
8
|
Pritchett CE, Hajnal A. Glucagon-like peptide-1 regulation of carbohydrate intake is differentially affected by obesogenic diets. Obesity (Silver Spring) 2012; 20:313-7. [PMID: 22134200 PMCID: PMC3603269 DOI: 10.1038/oby.2011.342] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The incretin hormone glucagon-like peptide-1 (GLP-1) has been implicated in the regulation of appetite by acting as an anorexigenic gut-brain signal. The postprandial release of GLP-1 can be blunted in obese humans and animals. However, it remains unknown whether obesogenic diets with varying fat and carbohydrate content may differentially influence the effectiveness of GLP-1 feedback. To investigate this, male Sprague-Dawley rats were fed a standard (low fat) chow diet, or one of two high-energy diets varying in fat content (45 or 60 kcal%) for 28 weeks. Intake of sucrose and fructose solutions, two commonly added sugars in the Western diet, was then tested in nondeprived rats following administration of the GLP-1 receptor agonist, Exendin-4 (0, 0.5, 1, 2, 3 µg/kg; s.c.). Exendin-4 dose-dependently reduced short (2 h) sucrose and fructose intake. This effect was significantly attenuated in rats fed more dietary fat, despite both diets resulting in obesity. These findings demonstrate that intake of carbohydrates when offered as treats can be regulated by GLP-1 and suggests that dietary fat consumption, rather than extra calories or obesity, may lead to impaired GLP-1 feedback to curb carbohydrate intake. Future studies are warranted to investigate the relevance of these observations to humans and to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Carolyn E Pritchett
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.
| | | |
Collapse
|
9
|
Johnson RJ, Gold MS, Johnson DR, Ishimoto T, Lanaspa MA, Zahniser NR, Avena NM. Attention-deficit/hyperactivity disorder: is it time to reappraise the role of sugar consumption? Postgrad Med 2011; 123:39-49. [PMID: 21904085 DOI: 10.3810/pgm.2011.09.2458] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) affects nearly 10% of children in the United States, and the prevalence of this disorder has increased steadily over the past decades. The cause of ADHD is unknown, although recent studies suggest that it may be associated with a disruption in dopamine signaling whereby dopamine D2 receptors are reduced in reward-related brain regions. This same pattern of reduced dopamine-mediated signaling is observed in various reward-deficiency syndromes associated with food or drug addiction, as well as in obesity. While genetic mechanisms are likely contributory to cases of ADHD, the marked frequency of the disorder suggests that other factors are involved in the etiology. In this article, we revisit the hypothesis that excessive sugar intake may have an underlying role in ADHD. We review preclinical and clinical data suggesting overlaps among ADHD, sugar and drug addiction, and obesity. Further, we present the hypothesis that the chronic effects of excessive sugar intake may lead to alterations in mesolimbic dopamine signaling, which could contribute to the symptoms associated with ADHD. We recommend further studies to investigate the possible relationship between chronic sugar intake and ADHD.
Collapse
Affiliation(s)
- Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Denver, CO 80045, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Pritchett CE, Hajnal A. Obesogenic diets may differentially alter dopamine control of sucrose and fructose intake in rats. Physiol Behav 2011; 104:111-6. [PMID: 21549729 PMCID: PMC3119542 DOI: 10.1016/j.physbeh.2011.04.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
Chronic overeating of obesogenic diets can lead to obesity, reduced dopamine signaling, and increased consumption of added sugars to compensate for blunted reward. However, the specific role of diet composition yet remains unknown. To study this, Sprague-Dawley male rats were fed a high-energy diet with high fat and low carbohydrate content (HFHE), a fat-sugar combination high-energy diet (FCHE), or standard chow for 24 weeks. We found that both high-energy diets produced substantial body weight gain compared to chow-fed controls. To investigate dopamine control of short (2-h) intake of palatable sucrose or fructose solutions, rats were pretreated peripherally (IP) with equimolar doses (0-600 nmol/kg) of the dopamine D1 (SCH23390) and D2 (raclopride) subtype-specific receptor antagonists. The results showed an overall increase in the efficacy of D1 and D2 receptor antagonists on suppression of intake in obese rats compared to lean rats, with effects differing based on diets and test solutions. Specifically, SCH23390 potently reduced both sucrose and fructose intake in all groups; however, lower doses were more effective in HFHE rats. In contrast, raclopride was most effective at reducing fructose intake in the obese FCHE rats. Thus, it appears that obesity due to the consumption of combinations of dietary fat and sugar rather than extra calories from dietary fat alone may result in reduced D2 receptor signaling. Furthermore, such deficits seem to preferentially affect the control of fructose intake. These findings demonstrate for the first time a plausible interaction between diet composition and dopamine control of carbohydrate intake in diet-induced obese rats. It also provides additional evidence that sucrose and fructose intake is regulated differentially by the dopamine system.
