1
|
Anton-Fernandez A, Domene-Serrano I, Cuadros R, Peinado-Cahuchola R, Sanchez-Pece M, Hernandez F, Avila J. Peptide Family Promotes Brain Cell Rejuvenation and Improved Cognition through Peripheral Delivery. ACS OMEGA 2025; 10:13236-13250. [PMID: 40224410 PMCID: PMC11983169 DOI: 10.1021/acsomega.4c10849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 04/15/2025]
Abstract
Ligands targeting folate receptor α (FRα), a protein predominantly expressed in neural cells, have the potential to reprogram (rejuvenate) brain cells and enhance cognitive function in aged mice. In this study, we present a family of FRα-binding peptides identified through AlphaFold modeling. These peptides induce a structural change in the receptor upon binding, which facilitates its internalization and transport to the cell nucleus. Once in the nucleus, FRα functions as a transcription factor, promoting the expression of genes associated with a youthful phenotype and improved cognition. Notably, these peptides demonstrate permeability across the blood-brain barrier, enabling their administration not only through intracranial injection but also via peripheral delivery methods such as intraperitoneal injection or gastric gavage. This property enhances their potential for use in future therapeutic applications.
Collapse
Affiliation(s)
| | | | - Raquel Cuadros
- Centro
de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
- Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | | | - Felix Hernandez
- Centro
de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Jesus Avila
- Centro
de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
- Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Chandravanshi LP, Agrawal P, Darwish HW, Trigun SK. Impairments of Spatial Memory and N-methyl-d-aspartate Receptors and Their Postsynaptic Signaling Molecules in the Hippocampus of Developing Rats Induced by As, Pb, and Mn Mixture Exposure. Brain Sci 2023; 13:1715. [PMID: 38137163 PMCID: PMC10742016 DOI: 10.3390/brainsci13121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Exposure to metal mixtures is recognized as a real-life scenario, needing novel studies that can assess their complex effects on brain development. There is still a significant public health concern associated with chronic low levels of metal exposure. In contrast to other metals, these three metals (As, Pb, and Mn) are commonly found in various environmental and industrial contexts. In addition to additive or synergistic interactions, concurrent exposure to this metal mixture may also have neurotoxic effects that differ from those caused by exposure to single components. The NMDA receptor and several important signaling proteins are involved in learning, memory, and synaptic plasticity in the hippocampus, including CaMKII, postsynaptic density protein-95 (PSD-95), synaptic Ras GTPase activating protein (SynGAP), a negative regulator of Ras-MAPK activity, and CREB. We hypothesized that alterations in the above molecular players may contribute to metal mixture developmental neurotoxicity. Thus, the aim of this study was to investigate the effect of these metals and their mixture at low doses (As 4 mg, Pb 4 mg, and Mn 10 mg/kg bw/p.o) on NMDA receptors and their postsynaptic signaling proteins during developing periods (GD6 to PD59) of the rat brain. Rats exposed to As, Pb, and Mn individually or at the same doses in a triple-metal mixture (MM) showed impairments in learning and memory functions in comparison to the control group rats. Declined protein expressions of NR2A, PSD-95, p- CaMKII, and pCREB were observed in the metal mix-exposed rats, while the expression of SynGAP was found to be enhanced in the hippocampus as compared to the controls on PD60. Thereby, our data suggest that alterations in the NMDA receptor complex and postsynaptic signaling proteins could explain the cognitive dysfunctions caused by metal-mixture-induced developmental neurotoxicity in rats. These outcomes indicate that incessant metal mixture exposure may have detrimental consequences on brain development.
Collapse
Affiliation(s)
- Lalit P. Chandravanshi
- Department of Forensic Science, Sharda University, Greater Noida 201308, India; (L.P.C.); (P.A.)
| | - Prashant Agrawal
- Department of Forensic Science, Sharda University, Greater Noida 201308, India; (L.P.C.); (P.A.)
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
3
|
Dupuis JP, Nicole O, Groc L. NMDA receptor functions in health and disease: Old actor, new dimensions. Neuron 2023:S0896-6273(23)00344-6. [PMID: 37236178 DOI: 10.1016/j.neuron.2023.05.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
N-Methyl-D-aspartate ionotropic glutamate receptors (NMDARs) play key roles in synaptogenesis, synaptic maturation, long-term plasticity, neuronal network activity, and cognition. Mirroring this wide range of instrumental functions, abnormalities in NMDAR-mediated signaling have been associated with numerous neurological and psychiatric disorders. Thus, identifying the molecular mechanisms underpinning the physiological and pathological contributions of NMDAR has been a major area of investigation. Over the past decades, a large body of literature has flourished, revealing that the physiology of ionotropic glutamate receptors cannot be restricted to fluxing ions, and involves additional facets controlling synaptic transmissions in health and disease. Here, we review newly discovered dimensions of postsynaptic NMDAR signaling supporting neural plasticity and cognition, such as the nanoscale organization of NMDAR complexes, their activity-dependent redistributions, and non-ionotropic signaling capacities. We also discuss how dysregulations of these processes may directly contribute to NMDAR-dysfunction-related brain diseases.
Collapse
Affiliation(s)
- Julien P Dupuis
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France
| | - Olivier Nicole
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France
| | - Laurent Groc
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
4
|
Yang L, Wei M, Wang Y, Zhang J, Liu S, Liu M, Wang S, Li K, Dong Z, Zhang C. Rabphilin-3A undergoes phase separation to regulate GluN2A mobility and surface clustering. Nat Commun 2023; 14:379. [PMID: 36693856 PMCID: PMC9873702 DOI: 10.1038/s41467-023-36046-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are essential for excitatory neurotransmission and synaptic plasticity. GluN2A and GluN2B, two predominant Glu2N subunits of NMDARs in the hippocampus and the cortex, display distinct clustered distribution patterns and mobility at synaptic and extrasynaptic sites. However, how GluN2A clusters are specifically organized and stabilized remains poorly understood. Here, we found that the previously reported GluN2A-specific binding partner Rabphilin-3A (Rph3A) has the ability to undergo phase separation, which relies on arginine residues in its N-terminal domain. Rph3A phase separation promotes GluN2A clustering by binding GluN2A's C-terminal domain. A complex formed by Rph3A, GluN2A, and the scaffolding protein PSD95 promoted Rph3A phase separation. Disrupting Rph3A's phase separation suppressed the synaptic and extrasynaptic surface clustering, synaptic localization, stability, and synaptic response of GluN2A in hippocampal neurons. Together, our results reveal the critical role of Rph3A phase separation in determining the organization and stability of GluN2A in the neuronal surface.
Collapse
Affiliation(s)
- Lei Yang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Mengping Wei
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Yangzhen Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jingtao Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Mengna Liu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shanshan Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ke Li
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Zhaoqi Dong
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China. .,Chinese Institute for Brain Research, Beijing, 102206, China. .,State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, 210000, Jiangsu, China. .,Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
5
|
A Conantokin Peptide Con-T[M8Q] Inhibits Morphine Dependence with High Potency and Low Side Effects. Mar Drugs 2021; 19:md19010044. [PMID: 33478061 PMCID: PMC7835912 DOI: 10.3390/md19010044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) antagonists have been found to be effective to inhibit morphine dependence. However, the discovery of the selective antagonist for NMDAR GluN2B with low side-effects still remains challenging. In the present study, we report a selective NMDAR GluN2B antagonist con-T[M8Q](a conantokin-T variant) that potently inhibits the naloxone-induced jumping and conditioned place preference of morphine-dependent mice at nmol/kg level, 100-fold higher than ifenprodil, a classical NMDAR NR2B antagonist. Con-T[M8Q] displays no significant impacts on coordinated locomotion function, spontaneous locomotor activity, and spatial memory mice motor function at the dose used. Further molecular mechanism experiments demonstrate that con-T[M8Q] effectively inhibited the transcription and expression levels of signaling molecules related to NMDAR NR2B subunit in hippocampus, including NR2B, p-NR2B, CaMKII-α, CaMKII-β, CaMKIV, pERK, and c-fos. The high efficacy and low side effects of con-T[M8Q] make it a good lead compound for the treatment of opiate dependence and for the reduction of morphine usage.
