1
|
Qin Q, Liu J, Fan W, Zhang X, Lu J, Guo X, Lei Z, Wang J. Exploring the Potential of Voxel-Mirrored Homotopic Connectivity (VMHC) and Regional Homogeneity (ReHo) in Understanding Cognitive Changes After Heart Transplantation. Biomedicines 2025; 13:873. [PMID: 40299406 PMCID: PMC12024960 DOI: 10.3390/biomedicines13040873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
Objective: This study aimed to investigate the application value of voxel-mirrored homotopic connectivity (VMHC) and regional homogeneity (ReHo) in evaluating cognitive impairment after heart transplantation. Methods: A total of 68 heart transplant patients and 56 healthy controls were included. ReHo and VMHC were calculated using DPARSF software. A two-sample t-test was applied to compare the differences in ReHo and VMHC between the two groups, and a Pearson correlation analysis was performed by extracting the VMHC and ReHo values of different brain regions and correlating them with cognitive scale scores of the patient groups. Results: Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores were lower in the heart transplant group than in the control group (MMSE: t = 4.028, p < 0.001; MoCA: t = 4.914, p < 0.001). Compared with the control group, the ReHo values of Frontal_Sup_R (t = -4.422, p < 0.001), Thalamus_L (t = -3.911, p < 0.001), and Calcarine_L (t = -3.640, p < 0.001) were lower in the heart transplantation group, while the ReHo of Temporal_Sup_L was higher (t = 4.609, p < 0.001). VMHC was elevated for bilateral Cerebellum_Crus1 (t = 3.803, p < 0.001) and decreased for bilateral calcarine (t = -3.424, p < 0.001). The ReHo of Frontal_Sup_R was positively correlated with MMSE (r = 0.345, p = 0.004) and MoCA (r = 0.376, p = 0.002). The ReHo of Temporal_Sup_L was also positively correlated with MMSE (r = 0.397, p < 0.001) and MoCA (r = 0.542, p < 0.001). The VMHC of bilateral calcarine showed a positive correlation with MMSE (r = 0.513, p < 0.001) and MoCA (r = 0.398, p < 0.001). Other differential brain regions showed no significant correlation with the MMSE and MoCA scale scores. Conclusions: Cognitive decline was observed in heart transplant patients. Heart transplant patients exhibited altered ReHo and VMHC in several brain regions compared with healthy controls. These changes may underlie impaired cognitive function in heart transplant patients. These findings may contribute to understanding the neural mechanisms of cognitive changes in heart transplant patients and could inform future research on potential intervention strategies.
Collapse
Affiliation(s)
- Qian Qin
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (Q.Q.); (J.L.); (W.F.); (X.Z.); (J.L.); (X.G.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jia Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (Q.Q.); (J.L.); (W.F.); (X.Z.); (J.L.); (X.G.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (Q.Q.); (J.L.); (W.F.); (X.Z.); (J.L.); (X.G.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xinli Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (Q.Q.); (J.L.); (W.F.); (X.Z.); (J.L.); (X.G.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jue Lu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (Q.Q.); (J.L.); (W.F.); (X.Z.); (J.L.); (X.G.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaotong Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (Q.Q.); (J.L.); (W.F.); (X.Z.); (J.L.); (X.G.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ziqiao Lei
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (Q.Q.); (J.L.); (W.F.); (X.Z.); (J.L.); (X.G.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (Q.Q.); (J.L.); (W.F.); (X.Z.); (J.L.); (X.G.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
2
|
Impact of Purkinje Cell Simple Spike Synchrony on Signal Transmission from Flocculus. THE CEREBELLUM 2021; 21:879-904. [PMID: 34665396 DOI: 10.1007/s12311-021-01332-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
Purkinje cells (PCs) in the cerebellar flocculus carry rate-coded information that ultimately drives eye movement. Floccular PCs lying nearby each other exhibit partial synchrony of their simple spikes (SS). Elsewhere in the cerebellum, PC SS synchrony has been demonstrated to influence activity of the PCs' synaptic targets, and some suggest it constitutes another vector for information transfer. We investigated in the cerebellar flocculus the extent to which the rate code and PC synchrony interact. One motivation for the study was to explain the cerebellar deficits in ataxic mice like tottering; we speculated that PC synchrony has a positive effect on rate code transmission that is lost in the mutants. Working in transgenic mice whose PCs express channelrhodopsin, we exploited a property of optogenetics to control PC synchrony: pulsed photostimulation engenders stimulus-locked spiking, whereas continuous photostimulation engenders spiking whose timing is unconstrained. We photoactivated flocculus PCs using pulsed stimuli with sinusoidally varying timing vs. continuous stimuli with sinusoidally varying intensity. Recordings of PC pairs confirmed that pulsed stimuli engendered greater PC synchrony. We quantified the efficiency of transmission of the evoked PC firing rate modulation from the amplitudes of firing rate modulation and eye movement. Rate code transmission was slightly poorer in the conditions that generated greater PC synchrony, arguing against our motivating speculation regarding the origin of ataxia in tottering. Floccular optogenetic stimulation prominently augmented a 250-300 Hz local field potential oscillation, and we demonstrate relationships between the oscillation power and the evoked PC synchrony.