Collapse
Affiliation(s)
- Carolyn E. Pritchett
- The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Department of Neural and Behavioral Sciences
| | - Andras Hajnal
- The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Department of Neural and Behavioral Sciences
| |
Collapse
|
11
|
Dopamine D1 receptor gene expression decreases in the nucleus accumbens upon long-term exposure to palatable food and differs depending on diet-induced obesity phenotype in rats. Neuroscience 2010; 171:779-87. [DOI: 10.1016/j.neuroscience.2010.09.046] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 09/14/2010] [Accepted: 09/27/2010] [Indexed: 11/18/2022]
|
12
|
Swartz TD, Savastano DM, Covasa M. Reduced sensitivity to cholecystokinin in male rats fed a high-fat diet is reversible. J Nutr 2010; 140:1698-703. [PMID: 20592106 DOI: 10.3945/jn.110.124149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Adult rats chronically fed a high-fat (HF) diet maintain reduced sensitivity to cholecystokinin (CCK). We hypothesized that, similar to adult rats, pups fed a HF diet would also exhibit reduced sensitivity to CCK. To test this, male pups fed low-fat (LF) and HF isoenergetic (16.2 kJ/g) diets were administered CCK intraperitoneally (0.125-1 microg/kg) 1 wk following dietary adaptation. After receiving 0.5 microg/kg CCK, pups fed the HF diet suppressed food intake less (8.9 +/- 5.0%) than pups fed the LF diet (28.9 +/- 4.7%; P < 0.05) relative to intakes after saline administration. We then assessed the development and extinction of changes in CCK sensitivity by switching the diets between the groups. The HF-fed group, when switched to the LF diet, regained sensitivity by wk 4 and suppressed food intake following administration of 0.25 microg/kg CCK (33.1 +/- 5.7%; P < 0.05). The LF-fed group, when switched to the HF diet, lost sensitivity by wk 2 and did not suppress food intake after administrations of CCK compared with saline. Finally, we examined if HF-fed rats have an increased sensitivity to corn oil during brief access tests using a multibottle gustometer. At oil concentrations of 25, 75, and 100%, rats fed the HF diet sampled more oil than LF-fed rats (P < 0.05). These findings demonstrate that male rat pups fed a HF diet exhibit reduced sensitivity to CCK, the development of this reduced sensitivity is quicker than its extinction, and rats consuming a HF diet have increased oral sensitivity to oils.
Collapse
Affiliation(s)
- Timothy D Swartz
- Department of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
13
|
Schroeder M, Moran TH, Weller A. Attenuation of obesity by early-life food restriction in genetically hyperphagic male OLETF rats: peripheral mechanisms. Horm Behav 2010; 57:455-62. [PMID: 20156441 PMCID: PMC2852576 DOI: 10.1016/j.yhbeh.2010.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 01/31/2010] [Accepted: 02/07/2010] [Indexed: 11/19/2022]
Abstract
The alarming increase in childhood, adolescent and adult obesity has exposed the need for understanding early factors affecting obesity and for treatments that may help prevent or moderate its development. In the present study, we used the OLETF rat model of early-onset hyperphagia induced obesity, which become obese as a result of the absence of CCK(1) receptors, to examine the influence of partial food restriction on peripheral adiposity-related parameters during and after chronic and early short-term food restriction. Pair feeding (to the amount of food eaten by control, LETO rats) took place from weaning until postnatal day (PND) 45 (early) or from weaning until PND90 (chronic). We examined fat pad weight (brown, retroperitoneal, inguinal and epididymal); inguinal adipocyte size and number; and plasma leptin, oxytocin and creatinine levels. We also examined body weight, feeding efficiency and spontaneous intake after release from food-restriction. The results showed that chronic food restriction produced significant reductions in adiposity parameters, hormones and body weight, while early food restriction successfully reduced long-term body weight, intake and adiposity, without affecting plasma measurements. Early (and chronic) dieting produced promising long-term effects that may imply the reorganization of both peripheral and central mechanisms that determine energy balance and further support the theory suggesting that early interventions may effectively moderate obesity, even in the presence of a genetic tendency.