Collapse
|
6
|
Kim CH, Kim S, Kim SH, Roh J, Jin H, Song B. Role of densin-180 in mouse ventral hippocampal neurons in 24-hr retention of contextual fear conditioning. Brain Behav 2020; 10:e01891. [PMID: 33064361 PMCID: PMC7749528 DOI: 10.1002/brb3.1891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Densin-180 interacts with postsynaptic molecules including calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) but its function in learning and memory process has been unclear. METHODS To investigate a role of hippocampal densin-180 in contextual fear conditioning (CFC) learning and memory processes, knockdown (KD) of densin-180 in hippocampal subareas was applied. RESULTS First, ventral hippocampal (vHC) densin-180 KD impaired single-trial CFC (stCFC) memory one day later. stCFC caused freezing behaviors to reach the peak about one hour later in both control and KD mice, but then freezing was disappeared at 2 hr postshock in KD mice. Second, stCFC caused an immediate and transient reduction of vHC densin-180 in control mice, which was not observed in KD mice. Third, stCFC caused phosphorylated-T286 (p-T286) CaMKIIα to change similarly to densin-180, but p-T305 CaMKIIα was increased 1 hr later in control mice. In KD mice, these effects were gone. Moreover, both basal levels of p-T286 and p-T305 CaMKIIα were reduced without change in total CaMKIIα in KD mice. Fourth, we found double-trial CFC (dtCFC) memory acquisition and retrieval kinetics were different from those of stCFC in vHC KD mice. In addition, densin-180 in dorsal hippocampal area appeared to play its unique role during the very early retrieval period of both CFC memories. CONCLUSION This study shows that vHC densin-180 is necessary for stCFC memory formation and retrieval and suggests that both densin-180 and p-T305 CaMKIIα at 1 ~ 2 hr postshock are important for stCFC memory formation. We conclude that roles of hippocampal neuronal densin-180 in CFC are temporally dynamic and differential depending on the pattern of conditioning stimuli and its location along the dorsoventral axis of hippocampal formation.
Collapse
Affiliation(s)
- Chong-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Seoyul Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Su-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Jongtae Roh
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Harin Jin
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Bokyung Song
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| |
Collapse
|
7
|
Wang XP, Ye P, Lv J, Zhou L, Qian ZY, Huang YJ, Mu ZH, Wang X, Liu XJ, Wan Q, Yang ZH, Wang F, Zou YY. Expression Changes of NMDA and AMPA Receptor Subunits in the Hippocampus in rats with Diabetes Induced by Streptozotocin Coupled with Memory Impairment. Neurochem Res 2019; 44:978-993. [PMID: 30747310 DOI: 10.1007/s11064-019-02733-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/11/2018] [Accepted: 01/14/2019] [Indexed: 11/30/2022]
Abstract
Cognitive impairment in diabetes (CID) is a severe chronic complication of diabetes mellitus (DM). It has been hypothesized that diabetes can lead to cognitive dysfunction due to expression changes of excitatory neurotransmission mediated by N-methyl-D-aspartate receptors (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR); however, the pathogenesis involved in this has not been fully understood, especially at early phase of DM. Here, we sought to determine the cognitive changes and aim to correlate this with the expression changes of NMDAR and AMPAR of glutamate signaling pathways in the rat hippocampus from early phase of DM and in the course of the disease progression. By Western blot analysis and immunofluorescence labeling, the hippocampus in diabetic rats showed a significant increase in protein expression NMDAR subunits NR1, NR2A and NR2B and AMPAR subunit GluR1. Along with this, behavioral test by Morris water maze showed a significant decline in their performance when compared with the control rats. It is suggested that NR1, NR2A, NR2B and GluR1are involved in learning and memory and that their expression alterations maybe correlated with the occurrence and development of CID in diabetic rats induced by streptozotocin.
Collapse
Affiliation(s)
- Xiao-Peng Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.,Drug Rehabilitation Center, Huaixian Street, Datong, 038300, Shanxi, People's Republic of China
| | - Pin Ye
- Department of Human Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Jiao Lv
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Lei Zhou
- The Key Laboratory of Stem Cell and Regenerative Medicine of Yunnan Province, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Zhong-Yi Qian
- Department of Morphological Laboratory, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Yong-Jie Huang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.,Emergency Department, First Affiliated Hospital of Kunming, Medical University, 295 Xi Chang Road, Kunming, 650032, People's Republic of China
| | - Zhi-Hao Mu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Xie Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Xin-Jie Liu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.,Undergraduate of Batch 2016 in Clinical Medicine Major, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery of the Affiliated Hospital, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Zhi-Hong Yang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.
| | - Fang Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.
| | - Ying-Ying Zou
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.
| |
Collapse
|
8
|
Kellermayer B, Ferreira JS, Dupuis J, Levet F, Grillo-Bosch D, Bard L, Linarès-Loyez J, Bouchet D, Choquet D, Rusakov DA, Bon P, Sibarita JB, Cognet L, Sainlos M, Carvalho AL, Groc L. Differential Nanoscale Topography and Functional Role of GluN2-NMDA Receptor Subtypes at Glutamatergic Synapses. Neuron 2018; 100:106-119.e7. [PMID: 30269991 DOI: 10.1016/j.neuron.2018.09.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 04/26/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
NMDA receptors (NMDARs) play key roles in the use-dependent adaptation of glutamatergic synapses underpinning memory formation. In the forebrain, these plastic processes involve the varied contributions of GluN2A- and GluN2B-containing NMDARs that have different signaling properties. Although the molecular machinery of synaptic NMDAR trafficking has been under scrutiny, the postsynaptic spatial organization of these two receptor subtypes has remained elusive. Here, we used super-resolution imaging of NMDARs in rat hippocampal synapses to unveil the nanoscale topography of native GluN2A- and GluN2B-NMDARs. Both subtypes were found to be organized in separate nanodomains that vary over the course of development. Furthermore, GluN2A- and GluN2B-NMDAR nanoscale organizations relied on distinct regulatory mechanisms. Strikingly, the selective rearrangement of GluN2A- and GluN2B-NMDARs, with no overall change in NMDAR current amplitude, allowed bi-directional tuning of synaptic LTP. Thus, GluN2A- and GluN2B-NMDAR nanoscale organizations are differentially regulated and seem to involve distinct signaling complexes during synaptic adaptation.
Collapse
Affiliation(s)
- Blanka Kellermayer
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Joana S Ferreira
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France
| | - Julien Dupuis
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France
| | - Florian Levet
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France; CNRS, Bordeaux Imaging Center UMS 3420, 33000 Bordeaux, France
| | - Dolors Grillo-Bosch
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France
| | - Lucie Bard
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France; UCL Institute of Neurology, University College London, London, UK
| | - Jeanne Linarès-Loyez
- Institut d'Optique & CNRS, LP2N UMR 5298, 33400 Talence, France; Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400 Talence, France
| | - Delphine Bouchet
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France
| | - Daniel Choquet
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France; CNRS, Bordeaux Imaging Center UMS 3420, 33000 Bordeaux, France
| | - Dmitri A Rusakov
- UCL Institute of Neurology, University College London, London, UK
| | - Pierre Bon
- Institut d'Optique & CNRS, LP2N UMR 5298, 33400 Talence, France; Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400 Talence, France
| | - Jean-Baptiste Sibarita
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France
| | - Laurent Cognet
- Institut d'Optique & CNRS, LP2N UMR 5298, 33400 Talence, France; Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400 Talence, France
| | - Matthieu Sainlos
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France
| | - Ana Luisa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Laurent Groc
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France.