Collapse
|
3
|
Markati T, Duis J, Servais L. Therapies in preclinical and clinical development for Angelman syndrome. Expert Opin Investig Drugs 2021; 30:709-720. [PMID: 34112038 DOI: 10.1080/13543784.2021.1939674] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Angelman syndrome is a rare genetic neurodevelopmental disorder, caused by deficiency or abnormal function of the maternal ubiquitin protein-ligase E3A, known as UBE3A, in the central nervous system. There is no disease-modifying treatment available, but the therapeutic pipeline of Angelman syndrome includes at least 15 different approaches at preclinical or clinical development. In the coming years, several clinical trials will be enrolling patients, which prompted this comprehensive review.Areas covered: We summarize and critically review the different therapeutic approaches. Some approaches attempt to restore the missing or nonfunctional UBE3A protein in the neurons via gene replacement or enzyme replacement therapies. Other therapies aim to induce expression of the normal paternal copy of the UBE3A gene by targeting a long non-coding RNA, the UBE3A-ATS, which interferes with its own expression. Another therapeutic category includes compounds that target molecular pathways and effector proteins known to be involved in Angelman syndrome pathophysiology.Expert opinion: We believe that by 2022-2023, more than five disease-modifying treatments will be simultaneously at clinical testing. However, the are several challenges with regards to safety and efficacy, which need to be addressed. Additionally, there is still a significant unmet need for clinical trial readiness.
Collapse
Affiliation(s)
- Theodora Markati
- MDUK Oxford Neuromuscular Center, University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK
| | - Jessica Duis
- Section of Genetics & Inherited Metabolic Disease, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Laurent Servais
- MDUK Oxford Neuromuscular Center, University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK.,Division of Child Neurology, Centre De Références Des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium
| |
Collapse
|
4
|
The cerebellar clock: Predicting and timing somatosensory touch. Neuroimage 2021; 238:118202. [PMID: 34089874 DOI: 10.1016/j.neuroimage.2021.118202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/23/2022] Open
Abstract
The cerebellum is involved in predicting the sensory feedback resulting from movements and sensations, but little is known about the precise timing of these predictions due to the scarcity of time-sensitive cerebellar neuroimaging studies. We here, using magnetoencephalography, investigated the hypothesis that one function of the cerebellum is to predict with millisecond precision when rhythmic stimuli are expected to impinge on sensory receptors. This revealed that omissions following regular trains of stimulation showed higher cerebellar power in the beta band (14-30 Hz) than those following irregular trains of stimulation, within milliseconds of when the omitted stimulus should have appeared. We also found evidence of cerebellar theta band (4-7 Hz) activity encoding the rhythm of new sequences of stimulation. Our results also strongly suggest that the putamen and the thalamus mirror the cerebellum in showing higher beta band power when omissions followed regular trains of stimulation compared to when they followed irregular trains of stimulation. We interpret this as the cerebellum functioning as a clock that precisely encodes and predicts upcoming stimulation, perhaps in tandem with the putamen and thalamus. Relative to less predictable stimuli, perfectly predictable stimuli induce greater cerebellar power. This implies that the cerebellum entrains to rhythmic stimuli for the purpose of detecting any deviations from that rhythm.