Collapse
Affiliation(s)
- Mariana Schroeder
- Life Sciences Faculty, Bar Ilan University, Ramat Gan 52900, Israel
- Gonda (Goldschmied) Brain Research Center, Bar Ilan University, Ramat Gan 52900, Israel
| | - Timothy H. Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Aron Weller
- Gonda (Goldschmied) Brain Research Center, Bar Ilan University, Ramat Gan 52900, Israel
- Psychology Department, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
14
|
Swartz TD, Hajnal A, Covasa M. Altered orosensory sensitivity to oils in CCK-1 receptor deficient rats. Physiol Behav 2010; 99:109-17. [PMID: 19887078 DOI: 10.1016/j.physbeh.2009.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/01/2009] [Accepted: 10/26/2009] [Indexed: 12/28/2022]
Abstract
CCK-1 receptor deficient Otsuka Long Evans Tokushima Fatty (OLETF) rats are hyperphagic, which leads to subsequent obesity and diabetes. Additionally, they have increased sham intake and enhanced preference for sucrose solutions relative to control, Long Evans Tokushima Otsuka (LETO) rats. To determine the effects of oil on ingestion, we first measured real feeding of various concentrations of oil emulsions (12.5, 25, 50, 75, and 100%) in rats that were fed ad libitum. Secondly, to isolate the orosensory compontent of oils from post-ingestive consequences, as well as determine the contribution of energy status, we measured sham feeding in OLETF and LETO rats using one-bottle acceptance tests while non-deprived and overnight food deprived. Finally, to assess the orosensory effects of nutritive and non-nutritive oils, we used two-bottle preference tests in sham fed OLETF and LETO rats. We found that real feeding resulted in increased intake of high oil concentrations for OLETF rats relative to LETO rats. Similarly, OLETF rats consumed significantly more of higher concentration corn oils than LETO while non-deprived sham feeding. Conversely, OLETF rats overconsumed low concentration corn oil compared to LETO during overnight deprived sham-feeding tests. In two-bottle sham-feeding preference tests, both non-deprived OLETF and LETO rats preferred corn to mineral oil. Collectively, these results show that increased oil intake in OLETF rats is driven by both peripheral deficits to satiation and altered orosensory sensitivity.
Collapse
Affiliation(s)
- T D Swartz
- Interdepartmental Graduate Degree Program in Physiology, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
15
|
Fulton S. Appetite and reward. Front Neuroendocrinol 2010; 31:85-103. [PMID: 19822167 DOI: 10.1016/j.yfrne.2009.10.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 12/14/2022]
Abstract
The tendency to engage in or maintain feeding behaviour is potently influenced by the rewarding properties of food. Affective and goal-directed behavioural responses for food have been assessed in response to various physiological, pharmacological and genetic manipulations to provide much insight into the neural mechanisms regulating motivation for food. In addition, several lines of evidence tie the actions of metabolic signals, neuropeptides and neurotransmitters to the modulation of the reward-relevant circuitry including midbrain dopamine neurons and corticolimbic nuclei that encode emotional and cognitive aspects of feeding. Along these lines, this review pulls together research describing the peripheral and central signalling molecules that modulate the rewarding effects of food and the underlying neural pathways.