| |
Collapse
|
9
|
Ogundele OM, Lee CC. CaMKIIα expression in a mouse model of NMDAR hypofunction schizophrenia: Putative roles for IGF-1R and TLR4. Brain Res Bull 2018; 137:53-70. [PMID: 29137928 PMCID: PMC5835406 DOI: 10.1016/j.brainresbull.2017.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 12/29/2022]
Abstract
Schizophrenia (SCZ) is a neuropsychiatric disorder that is linked to social behavioral deficits and other negative symptoms associated with hippocampal synaptic dysfunction. Synaptic mechanism of schizophrenia is characterized by loss of hippocampal N-Methyl-d-Aspartate Receptor (NMDAR) activity (NMDAR hypofunction) and dendritic spines. Previous studies show that genetic deletion of hippocampal synaptic regulatory calcium-calmodulin dependent kinase II alpha (CaMKIIα) cause synaptic and behavioral defects associated with schizophrenia in mice. Although CaMKIIα is involved in modulation of NMDAR activity, it is equally linked to inflammatory and neurotropin signaling in neurons. Based on these propositions, we speculate that non-neurotransmitter upstream receptors associated with neurotropic and inflammatory signaling activities of CaMKIIα may alter its synaptic function. Besides, how these receptors (i.e. inflammatory and neurotropic receptors) alter CaMKIIα function (phosphorylation) relative to hippocampal NMDAR activity in schizophrenia is poorly understood. Here, we examined the relationship between toll-like receptor (TLR4; inflammatory), insulin-like growth factor receptor 1 (IGF-1R; neurotropic) and CaMKIIα expression in the hippocampus of behaviorally deficient schizophrenic mice after we induced schizophrenia through NMDAR inhibition. Schizophrenia was induced in WT (C57BL/6) mice through intraperitoneal administration of 30mg/Kg ketamine (NMDAR antagonist) for 5days (WT/SCZ). Five days after the last ketamine treatment, wild type schizophrenic mice show deficiencies in sociability and social novelty behavior. Furthermore, there was a significant decrease in hippocampal CaMKIIα (p<0.001) and IGF-1R (p<0.001) expression when assessed through immunoblotting and confocal immunofluorescence microscopy. Additionally, WT schizophrenic mice show an increased percentage of phosphorylated CaMKIIα in addition to upregulated TLR4 signaling (TLR4, NF-κB, and MAPK/ErK) in the hippocampus. To ascertain the functional link between TLR4, IGF-1R and CaMKIIα relative to NMDAR hypofunction in schizophrenia, we created hippocampal-specific TLR4 knockdown mouse using AAV-driven Cre-lox technique (TLR4 KD). Subsequently, we inhibited NMDAR function in TLR4 KD mice in an attempt to induce schizophrenia (TLR4 KD SCZ). Interestingly, IGF-1R and CaMKIIα expressions were preserved in the TLR4 KD hippocampus after attenuation of NMDAR function. Furthermore, TLR4 KD SCZ mice showed no prominent defects in sociability and social novelty behavior when compared with the control (WT). Our results show that a sustained IGF-1R expression may preserve the synaptic activity of CaMKIIα while TLR4 signaling ablates hippocampal CaMKIIα expression in NMDAR hypofunction schizophrenia. Together, we infer that IGF-1R depletion and increased TLR4 signaling are non-neurotransmitter pro-schizophrenic cues that can reduce synaptic CaMKIIα activity in a pharmacologic mouse model of schizophrenia.
Collapse
Affiliation(s)
- O M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States.
| | - C C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States.
| |
Collapse
|
10
|
Wang D, Wang X, Liu X, Jiang L, Yang G, Shi X, Zhang C, Piao F. Inhibition of miR-219 Alleviates Arsenic-Induced Learning and Memory Impairments and Synaptic Damage Through Up-regulating CaMKII in the Hippocampus. Neurochem Res 2018; 43:948-958. [DOI: 10.1007/s11064-018-2500-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 01/09/2023]
|
11
|
Snow WM, Cadonic C, Cortes-Perez C, Roy Chowdhury SK, Djordjevic J, Thomson E, Bernstein MJ, Suh M, Fernyhough P, Albensi BC. Chronic dietary creatine enhances hippocampal-dependent spatial memory, bioenergetics, and levels of plasticity-related proteins associated with NF-κB. ACTA ACUST UNITED AC 2018; 25:54-66. [PMID: 29339557 PMCID: PMC5772392 DOI: 10.1101/lm.046284.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/03/2017] [Indexed: 12/23/2022]
Abstract
The brain has a high demand for energy, of which creatine (Cr) is an important regulator. Studies document neurocognitive benefits of oral Cr in mammals, yet little is known regarding their physiological basis. This study investigated the effects of Cr supplementation (3%, w/w) on hippocampal function in male C57BL/6 mice, including spatial learning and memory in the Morris water maze and oxygen consumption rates from isolated mitochondria in real time. Levels of transcription factors and related proteins (CREB, Egr1, and IκB to indicate NF-κB activity), proteins implicated in cognition (CaMKII, PSD-95, and Egr2), and mitochondrial proteins (electron transport chain Complex I, mitochondrial fission protein Drp1) were probed with Western blotting. Dietary Cr decreased escape latency/time to locate the platform (P < 0.05) and increased the time spent in the target quadrant (P < 0.01) in the Morris water maze. This was accompanied by increased coupled respiration (P < 0.05) in isolated hippocampal mitochondria. Protein levels of CaMKII, PSD-95, and Complex 1 were increased in Cr-fed mice, whereas IκB was decreased. These data demonstrate that dietary supplementation with Cr can improve learning, memory, and mitochondrial function and have important implications for the treatment of diseases affecting memory and energy homeostasis.
Collapse
Affiliation(s)
- Wanda M Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Chris Cadonic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Claudia Cortes-Perez
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Subir K Roy Chowdhury
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Jelena Djordjevic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Ella Thomson
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Michael J Bernstein
- Department of Psychological and Social Sciences, Pennsylvania State University Abington, Abington, Pennsylvania 19001, USA
| | - Miyoung Suh
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada
| |
Collapse
|
12
|
Sultana R, Ghandi T, M. Davila A, Lee CC, Ogundele OM. Upregulated SK2 Expression and Impaired CaMKII Phosphorylation Are Shared Synaptic Defects Between 16p11.2del and 129S: Δdisc1 Mutant Mice. ASN Neuro 2018; 10:1759091418817641. [PMID: 33592687 PMCID: PMC6295693 DOI: 10.1177/1759091418817641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
Ion channel gating and kinase regulation of N-methyl-D-aspartate receptor 1 activity are fundamental mechanisms that govern synaptic plasticity. In this study, we showed that two mutant models (16p11.2del and Δdisc1 ) that recapitulate aspects of human cognitive disorders shared a similar defect in N-methyl-D-aspartate receptor 1-dependent synaptic function. Our results demonstrate that the expression of small-conductance potassium channels (SK2 or KCa2.2) was significantly upregulated in the hippocampus and prefrontal cortex of 16p11.2del and 129S:Δdisc1 mutant mice. Likewise, both mutant strains exhibited an impairment of T286 phosphorylation of calcium-calmodulin-dependent kinase II (CaMKII) in the hippocampus and prefrontal cortex. In vivo neural recordings revealed that increased SK2 expression and impaired T286 phosphorylation of CaMKII coincide with a prolonged interspike interval in the hippocampal cornu ammonis-1 (CA1) field for both 16p11.2del and 129S:Δdisc1 mutant mice. These findings suggest that alteration of small conductance channels and T286 phosphorylation of CaMKII are likely shared factors underlying behavioral changes in these two genetic mouse models.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Comparative Biomedical Sciences, Louisiana State
University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Tanya Ghandi
- Department of Comparative Biomedical Sciences, Louisiana State
University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Alexandra M. Davila
- Department of Comparative Biomedical Sciences, Louisiana State
University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Charles C. Lee
- Department of Comparative Biomedical Sciences, Louisiana State
University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Olalekan M. Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State
University School of Veterinary Medicine, Baton Rouge, LA, USA
| |
Collapse
|
13
|
Frank RA, Grant SG. Supramolecular organization of NMDA receptors and the postsynaptic density. Curr Opin Neurobiol 2017; 45:139-147. [PMID: 28577431 PMCID: PMC5557338 DOI: 10.1016/j.conb.2017.05.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/02/2017] [Accepted: 05/15/2017] [Indexed: 01/21/2023]
Abstract
The postsynaptic density (PSD) of all vertebrate species share a highly complex proteome with ∼1000 conserved proteins that function as sophisticated molecular computational devices. Here, we review recent studies showing that this complexity can be understood in terms of the supramolecular organization of proteins, which self-assemble within a hierarchy of different length scales, including complexes, supercomplexes and nanodomains. We highlight how genetic and biochemical approaches in mice are being used to uncover the native molecular architecture of the synapse, revealing hitherto unknown molecular structures, including highly selective mechanisms for specifying the assembly of NMDAR-MAGUK supercomplexes. We propose there exists a logical framework that precisely dictates the subunit composition of synaptic complexes, supercomplexes, and nanodomains in vivo.