Collapse
|
5
|
Mochida S. Neurotransmitter Release Site Replenishment and Presynaptic Plasticity. Int J Mol Sci 2020; 22:ijms22010327. [PMID: 33396919 PMCID: PMC7794938 DOI: 10.3390/ijms22010327] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/19/2022] Open
Abstract
An action potential (AP) triggers neurotransmitter release from synaptic vesicles (SVs) docking to a specialized release site of presynaptic plasma membrane, the active zone (AZ). The AP simultaneously controls the release site replenishment with SV for sustainable synaptic transmission in response to incoming neuronal signals. Although many studies have suggested that the replenishment time is relatively slow, recent studies exploring high speed resolution have revealed SV dynamics with milliseconds timescale after an AP. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an AP. This review summarizes how millisecond Ca2+ dynamics activate multiple protein cascades for control of the release site replenishment with release-ready SVs that underlie presynaptic short-term plasticity.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
6
|
D'Mello AM, Gabrieli JDE, Nee DE. Evidence for Hierarchical Cognitive Control in the Human Cerebellum. Curr Biol 2020; 30:1881-1892.e3. [PMID: 32275880 PMCID: PMC7289516 DOI: 10.1016/j.cub.2020.03.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/05/2020] [Accepted: 03/11/2020] [Indexed: 11/23/2022]
Abstract
In non-habitual situations, cognitive control aligns actions with both short- and long-term goals. The capacity for cognitive control is tightly tied to the prefrontal cortex, whose expansion in humans relative to other species is thought to support our superior cognitive control. However, the posterolateral cerebellum has also expanded greatly relative to non-human primates and has an organizational structure that mirrors the prefrontal cortex. Nevertheless, cerebellar contributions to cognitive control are poorly understood. Here, we sought to explore whether a functional hierarchical processing framework, applied to the cerebellum, could elucidate cerebellar contributions to cognitive control. Using functional magnetic resonance imaging, we show that a gradient within the posterolateral cerebellum supports cognitive control with motor-adjacent cerebellar sub-regions supporting control of concrete, proximal actions and motor-distal, cerebellar sub-regions supporting abstract, future processing. This gradient was functionally hierarchical, with regions higher in the hierarchy influencing the relationship between regions lower in the hierarchy. This functional hierarchy provides the infrastructure by which context can inform current actions and prepare for future goals. Crucially, this mirrors the hierarchical organization of cognitive control within the prefrontal cortex. Based on these findings, we propose that the cerebellum contains within itself a parallel but separate hierarchical organization that, along with the prefrontal cortex, supports complex cognition.
Collapse
Affiliation(s)
- Anila M D'Mello
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 01239, USA.
| | - John D E Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Derek Evan Nee
- Department of Psychology, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
7
|
Γ-Aminobutyric acid in adult brain: an update. Behav Brain Res 2019; 376:112224. [DOI: 10.1016/j.bbr.2019.112224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/21/2023]
|
8
|
Nanou E, Catterall WA. Calcium Channels, Synaptic Plasticity, and Neuropsychiatric Disease. Neuron 2019; 98:466-481. [PMID: 29723500 DOI: 10.1016/j.neuron.2018.03.017] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 12/14/2022]
Abstract
Voltage-gated calcium channels couple depolarization of the cell-surface membrane to entry of calcium, which triggers secretion, contraction, neurotransmission, gene expression, and other physiological responses. They are encoded by ten genes, which generate three voltage-gated calcium channel subfamilies: CaV1; CaV2; and CaV3. At synapses, CaV2 channels form large signaling complexes in the presynaptic nerve terminal, which are responsible for the calcium entry that triggers neurotransmitter release and short-term presynaptic plasticity. CaV1 channels form signaling complexes in postsynaptic dendrites and dendritic spines, where their calcium entry induces long-term potentiation. These calcium channels are the targets of mutations and polymorphisms that alter their function and/or regulation and cause neuropsychiatric diseases, including migraine headache, cerebellar ataxia, autism, schizophrenia, bipolar disorder, and depression. This article reviews the molecular properties of calcium channels, considers their multiple roles in synaptic plasticity, and discusses their potential involvement in this wide range of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Evanthia Nanou
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA.