Collapse
Affiliation(s)
- Stephanie Fulton
- CRCHUM and Montreal Diabetes Research Center, Department of Nutrition, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
16
|
Schroeder M, Zagoory-Sharon O, Shbiro L, Marco A, Hyun J, Moran TH, Bi S, Weller A. Development of obesity in the Otsuka Long-Evans Tokushima Fatty rat. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1749-60. [PMID: 19793959 DOI: 10.1152/ajpregu.00461.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Understanding the early factors affecting obesity development in males and females may help to prevent obesity and may lead to the discovery of more effective treatments for those already obese. The Otsuka Long-Evans Tokushima Fatty (OLETF) rat model of obesity is characterized by hyperphagia-induced obesity, due to a spontaneous lack of CCK(1) receptors. In the present study, we focused on the behavioral and physiological aspects of obesity development from weaning to adulthood. We examined body weight, feeding efficiency, fat pad [brown, retroperitoneal, inguinal and epydidimal (in males)] weight, inguinal adipocyte size and number, leptin and oxytocin levels, body mass index, waist circumference, and females' estrous cycle structure. In the males, central hypothalamic gene expression was also examined. OLETF rats presented overall higher fat and leptin levels, larger adipocytes, and increased waist circumference and BMI from weaning until adulthood, compared with controls. Analysis of developmental patterns of gene expression for hypothalamic neuropeptides revealed peptide-specific patterns that may underlie or be a consequence of the obesity development. Analysis of the developmental trajectories toward obesity within the OLETF strain revealed that OLETF females developed obesity in a more gradual manner than the males, presenting delayed obesity-related "turning points," with reduced adipocyte size but larger postweaning fat pads and increased adipocyte hyperplasia compared with the males. Intake decrease in estrus vs. proestrus was significantly less in OLETF vs. Long-Evans Tokushima Otsuka females. The findings highlight the importance of using different sex-appropriate approaches to increase the efficacy of therapeutic interventions in the treatment and prevention of chronic early-onset obesity.
Collapse
|
17
|
Abstract
Cumulative evidence in rats suggests that the pontine parabrachial nuclei (PBN) are necessary for assigning hedonic value to taste stimuli. In a series of studies, our laboratory has investigated the parabrachial coding of sapid sucrose in normal and obese rats. First, using chronic microdialysis, we demonstrated that sucrose intake increases dopamine release in the nucleus accumbens, an effect that is dependent on oral stimulation and on concentration. The dopamine response was independent of the thalamocortical gustatory system but was blunted substantially by lesions of the PBN. Similar lesions of the PBN but not the thalamic taste relay diminished cFos activation in the nucleus accumbens caused by sucrose ingestion. Recent single-neuron recording studies have demonstrated that processing of sucrose-evoked activity in the PBN is altered in Otsuka Long Evans Tokushima Fatty (OLETF) rats, which develop obesity due to chronic overeating and express increased avidity to sweet. Compared with lean controls, taste neurons in OLETF rats had reduced overall sensitivity to sucrose and altered concentration responses, with decreased responses to lower concentrations and augmented responses to higher concentrations. The decreased sensitivity to sucrose was specific to NaCl-best neurons that also responded to sucrose, but the concentration effects were carried by the sucrose-specific neurons. Collectively, these findings support the hypothesis that the PBN enables taste stimuli to engage the reward system and, in doing so, influences food intake and body weight regulation. Obesity, in turn, may further alter the gustatory code via forebrain connections to the taste relays or hormonal changes consequent to weight gain.
Collapse
Affiliation(s)
- Andras Hajnal
- Department of Neural & Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
18
|
Abraham H, Covasa M, Hajnal A. Cocaine- and amphetamine-regulated transcript peptide immunoreactivity in the brain of the CCK-1 receptor deficient obese OLETF rat. Exp Brain Res 2009; 196:545-56. [PMID: 19533109 DOI: 10.1007/s00221-009-1885-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 05/28/2009] [Indexed: 11/28/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptide is expressed in brain areas involved in homeostatic regulation and reward. CART has been shown to reduce food intake, but the underlying mechanisms and the relevance of this effect on obesity yet remain unknown. Therefore, we used immunohistochemistry to investigate the expression of CART peptide in various brain regions of the obese Otsuka Long Evans Tokushima Fatty (OLETF) rats lacking the CCK-1 receptor. Analysis revealed that whereas the distribution of CART-peptide immunoreactive neurons and axonal networks was identical in OLETF rats and lean controls, the intensity of CART immunoreactivity was significantly reduced in the rostral part of the nucleus accumbens (p < 0.01), the basolateral complex of the amygdala (p < 0.05) and the rostro-medial nucleus of the solitary tract (p < 0.001) of the OLETF rats. These areas are involved in reward and integration of taste and viscerosensory information and have been previously associated with altered functions in this strain. The findings suggest that in addition to previously described deficits in peripheral satiety signals and augmented orexigenic regulation, the anorectic effect of CART peptide may also be diminished in OLETF rats.