Collapse
Affiliation(s)
- René Aw Frank
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Seth Gn Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh EH16 4SB, UK.
| |
Collapse
|
14
|
Snow WM, Albensi BC. Neuronal Gene Targets of NF-κB and Their Dysregulation in Alzheimer's Disease. Front Mol Neurosci 2016; 9:118. [PMID: 27881951 PMCID: PMC5101203 DOI: 10.3389/fnmol.2016.00118] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
Although, better known for its role in inflammation, the transcription factor nuclear factor kappa B (NF-κB) has more recently been implicated in synaptic plasticity, learning, and memory. This has been, in part, to the discovery of its localization not just in glia, cells that are integral to mediating the inflammatory process in the brain, but also neurons. Several effectors of neuronal NF-κB have been identified, including calcium, inflammatory cytokines (i.e., tumor necrosis factor alpha), and the induction of experimental paradigms thought to reflect learning and memory at the cellular level (i.e., long-term potentiation). NF-κB is also activated after learning and memory formation in vivo. In turn, activation of NF-κB can elicit either suppression or activation of other genes. Studies are only beginning to elucidate the multitude of neuronal gene targets of NF-κB in the normal brain, but research to date has confirmed targets involved in a wide array of cellular processes, including cell signaling and growth, neurotransmission, redox signaling, and gene regulation. Further, several lines of research confirm dysregulation of NF-κB in Alzheimer's disease (AD), a disorder characterized clinically by a profound deficit in the ability to form new memories. AD-related neuropathology includes the characteristic amyloid beta plaque formation and neurofibrillary tangles. Although, such neuropathological findings have been hypothesized to contribute to memory deficits in AD, research has identified perturbations at the cellular and synaptic level that occur even prior to more gross pathologies, including transcriptional dysregulation. Indeed, synaptic disturbances appear to be a significant correlate of cognitive deficits in AD. Given the more recently identified role for NF-κB in memory and synaptic transmission in the normal brain, the expansive network of gene targets of NF-κB, and its dysregulation in AD, a thorough understanding of NF-κB-related signaling in AD is warranted and may have important implications for uncovering treatments for the disease. This review aims to provide a comprehensive view of our current understanding of the gene targets of this transcription factor in neurons in the intact brain and provide an overview of studies investigating NF-κB signaling, including its downstream targets, in the AD brain as a means of uncovering the basic physiological mechanisms by which memory becomes fragile in the disease.
Collapse
Affiliation(s)
- Wanda M Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital ResearchWinnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of ManitobaWinnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital ResearchWinnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
15
|
Wang H, Peng RY. Basic roles of key molecules connected with NMDAR signaling pathway on regulating learning and memory and synaptic plasticity. Mil Med Res 2016; 3:26. [PMID: 27583167 PMCID: PMC5006437 DOI: 10.1186/s40779-016-0095-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/09/2016] [Indexed: 11/10/2022] Open
Abstract
With key roles in essential brain functions ranging from the long-term potentiation (LTP) to synaptic plasticity, the N-methyl-D-aspartic acid receptor (NMDAR) can be considered as one of the fundamental glutamate receptors in the central nervous system. The role of NMDA R was first identified in synaptic plasticity and has been extensively studied. Some molecules, such as Ca(2+), postsynaptic density 95 (PSD-95), calcium/calmodulin-dependent protein kinase II (CaMK II), protein kinase A (PKA), mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate (cAMP) responsive element binding protein (CREB), are of special importance in learning and memory. This review mainly focused on the new research of key molecules connected with learning and memory, which played important roles in the NMDAR signaling pathway.
Collapse
Affiliation(s)
- Hui Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Rui-Yun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| |
Collapse
|
16
|
Wang LF, Wei L, Qiao SM, Gao XN, Gao YB, Wang SM, Zhao L, Dong J, Xu XP, Zhou HM, Hu XJ, Peng RY. Microwave-Induced Structural and Functional Injury of Hippocampal and PC12 Cells Is Accompanied by Abnormal Changes in the NMDAR-PSD95-CaMKII Pathway. Pathobiology 2015; 82:181-94. [PMID: 26337368 DOI: 10.1159/000398803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/09/2015] [Indexed: 11/19/2022] Open
Abstract
Recent studies have highlighted the important role of the postsynaptic NMDAR-PSD95-CaMKII pathway for synaptic transmission and related neuronal injury. Here, we tested changes in the components of this pathway upon microwave-induced neuronal structure and function impairments. Ultrastructural and functional changes were induced in hippocampal neurons of rats and in PC12 cells exposed to microwave radiation. We detected abnormal protein and mRNA expression, as well as posttranslational modifications in the NMDAR-PSD95-CaMKII pathway and its associated components, such as synapsin I, following microwave radiation exposure of rats and PC12 cells. Thus, microwave radiation may induce neuronal injury via changes in the molecular organization of postsynaptic density and modulation of the biochemical cascade that potentiates synaptic transmission.
Collapse
Affiliation(s)
- Li-Feng Wang
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Savioz A, Leuba G, Vallet PG. A framework to understand the variations of PSD-95 expression in brain aging and in Alzheimer's disease. Ageing Res Rev 2014; 18:86-94. [PMID: 25264360 DOI: 10.1016/j.arr.2014.09.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/03/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
The postsynaptic density protein PSD-95 is a major element of synapses. PSD-95 is involved in aging, Alzheimer's disease (AD) and numerous psychiatric disorders. However, contradictory data about PSD-95 expression in aging and AD have been reported. Indeed in AD versus control brains PSD-95 varies according to regions, increasing in the frontal cortex, at least in a primary stage, and decreasing in the temporal cortex. In contrast, in transgenic mouse models of aging and AD PSD-95 expression is decreased, in behaviorally aged impaired versus unimpaired rodents it can decrease or increase and finally, it is increased in rodents grown in enriched environments. Different factors explain these contradictory results in both animals and humans, among others concomitant psychiatric endophenotypes, such as depression. The possible involvement of PSD-95 in reactive and/or compensatory mechanisms during AD progression is underscored, at least before the occurrence of important synaptic elimination. Thus, in AD but not in AD transgenic mice, enhanced expression might precede the diminution commonly observed in advanced aging. A two-compartments cell model, separating events taking place in cell bodies and synapses, is presented. Overall these data suggest that AD research will progress by untangling pathological from protective events, a prerequisite for effective therapeutic strategies.
Collapse
|
18
|
Jiang X, Chai GS, Wang ZH, Hu Y, Li XG, Ma ZW, Wang Q, Wang JZ, Liu GP. CaMKII-dependent dendrite ramification and spine generation promote spatial training-induced memory improvement in a rat model of sporadic Alzheimer's disease. Neurobiol Aging 2014; 36:867-76. [PMID: 25457025 DOI: 10.1016/j.neurobiolaging.2014.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/12/2014] [Accepted: 10/13/2014] [Indexed: 01/08/2023]
Abstract
Participation in cognitively stimulating activities can preserve memory capacities in patients with Alzheimer's disease (AD), but the mechanism is not fully understood. Here, we used a rat model with hyperhomocysteinemia, an independent risk factor of AD, to study whether spatial training could remodel the synaptic and/or dendritic plasticity and the key molecular target(s) involved. We found that spatial training in water maze remarkably improved the subsequent short-term and long-term memory performance in contextual fear conditioning and Barnes maze. The trained rats showed an enhanced dendrite ramification, spine generation and plasticity in dentate gyrus (DG) neurons, and stimulation of long-term potentiation between perforant path and DG circuit. Spatial training also increased the levels of postsynaptic GluA1, GluN2A, GluN2B, and PSD93 with selective activation of calcium/calmodulin-dependent protein kinase II (CaMKII), although inhibition of CaMKII by stereotaxic injection of KN93 into hippocampal DG, abolished the training-induced cognitive improvement, dendrite ramification, and spine generation. We conclude that spatial training can preserve the cognitive function by CaMKII-dependent remodeling of dendritic plasticity in hyperhomocysteinemia-induced sporadic AD-like rats.