| |
Collapse
|
9
|
Presynaptic Calcium Channels. Int J Mol Sci 2019; 20:ijms20092217. [PMID: 31064106 PMCID: PMC6539076 DOI: 10.3390/ijms20092217] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 12/27/2022] Open
Abstract
Presynaptic Ca2+ entry occurs through voltage-gated Ca2+ (CaV) channels which are activated by membrane depolarization. Depolarization accompanies neuronal firing and elevation of Ca2+ triggers neurotransmitter release from synaptic vesicles. For synchronization of efficient neurotransmitter release, synaptic vesicles are targeted by presynaptic Ca2+ channels forming a large signaling complex in the active zone. The presynaptic CaV2 channel gene family (comprising CaV2.1, CaV2.2, and CaV2.3 isoforms) encode the pore-forming α1 subunit. The cytoplasmic regions are responsible for channel modulation by interacting with regulatory proteins. This article overviews modulation of the activity of CaV2.1 and CaV2.2 channels in the control of synaptic strength and presynaptic plasticity.
Collapse
|
10
|
Han KS, Guo C, Chen CH, Witter L, Osorno T, Regehr WG. Ephaptic Coupling Promotes Synchronous Firing of Cerebellar Purkinje Cells. Neuron 2018; 100:564-578.e3. [PMID: 30293822 DOI: 10.1016/j.neuron.2018.09.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/29/2018] [Accepted: 09/10/2018] [Indexed: 11/29/2022]
Abstract
Correlated neuronal activity at various timescales plays an important role in information transfer and processing. We find that in awake-behaving mice, an unexpectedly large fraction of neighboring Purkinje cells (PCs) exhibit sub-millisecond synchrony. Correlated firing usually arises from chemical or electrical synapses, but, surprisingly, neither is required to generate PC synchrony. We therefore assessed ephaptic coupling, a mechanism in which neurons communicate via extracellular electrical signals. In the neocortex, ephaptic signals from many neurons summate to entrain spiking on slow timescales, but extracellular signals from individual cells are thought to be too small to synchronize firing. Here we find that a single PC generates sufficiently large extracellular potentials to open sodium channels in nearby PC axons. Rapid synchronization is made possible because ephaptic signals generated by PCs peak during the rising phase of action potentials. These findings show that ephaptic coupling contributes to the prevalent synchronization of nearby PCs.
Collapse
Affiliation(s)
- Kyung-Seok Han
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Chong Guo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher H Chen
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Laurens Witter
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomas Osorno
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Downregulation of the Glial GLT1 Glutamate Transporter and Purkinje Cell Dysfunction in a Mouse Model of Myotonic Dystrophy. Cell Rep 2018; 19:2718-2729. [PMID: 28658620 PMCID: PMC8496958 DOI: 10.1016/j.celrep.2017.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/27/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Brain function is compromised in myotonic dystrophy type 1 (DM1), but the underlying mechanisms are not fully understood. To gain insight into the cellular and molecular pathways primarily affected, we studied a mouse model of DM1 and brains of adult patients. We found pronounced RNA toxicity in the Bergmann glia of the cerebellum, in association with abnormal Purkinje cell firing and fine motor incoordination in DM1 mice. A global proteomics approach revealed downregulation of the GLT1 glutamate transporter in DM1 mice and human patients, which we found to be the result of MBNL1 inactivation. GLT1 downregulation in DM1 astrocytes increases glutamate neurotoxicity and is detrimental to neurons. Finally, we demonstrated that the upregulation of GLT1 corrected Purkinje cell firing and motor incoordination in DM1 mice. Our findings show that glial defects are critical in DM1 brain pathophysiology and open promising therapeutic perspectives through the modulation of glutamate levels. Neural dysfunction in myotonic dystrophy is not fully understood. Using a transgenic mouse model of the disease, Sicot et al. find electrophysiological and motor evidence for cerebellar dysfunction in association with pronounced signs of RNA toxicity in Bergmann glia. Upregulation of a defective glial-specific glutamate transporter corrects cerebellum phenotypes.