Collapse
Affiliation(s)
- Hajnalka Abraham
- Central Electron Microscopic Laboratory, Faculty of Medicine, University of Pecs, Szigeti u. 12, 7643, Pecs, Hungary.
| | | | | |
Collapse
|
19
|
Bonacchi KB, Ackroff K, Sclafani A. Sucrose taste but not Polycose taste conditions flavor preferences in rats. Physiol Behav 2008; 95:235-44. [PMID: 18602411 PMCID: PMC2601560 DOI: 10.1016/j.physbeh.2008.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 05/28/2008] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
Abstract
Rats have an inborn preference for sweet taste and learn to prefer flavors associated with sweetness. They are also strongly attracted to the taste of glucose polymers (e.g., Polycose). This "poly" taste differs in quality from the sweet taste of sugar. To determine if poly taste, like sweet taste, conditions flavor preferences rats were trained with a distinctive flavor (CS+) added to 2% Polycose solution and a different flavor (CS-) added to plain water. In a subsequent two-bottle test the rats did not prefer the CS+ to CS- when both flavors were presented in water. In contrast, other rats significantly preferred a CS+ flavor that had been paired with 2% sucrose. Adding saccharin to a flavored Polycose solution did not improve CS+ flavor learning; rather, Polycose appeared to overshadow saccharin-induced conditioning. Flavor conditioning by a 16% Polycose solution was assessed using a sham-feeding procedure to prevent post-oral reinforcement. Although the rats sham-fed substantial amounts of the CS+ flavored Polycose solution, they failed to prefer the CS+ to the CS- flavor. This contrasts with the preference other rats displayed for a CS+ paired with sham-fed sucrose. Why attractive sweet and poly tastes differ in their ability to condition flavor preferences is not certain, although some findings suggest that they differentially activate dopamine and/or serotonin circuits involved in flavor learning.
Collapse
|
20
|
Hajnal A, Acharya NK, Grigson PS, Covasa M, Twining RC. Obese OLETF rats exhibit increased operant performance for palatable sucrose solutions and differential sensitivity to D2 receptor antagonism. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1846-54. [PMID: 17804583 DOI: 10.1152/ajpregu.00461.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CCK-1-receptor-deficient Otsuka Long-Evans Tokushima fatty (OLETF) rats are hyperphagic and exhibit a greater preference for sucrose compared with lean controls [Long-Evans Tokushima Otsuka (LETO)]. To directly assess motivation to work for sucrose reward in this model of obesity and type 2 diabetes, we examined the operant performance of OLETF rats at nondiabetic and prediabetic stages (14 and 24 wk of age, respectively) on fixed-ratio (FR) and progressive-ratio (PR) schedules of reinforcement. To evaluate the involvement of dopamine systems, the effects of the D1 receptor antagonist SCH23390 (100 and 200 nmol/kg ip) and the D2 receptor antagonist raclopride (200 and 400 nmol/kg ip), were also tested on PR responding for sucrose. Compared with age-matched LETO rats, 14-wk-old OLETF rats emitted more licks on the "active" empty spout operant on the FR-10 schedule of reinforcement to obtain 0.01 M and 0.3 M sucrose and completed higher ratio requirements on the PR schedule to gain access to 0.3 M and 1.0 M sucrose. At 24 wk, this effect was limited to 1.0 M sucrose. Both antagonists were potent in reducing operant responding to 0.3 M sucrose in both strains at both ages, and there was no strain effect to SCH23390 at either age. OLETF rats, on the other hand, showed an increased sensitivity to the higher dose of raclopride, resulting in reduced responding to sucrose reinforcement at 24 wk. Taken together, these findings provide the first direct evidence for an increased motivation for sucrose reward in the OLETF rats and suggest altered D2 receptor regulation with the progression of obesity and prediabetes.
Collapse
Affiliation(s)
- Andras Hajnal
- Dept. of Neural and Behavioral Sciences H181, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|