Collapse
Affiliation(s)
- Xia Jiang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China; Department of Pathology, Hubei University of Chinese Medicine, Wuhan, Hubei Province, P. R. China
| | - Gao-Shang Chai
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China; Department of Basic Medicine, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu Province, P. R. China
| | - Zhi-Hao Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Yu Hu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Xiao-Guang Li
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Zhi-Wei Ma
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Qun Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Gong-Ping Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| |
Collapse
|
19
|
Kim JW, Ha GY, Jung YW. Chronic renal failure induces cell death in rat hippocampal CA1 via upregulation of αCaMKII/NR2A synaptic complex and phosphorylated GluR1-containing AMPA receptor cascades. Kidney Res Clin Pract 2014; 33:132-8. [PMID: 26877964 PMCID: PMC4714159 DOI: 10.1016/j.krcp.2014.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/04/2014] [Accepted: 07/20/2014] [Indexed: 12/03/2022] Open
Abstract
Background N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propinoic acid (AMPA) receptors bound to postsynaptic density-95 (PSD-95) and α isoform of calcium/calmodulin-dependent protein kinase II (αCaMKII) is fundamentally involved in the regulation of working memory. The aim of present study was to investigate the alterations of NMDA and AMPA receptors responsible for hippocampal synaptic dysfunction and selective neuronal cell death after chronic renal failure (CRF) which may be associated with impairment of working memory. Methods Altered interactions between NMDA and AMPA receptors and PSD-95 and αCaMKII were analyzed in the cornu ammonis (CA) 1 and CA3/dentate gyrus (DG) subfields of the uremic rat hippocampi using the immunoblotting and immunoprecipitation methods. Results Uremia induced by CRF produced necrotic cell death and decreased neuronal nucleoli protein levels in the hippocampal CA1 subfield, but not in the CA3/DG subfields. The CA1 subfields of CRF rats exhibited significant decreases and increases, respectively, in the expressions of PSD-95/NR2B and αCaMKII/NR2A synaptic complex. Moreover, increased phosphorylation of glutamate receptor type 1 (GluR1) AMPA receptor at ser831 was observed in the CA1 subfield after CRF. Conclusion These hippocampal CA1 neuronal vulnerability may be responsible for memory dysfunction after CRF as mediated by an increase in NR2A-containing NMDA receptors bound to αCaMKII and subsequent activation of GluR1-containing AMPA receptors caused by the phosphorylation of GluR1 at ser831.
Collapse
Affiliation(s)
- Jong Wan Kim
- Section of Neuroscience Research, Medical Institute of Dongguk University, Gyeongju, Korea; Department of Anatomy, College of Medicine, Dongguk University, Gyeongju, Korea
| | - Gyoung Yim Ha
- Department of Laboratory Medicine, College of Medicine, Dongguk University, Gyeongju, Korea
| | - Yong Wook Jung
- Section of Neuroscience Research, Medical Institute of Dongguk University, Gyeongju, Korea; Department of Anatomy, College of Medicine, Dongguk University, Gyeongju, Korea
| |
Collapse
|
20
|
Abstract
To assess the consequences of locus ceruleus (LC) degeneration and subsequent noradrenaline (NA) deficiency in early Alzheimer's disease (AD), mice overexpressing mutant amyloid precursor protein and presenilin-1 (APP/PS1) were crossed with Ear2(-/-) mice that have a severe loss of LC neurons projecting to the hippocampus and neocortex. Testing spatial memory and hippocampal long-term potentiation revealed an impairment in APP/PS1 Ear2(-/-) mice, whereas APP/PS1 or Ear2(-/-) mice showed only minor changes. These deficits were associated with distinct synaptic changes including reduced expression of the NMDA 2A subunit and increased levels of NMDA receptor 2B in APP/PS1 Ear2(-/-) mice. Acute pharmacological replacement of NA by L-threo-DOPS partially restored phosphorylation of β-CaMKII and spatial memory performance in APP/PS1 Ear2(-/-) mice. These changes were not accompanied by altered APP processing or amyloid β peptide (Aβ) deposition. Thus, early LC degeneration and subsequent NA reduction may contribute to cognitive deficits via CaMKII and NMDA receptor dysfunction independent of Aβ and suggests that NA supplementation could be beneficial in treating AD.
Collapse
|
21
|
Chakroborty S, Stutzmann GE. Calcium channelopathies and Alzheimer's disease: insight into therapeutic success and failures. Eur J Pharmacol 2013; 739:83-95. [PMID: 24316360 DOI: 10.1016/j.ejphar.2013.11.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 10/22/2013] [Accepted: 11/07/2013] [Indexed: 01/06/2023]
Abstract
Calcium ions are versatile and universal biological signaling factors that regulate numerous cellular processes ranging from cell fertilization, to neuronal plasticity that underlies learning and memory, to cell death. For these functions to be properly executed, calcium signaling requires precise regulation, and failure of this regulation may tip the scales from a signal for life to a signal for death. Disruptions in calcium channel function can generate complex multi-system disorders collectively referred to as "calciumopathies" that can target essentially any cell type or organ. In this review, we focus on the multifaceted involvement of calcium signaling in the pathophysiology of Alzheimer's disease (AD), and summarize the various therapeutic options currently available to combat this disease. Detailing the series of disappointing AD clinical trial results on cognitive outcomes, we emphasize the urgency to design alternative therapeutic strategies if synaptic and memory functions are to be preserved. One such approach is to target early calcium channelopathies centrally linked to AD pathogenesis.
Collapse
Affiliation(s)
- Shreaya Chakroborty
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| |
Collapse
|
22
|
Yang L, Zhang J, Zheng K, Shen H, Chen X. Long-term Ginsenoside Rg1 Supplementation Improves Age-Related Cognitive Decline by Promoting Synaptic Plasticity Associated Protein Expression in C57BL/6J Mice. J Gerontol A Biol Sci Med Sci 2013; 69:282-94. [DOI: 10.1093/gerona/glt091] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
23
|
Liu W, Chang L, Song Y, Gao X, Ling W, Lu T, Zhang Y, Wu Y. Immunolocalization of CaMKII and NR2B in hippocampal subregions of rat during postnatal development. Acta Histochem 2013; 115:264-72. [PMID: 22906554 DOI: 10.1016/j.acthis.2012.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 07/25/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
Although the expression of CaMKII and synaptic-associated proteins has been widely studied, the temporospatial distribution of CaMKII and NMDAR subunits in different hippocampal subregions during postnatal development still lacks detailed information. In this study, we used immunofluorescent staining to assess CaMKII and NR2B expressions and the relationship between them in CA1, CA3, and DG of rat hippocampus on postnatal (P) days: P0, P4, P7, P10, P14, P21, P28, and P56. The results showed that from P0 to P56, CaMKII expression increased gradually, while NR2B expression decreased gradually, and the time points of their expression peak differed in CA1, CA3, and DG during postnatal development. Although the expression of CaMKII was negatively correlated with NR2B in CA1 and DG, the coexpression of CaMKII with NR2B existed in CA1, CA3, and DG during postnatal development. Interestingly, after P21, CaMKII expression and the coexpression of CaMKII with NR2B became obvious in the Stratum lucidum of CA3. The specific temporospatial distribution pattern of CaMKII with NR2B might be related to the different physiological functions during postnatal development. Discovery of the alteration of the relationship between expression of CaMKII and NMDAR subunits may be helpful for understanding mechanisms and therapy of neurodegenerative diseases.
Collapse
|
24
|
Hammerschmidt T, Kummer MP, Terwel D, Martinez A, Gorji A, Pape HC, Rommelfanger KS, Schroeder JP, Stoll M, Schultze J, Weinshenker D, Heneka MT. Selective loss of noradrenaline exacerbates early cognitive dysfunction and synaptic deficits in APP/PS1 mice. Biol Psychiatry 2013; 73:454-63. [PMID: 22883210 PMCID: PMC4712953 DOI: 10.1016/j.biopsych.2012.06.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 05/24/2012] [Accepted: 06/06/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Degeneration of the locus coeruleus (LC), the major noradrenergic nucleus in the brain, occurs early and is ubiquitous in Alzheimer's disease (AD). Experimental lesions to the LC exacerbate AD-like neuropathology and cognitive deficits in several transgenic mouse models of AD. Because the LC contains multiple neuromodulators known to affect amyloid β toxicity and cognitive function, the specific role of noradrenaline (NA) in AD is not well understood. METHODS To determine the consequences of selective NA deficiency in an AD mouse model, we crossed dopamine β-hydroxylase (DBH) knockout mice with amyloid precursor protein (APP)/presenilin-1 (PS1) mice overexpressing mutant APP and PS1. Dopamine β-hydroxylase (-/-) mice are unable to synthesize NA but otherwise have normal LC neurons and co-transmitters. Spatial memory, hippocampal long-term potentiation, and synaptic protein levels were assessed. RESULTS The modest impairments in spatial memory and hippocampal long-term potentiation displayed by young APP/PS1 or DBH (-/-) single mutant mice were augmented in DBH (-/-)/APP/PS1 double mutant mice. Deficits were associated with reduced levels of total calcium/calmodulin-dependent protein kinase II and N-methyl-D-aspartate receptor 2A and increased N-methyl-D-aspartate receptor 2B levels and were independent of amyloid β accumulation. Spatial memory performance was partly improved by treatment with the NA precursor drug L-threo-dihydroxyphenylserine. CONCLUSIONS These results indicate that early LC degeneration and subsequent NA deficiency in AD may contribute to cognitive deficits via altered levels of calcium/calmodulin-dependent protein kinase II and N-methyl-D-aspartate receptors and suggest that NA supplementation could be beneficial in early AD.
Collapse
Affiliation(s)
- Thea Hammerschmidt
- Department of Neurology, Clinical Neurosciences, University of Bonn, and Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Sigmund-Freud-Strasse 25, 53127 Bonn, Germany,Institute of Physiology I, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - Markus P. Kummer
- Department of Neurology, Clinical Neurosciences, University of Bonn, and Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Dick Terwel
- Department of Neurology, Clinical Neurosciences, University of Bonn, and Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Ana Martinez
- Genes and Behavior Dept., Max Planck Institute of Biophysical Chemistry, 37077 Göttingen, Germany
| | - Ali Gorji
- Institute of Physiology I, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | | | | | - Monika Stoll
- Leibniz-Institut für Arterioskleroseforschung, Genetische Epidemiologie vaskulärer Erkrankungen, 48149 Münster, Germany
| | - Joachim Schultze
- LIMES Institute, Genomics and Immunoregulation, University of Bonn, 53115 Bonn, Germany
| | | | - Michael T. Heneka
- Department of Neurology, Clinical Neurosciences, University of Bonn, and Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Sigmund-Freud-Strasse 25, 53127 Bonn, Germany,corresponding author: Michael T. Heneka, University of Bonn, Dept. of Neurology, Clinical Neuroscience, Sigmund-Freud-Strasse 25, 53127 Bonn, +49 228 287 13091, +49 228 287 13166,
| |
Collapse
|
25
|
Wang Y, Zhao F, Liao Y, Jin Y, Sun G. Effects of arsenite in astrocytes on neuronal signaling transduction. Toxicology 2013; 303:43-53. [DOI: 10.1016/j.tox.2012.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/17/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
|
26
|
Yamazaki Y, Fujii S, Aihara T, Mikoshiba K. Activation of inositol 1, 4, 5-trisphosphate receptors during preconditioning low-frequency stimulation leads to reversal of long-term potentiation in hippocampal CA1 neurons. Neuroscience 2012; 207:1-11. [DOI: 10.1016/j.neuroscience.2012.01.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
|
27
|
Abstract
MAGUKs are proteins that act as key scaffolds in surface complexes containing receptors, adhesion proteins, and various signaling molecules. These complexes evolved prior to the appearance of multicellular animals and play key roles in cell-cell intercommunication. A major example of this is the neuronal synapse, which contains several presynaptic and postsynaptic MAGUKs including PSD-95, SAP102, SAP97, PSD-93, CASK, and MAGIs. Here, they play roles in both synaptic development and in later synaptic plasticity events. During development, MAGUKs help to organize the postsynaptic density via associations with other scaffolding proteins, such as Shank, and the actin cytoskeleton. They affect the clustering of glutamate receptors and other receptors, and these associations change with development. MAGUKs are involved in long-term potentiation and depression (e.g., via their phosphorylation by kinases and phosphorylation of other proteins associated with MAGUKs). Importantly, synapse development and function are dependent on the kind of MAGUK present. For example, SAP102 shows high mobility and is present in early synaptic development. Later, much of SAP102 is replaced by PSD-95, a more stable synaptic MAGUK; this is associated with changes in glutamate receptor types that are characteristic of synaptic maturation.
Collapse
Affiliation(s)
- Chan-Ying Zheng
- National Institute on Deafness and Other Communication Disorders/National Institutes of Health (NIDCD/NIH), Bethesda, MD, USA
| | - Gail K. Seabold
- National Institute on Deafness and Other Communication Disorders/National Institutes of Health (NIDCD/NIH), Bethesda, MD, USA
| | - Martin Horak
- National Institute on Deafness and Other Communication Disorders/National Institutes of Health (NIDCD/NIH), Bethesda, MD, USA
| | - Ronald S. Petralia
- National Institute on Deafness and Other Communication Disorders/National Institutes of Health (NIDCD/NIH), Bethesda, MD, USA
| |
Collapse
|
28
|
VanGuilder HD, Farley JA, Yan H, Van Kirk CA, Mitschelen M, Sonntag WE, Freeman WM. Hippocampal dysregulation of synaptic plasticity-associated proteins with age-related cognitive decline. Neurobiol Dis 2011; 43:201-12. [PMID: 21440628 PMCID: PMC3096728 DOI: 10.1016/j.nbd.2011.03.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/18/2011] [Indexed: 12/16/2022] Open
Abstract
Age-related cognitive decline occurs without frank neurodegeneration and is the most common cause of memory impairment in aging individuals. With increasing longevity, cognitive deficits, especially in hippocampus-dependent memory processes, are increasing in prevalence. Nevertheless, the neurobiological basis of age-related cognitive decline remains unknown. While concerted efforts have led to the identification of neurobiological changes with aging, few age-related alterations have been definitively correlated to behavioral measures of cognitive decline. In this work, adult (12 months) and aged (28 months) rats were categorized by Morris water maze performance as Adult cognitively Intact, Aged cognitively Intact or Aged cognitively Impaired, and protein expression was examined in hippocampal synaptosome preparations. Previously described differences in synaptic expression of neurotransmission-associated proteins (Dnm1, Hpca, Stx1, Syn1, Syn2, Syp, SNAP25, VAMP2 and 14-3-3 eta, gamma, and zeta) were confirmed between Adult and Aged rats, with no further dysregulation associated with cognitive impairment. Proteins related to synaptic structural stability (MAP2, drebrin, Nogo-A) and activity-dependent signaling (PSD-95, 14-3-3θ, CaMKIIα) were up- and down-regulated, respectively, with cognitive impairment but were not altered with increasing age. Localization of MAP2, PSD-95, and CaMKIIα demonstrated protein expression alterations throughout the hippocampus. The altered expression of activity- and structural stability-associated proteins suggests that impaired synaptic plasticity is a distinct phenomenon that occurs with age-related cognitive decline, and demonstrates that cognitive decline is not simply an exacerbation of the aging phenotype.
Collapse
Affiliation(s)
- Heather D. VanGuilder
- Penn State College of Medicine, Department of Pharmacology, Hershey Center for Applied Research, 500 University Drive, Hershey, PA, 17033, USA
| | - Julie A. Farley
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10 Street, BRC-1303, Oklahoma City, OK, 73104, USA
| | - Han Yan
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10 Street, BRC-1303, Oklahoma City, OK, 73104, USA
| | - Colleen A. Van Kirk
- Penn State College of Medicine, Department of Pharmacology, Hershey Center for Applied Research, 500 University Drive, Hershey, PA, 17033, USA
| | - Matthew Mitschelen
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10 Street, BRC-1303, Oklahoma City, OK, 73104, USA
| | - William E. Sonntag
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10 Street, BRC-1303, Oklahoma City, OK, 73104, USA
| | - Willard M. Freeman
- Penn State College of Medicine, Department of Pharmacology, Hershey Center for Applied Research, 500 University Drive, Hershey, PA, 17033, USA
| |
Collapse
|
29
|
Kharlamov EA, Lepsveridze E, Meparishvili M, Solomonia RO, Lu B, Miller ER, Kelly KM, Mtchedlishvili Z. Alterations of GABA(A) and glutamate receptor subunits and heat shock protein in rat hippocampus following traumatic brain injury and in posttraumatic epilepsy. Epilepsy Res 2011; 95:20-34. [PMID: 21439793 DOI: 10.1016/j.eplepsyres.2011.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/20/2010] [Accepted: 02/18/2011] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) can result in the development of posttraumatic epilepsy (PTE). Recently, we reported differential alterations in tonic and phasic GABA(A) receptor (GABA(A)R) currents in hippocampal dentate granule cells 90 days after controlled cortical impact (CCI) (Mtchedlishvili et al., 2010). In the present study, we investigated long-term changes in the protein expression of GABA(A)R α1, α4, γ2, and δ subunits, NMDA (NR2B) and AMPA (GluR1) receptor subunits, and heat shock proteins (HSP70 and HSP90) in the hippocampus of Sprague-Dawley rats evaluated by Western blotting in controls, CCI-injured animals without PTE (CCI group), and CCI-injured animals with PTE (PTE group). No differences were found among all three groups for α1 and α4 subunits. Significant reduction of γ2 protein was observed in the PTE group compared to control. CCI caused a 194% and 127% increase of δ protein in the CCI group compared to control (p<0.0001), and PTE (p<0.0001) groups, respectively. NR2B protein was increased in CCI and PTE groups compared to control (p=0.0001, and p=0.011, respectively). GluR1 protein was significantly decreased in CCI and PTE groups compared to control (p=0.003, and p=0.001, respectively), and in the PTE group compared to the CCI group (p=0.036). HSP70 was increased in CCI and PTE groups compared to control (p=0.014, and p=0.005, respectively); no changes were found in HSP90 expression. These results provide for the first time evidence of long-term alterations of GABA(A) and glutamate receptor subunits and a HSP following CCI.
Collapse
Affiliation(s)
- Elena A Kharlamov
- Center for Neuroscience Research, Allegheny-Singer Research Institute, Allegheny General Hospital, 320 East North Avenue, Pittsburgh, PA 15212-4772, United States.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Das P, Zerda R, Alvarez FJ, Tietz EI. Immunogold electron microscopic evidence of differential regulation of GluN1, GluN2A, and GluN2B, NMDA-type glutamate receptor subunits in rat hippocampal CA1 synapses during benzodiazepine withdrawal. J Comp Neurol 2011; 518:4311-28. [PMID: 20853509 DOI: 10.1002/cne.22458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Benzodiazepine withdrawal-anxiety is associated with enhanced α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR)-mediated glutamatergic transmission in rat hippocampal CA1 synapses due to enhanced synaptic insertion and phosphorylation of GluA1 homomers. Interestingly, attenuation of withdrawal-anxiety is associated with a reduction in N-methyl-D-aspartate receptor (NMDAR)-mediated currents and subunit expression, secondary to AMPA receptor potentiation. Therefore, in this study ultrastructural evidence for possible reductions in NMDAR GluN1, GluN2A, and GluN2B subunits was sought at CA1 stratum radiatum synapses in proximal dendrites using postembedding immunogold labeling of tissues from rats withdrawn for 2 days from 1-week daily oral administration of the benzodiazepine, flurazepam (FZP). GluN1-immunogold density and the percentage of immunopositive synapses were significantly decreased in tissues from FZP-withdrawn rats. Similar decreases were observed for GluN2B subunits; however, the relative lateral distribution of GluN2B-immunolabeling within the postsynaptic density did not change after BZ withdrawal. In contrast to the GluN2B subunit, the percentage of synapses labeled with the GluN2A subunit antibody and the density of immunogold labeling for this subunit was unchanged. The spatial localization of immunogold particles associated with each NMDAR subunit was consistent with a predominantly postsynaptic localization. The data therefore provide direct evidence for reduced synaptic GluN1/GluN2B receptors and preservation of GluN1/GluN2A receptors in the CA1 stratum radiatum region during BZ withdrawal. Based on collective findings in this benzodiazepine withdrawal-anxiety model, we propose a functional model illustrating the changes in glutamate receptor populations at excitatory synapses during benzodiazepine withdrawal.
Collapse
Affiliation(s)
- Paromita Das
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus, Toledo, Ohio 43614, USA
| | | | | | | |
Collapse
|
31
|
Wang ACJ, Hara Y, Janssen WGM, Rapp PR, Morrison JH. Synaptic estrogen receptor-alpha levels in prefrontal cortex in female rhesus monkeys and their correlation with cognitive performance. J Neurosci 2010; 30:12770-6. [PMID: 20861381 PMCID: PMC2951003 DOI: 10.1523/jneurosci.3192-10.2010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/03/2010] [Accepted: 08/05/2010] [Indexed: 01/04/2023] Open
Abstract
In rat hippocampus, estrogen receptor-α (ER-α) can initiate nongenomic signaling mechanisms that modulate synaptic plasticity in response to either circulating or locally synthesized estradiol (E). Here we report quantitative electron microscopic data demonstrating that ER-α is present within excitatory synapses in dorsolateral prefrontal cortex (dlPFC) of young and aged ovariectomized female rhesus monkeys with and without E treatment. There were no treatment or age effects on the percentage of excitatory synapses containing ER-α, nor were there any group differences in distribution of ER-α within the synapse. However, the mean size of synapses containing ER-α was larger than that of unlabeled excitatory synapses. All monkeys were tested on delayed response (DR), a cognitive test of working memory that requires dlPFC. In young ovariectomized monkeys without E treatment, presynaptic ER-α correlated with DR accuracy across memory delays. In aged monkeys that received E treatment, ER-α within the postsynaptic density (30-60 nm from the synaptic membrane) positively correlated with DR performance. Thus, although the lack of group effects suggests that ER-α is primarily in synapses that are stable across age and treatment, synaptic abundance of ER-α is correlated with individual performance in two key age/treatment groups. These data have important implications for individual differences in the cognitive outcome among menopausal women and promote a focus on cortical estrogen receptors for therapeutic efficacy with respect to cognition.
Collapse
Affiliation(s)
- Athena C. J. Wang
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, and
| | - Yuko Hara
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, and
| | - William G. M. Janssen
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, and
| | - Peter R. Rapp
- Laboratory of Experimental Gerontology, National Institute on Aging, Biomedical Research Center, Baltimore, Maryland 21224
| | - John H. Morrison
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, and
| |
Collapse
|
32
|
Carlson ES, Fretham SJB, Unger E, O’Connor M, Petryk A, Schallert T, Rao R, Tkac I, Georgieff MK. Hippocampus specific iron deficiency alters competition and cooperation between developing memory systems. J Neurodev Disord 2010; 2:133-43. [PMID: 20824191 PMCID: PMC2930796 DOI: 10.1007/s11689-010-9049-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 04/29/2010] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Iron deficiency (ID) is the most common gestational micronutrient deficiency in the world, targets the fetal hippocampus and striatum and results in long-term behavioral abnormalities. These structures primarily mediate spatial and procedural memory, respectively, in the rodent but have interconnections that result in competition or cooperation during cognitive tasks. We determined whether ID-induced impairment of one alters the function of the other by genetically inducing a 40% reduction of hippocampus iron content in late fetal life in mice and measuring dorsal striatal gene expression and metabolism and the behavioral balance between the two memory systems in adulthood. Slc11a2(hipp/hipp) mice had similar striatum iron content, but 18% lower glucose and 44% lower lactate levels, a 30% higher phosphocreatine:creatine ratio, and reduced iron transporter gene expression compared to wild type (WT) littermates, implying reduced striatal metabolic function. Slc11a2(hipp/hipp) mice had longer mean escape times on a cued task paradigm implying impaired procedural memory. Nevertheless, when hippocampal and striatal memory systems were placed in competition using a Morris Water Maze task that alternates spatial navigation and visual cued responses during training, and forces a choice between hippocampal and striatal strategies during probe trials, Slc11a2(hipp/hipp) mice used the hippocampus-dependent response less often (25%) and the visual cued response more often (75%) compared to WT littermates that used both strategies approximately equally. Hippocampal ID not only reduces spatial recognition memory performance but also affects systems that support procedural memory, suggesting an altered balance between memory systems. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s11689-010-9049-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erik S. Carlson
- Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, MN 55455 USA
- Graduate Program in Neuroscience, University of Minnesota Medical School, D-136 Mayo Building, 420 Delaware St SE, Minneapolis, MN 55455 USA
- Pediatrics, University of Minnesota Medical School, D-136 Mayo Building, 420 Delaware St SE, Minneapolis, MN 55455 USA
- Center for Neurobehavioral Development, Graduate Program in Neuroscience, University of Minnesota Medical School, D-136 Mayo Building, 420 Delaware St SE, Minneapolis, MN 55455 USA
| | - Stephanie J. B. Fretham
- Graduate Program in Neuroscience, University of Minnesota Medical School, D-136 Mayo Building, 420 Delaware St SE, Minneapolis, MN 55455 USA
- Pediatrics, University of Minnesota Medical School, D-136 Mayo Building, 420 Delaware St SE, Minneapolis, MN 55455 USA
- Center for Neurobehavioral Development, Graduate Program in Neuroscience, University of Minnesota Medical School, D-136 Mayo Building, 420 Delaware St SE, Minneapolis, MN 55455 USA
| | - Erica Unger
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802 USA
| | - Michael O’Connor
- Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN 55455 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| | - Anna Petryk
- Pediatrics, University of Minnesota Medical School, D-136 Mayo Building, 420 Delaware St SE, Minneapolis, MN 55455 USA
- Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Timothy Schallert
- Departments of Psychology, University of Texas at Austin, Austin, TX 78746 USA
- Departments of Neurobiology, University of Texas at Austin, Austin, TX 78746 USA
- Department of Neurosurgery and Development, University of Michigan, Ann Arbor, MI 48109 USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI 48109 USA
| | - Raghavendra Rao
- Graduate Program in Neuroscience, University of Minnesota Medical School, D-136 Mayo Building, 420 Delaware St SE, Minneapolis, MN 55455 USA
- Pediatrics, University of Minnesota Medical School, D-136 Mayo Building, 420 Delaware St SE, Minneapolis, MN 55455 USA
- Center for Neurobehavioral Development, Graduate Program in Neuroscience, University of Minnesota Medical School, D-136 Mayo Building, 420 Delaware St SE, Minneapolis, MN 55455 USA
- Center for Magnetic Resonance Research, Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Ivan Tkac
- Center for Magnetic Resonance Research, Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Michael K. Georgieff
- Graduate Program in Neuroscience, University of Minnesota Medical School, D-136 Mayo Building, 420 Delaware St SE, Minneapolis, MN 55455 USA
- Pediatrics, University of Minnesota Medical School, D-136 Mayo Building, 420 Delaware St SE, Minneapolis, MN 55455 USA
- Center for Neurobehavioral Development, Graduate Program in Neuroscience, University of Minnesota Medical School, D-136 Mayo Building, 420 Delaware St SE, Minneapolis, MN 55455 USA
| |
Collapse
|
33
|
Fernández-Monreal M, Oung T, Hanson HH, O’Leary R, Janssen WG, Dolios G, Wang R, Phillips GR. γ-protocadherins are enriched and transported in specialized vesicles associated with the secretory pathway in neurons. Eur J Neurosci 2010; 32:921-31. [PMID: 20849527 PMCID: PMC3107561 DOI: 10.1111/j.1460-9568.2010.07386.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gamma protocadherins (Pcdh-γs) resemble classical cadherins and have the potential to engage in cell-cell interactions with homophilic properties. Emerging evidence suggests non-conventional roles for some protocadherins in neural development. We sought to determine whether Pcdh-γ trafficking in neurons is consistent with an intracellular role for these molecules. Here we show that, in contrast to the largely surface localization of classical cadherins, endogenous Pcdh-γs are primarily intracellular in rat neurons in vivo and are equally distributed within organelles of subsynaptic dendritic and axonal compartments. A strikingly higher proportion of Pcdh-γ-containing organelles in synaptic compartments was observed at postnatal day 16. To determine the origin of Pcdh-γ-trafficking organelles, we isolated organelles with Pcdh-γ antibody-coupled magnetic beads from brain organelle suspensions. Vesicles with high levels of COPII and endoplasmic reticulum-Golgi intermediate compartment (ERGIC) components were isolated with the Pcdh-γ antibody but not with the classical cadherin antibody. In cultured hippocampal neurons, Pcdh-γ immunolabeling partially overlapped with calnexin- and COPII-positive puncta in dendrites. Mobile Pcdh-γ-GFP profiles dynamically codistributed with a DsRed construct coupled to ER retention signals by live imaging. Pcdh-γ expression correlated with accumulations of tubulovesicular and ER-like organelles in dendrites. Our results are consistent with the possibility that Pcdh-γs could have a unique function within the secretory pathway in addition to their documented surface roles.
Collapse
Affiliation(s)
| | - Twethida Oung
- Department of Neuroscience, Mount Sinai School of Medicine, NY, NY
| | - Hugo H. Hanson
- Department of Neuroscience, Mount Sinai School of Medicine, NY, NY
| | - Robert O’Leary
- Department of Neuroscience, Mount Sinai School of Medicine, NY, NY
| | | | - Georgia Dolios
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, NY, NY
| | - Rong Wang
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, NY, NY
| | - Greg R. Phillips
- Department of Neuroscience, Mount Sinai School of Medicine, NY, NY
| |
Collapse
|
34
|
Chang LR, Liu JP, Zhang N, Wang YJ, Gao XL, Wu Y. Different expression of NR2B and PSD-95 in rat hippocampal subregions during postnatal development. Microsc Res Tech 2009; 72:517-24. [PMID: 19306263 DOI: 10.1002/jemt.20708] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The different expressions of NR2 and synaptic-associated proteins have been studied by protein and mRNA level with immunoblotting, in situ hybridization, or immunogold analysis. But the relationship between NR2 subunits and PSD-95 family proteins is still controversial. In this study, we used immunofluorescent staining to assess NR2B and PSD-95 expressions and the relationship between them in CA1, CA3, and DG of rat hippocampus on different postnatal day. In CA1, NR2B expression decreased with age. It was high at birth, reached a plateau at P4, and declined gradually after P7. In CA3, NR2B expression was similar to that in CA1. But the stratum lucidum was devoid of staining. In DG, the NR2B expression retained a higher level. From P0 to P2, the PSD-95 expression in CA1 increased gently, and then declined slightly. After P7, the PSD-95 expression increased sharply till P28, and decreased again. In CA3 and DG, the PSD-95 expression is very similar except that low-level of PSD-95 was found in the CA3 stratum lucidum. The expression of NR2B did not correlate with that of PSD-95 in CA1 and the DG granular and molecular layer. Only in CA3 and DG polymorphic layer, there was a negative correlation. The results suggested in hippocampal subregions, CA3 and DG may be more plastic than CA1.The NR2B and PSD-95 expression have distinct regional and cell specific distribution. The different regional distribution pattern may relate to the different physiological functions during postnatal development.
Collapse
Affiliation(s)
- Li-Rong Chang
- Department of Anatomy, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | |
Collapse
|
35
|
Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice. J Neurosci 2009; 29:9458-70. [PMID: 19641109 DOI: 10.1523/jneurosci.2047-09.2009] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Presenilin mutations result in exaggerated endoplasmic reticulum (ER) calcium release in cellular and animal models of Alzheimer's disease (AD). In this study, we examined whether dysregulated ER calcium release in young 3xTg-AD neurons alters synaptic transmission and plasticity mechanisms before the onset of histopathology and cognitive deficits. Using electrophysiological recordings and two-photon calcium imaging in young (6-8 weeks old) 3xTg-AD and non-transgenic (NonTg) hippocampal slices, we show a marked increase in ryanodine receptor (RyR)-evoked calcium release within synapse-dense regions of CA1 pyramidal neurons. In addition, we uncovered a deviant contribution of presynaptic and postsynaptic ryanodine receptor-sensitive calcium stores to synaptic transmission and plasticity in 3xTg-AD mice that is not present in NonTg mice. As a possible underlying mechanism, the RyR2 isoform was found to be selectively increased more than fivefold in the hippocampus of 3xTg-AD mice relative to the NonTg controls. These novel findings demonstrate that 3xTg-AD CA1 neurons at presymptomatic ages operate under an aberrant, yet seemingly functional, calcium signaling and synaptic transmission system long before AD histopathology onset. These early signaling alterations may underlie the later synaptic breakdown and cognitive deficits characteristic of later stage AD.
Collapse
|
36
|
Differential trafficking of AMPA and NMDA receptors by SAP102 and PSD-95 underlies synapse development. Proc Natl Acad Sci U S A 2008; 105:20953-8. [PMID: 19104036 DOI: 10.1073/pnas.0811025106] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The development of glutamatergic synapses involves changes in the number and type of receptors present at the postsynaptic density. To elucidate molecular mechanisms underlying these changes, we combine in utero electroporation of constructs that alter the molecular composition of developing synapses with dual whole-cell electrophysiology to examine synaptic transmission during two distinct developmental stages. We find that SAP102 mediates synaptic trafficking of AMPA and NMDA receptors during synaptogenesis. Surprisingly, after synaptogenesis, PSD-95 assumes the functions of SAP102 and is necessary for two aspects of synapse maturation: the developmental increase in AMPA receptor transmission and replacement of NR2B-NMDARs with NR2A-NMDARs. In PSD-95/PSD-93 double-KO mice, the maturational replacement of NR2B- with NR2A-NMDARs fails to occur, and PSD-95 expression fully rescues this deficit. This study demonstrates that SAP102 and PSD-95 regulate the synaptic trafficking of distinct glutamate receptor subtypes at different developmental stages, thereby playing necessary roles in excitatory synapse development.
Collapse
|