Collapse
|
12
|
Masliukov PM, Nozdrachev AD, Emanuilov AI. Age-related features in expression of calcium-binding proteins in autonomic ganglionic neurons. ADVANCES IN GERONTOLOGY 2016. [DOI: 10.1134/s207905701604010x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Cheron G, Márquez-Ruiz J, Dan B. Oscillations, Timing, Plasticity, and Learning in the Cerebellum. THE CEREBELLUM 2016; 15:122-38. [PMID: 25808751 DOI: 10.1007/s12311-015-0665-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The highly stereotyped, crystal-like architecture of the cerebellum has long served as a basis for hypotheses with regard to the function(s) that it subserves. Historically, most clinical observations and experimental work have focused on the involvement of the cerebellum in motor control, with particular emphasis on coordination and learning. Two main models have been suggested to account for cerebellar functioning. According to Llinás's theory, the cerebellum acts as a control machine that uses the rhythmic activity of the inferior olive to synchronize Purkinje cell populations for fine-tuning of coordination. In contrast, the Ito-Marr-Albus theory views the cerebellum as a motor learning machine that heuristically refines synaptic weights of the Purkinje cell based on error signals coming from the inferior olive. Here, we review the role of timing of neuronal events, oscillatory behavior, and synaptic and non-synaptic influences in functional plasticity that can be recorded in awake animals in various physiological and pathological models in a perspective that also includes non-motor aspects of cerebellar function. We discuss organizational levels from genes through intracellular signaling, synaptic network to system and behavior, as well as processes from signal production and processing to memory, delegation, and actual learning. We suggest an integrative concept for control and learning based on articulated oscillation templates.
Collapse
Affiliation(s)
- G Cheron
- Laboratory of Electrophysiology, Université de Mons, 7000, Mons, Belgium. .,Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles, CP640, 1070, Brussels, Belgium.
| | - J Márquez-Ruiz
- División de Neurociencias, Universidad Pablo de Olavide, 41013, Seville, Spain
| | - B Dan
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles, CP640, 1070, Brussels, Belgium.,Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020, Brussels, Belgium
| |
Collapse
|
14
|
Lesion-induced and activity-dependent structural plasticity of Purkinje cell dendritic spines in cerebellar vermis and hemisphere. Brain Struct Funct 2015; 221:3405-26. [PMID: 26420278 DOI: 10.1007/s00429-015-1109-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
Neuroplasticity allows the brain to encode experience and learn behaviors, and also to re-acquire lost functions after damage. The cerebellum is a suitable structure to address this topic because of its strong involvement in learning processes and compensation of lesion-induced deficits. This study was aimed to characterize the effects of a hemicerebellectomy (HCb) combined or not with the exposition to environmental enrichment (EE) on dendritic spine density and size in Purkinje cell proximal and distal compartments of cerebellar vermian and hemispherical regions. Male Wistar rats were housed in enriched or standard environments from the 21st post-natal day (pnd) onwards. At the 75th pnd, rats were submitted to HCb or sham lesion. Neurological symptoms and spatial performance in the Morris water maze were evaluated. At the end of testing, morphological analyses assessed dendritic spine density, area, length, and head diameter on vermian and hemispherical Purkinje cells. All hemicerebellectomized (HCbed) rats showed motor compensation, but standard-reared HCbed animals exhibited cognitive impairment that was almost completely compensated in enriched HCbed rats. The standard-reared HCbed rats showed decreased density with augmented size of Purkinje cell spines in the vermis, and augmented both density and size in the hemisphere. Enriched HCbed rats almost completely maintained the spine density and size induced by EE. Both lesion-induced and activity-dependent cerebellar plastic changes may be interpreted as "beneficial" brain reactions, aimed to support behavioral performance rescuing.
Collapse
|
15
|
Groth JD, Sahin M. High frequency synchrony in the cerebellar cortex during goal directed movements. Front Syst Neurosci 2015; 9:98. [PMID: 26257613 PMCID: PMC4508504 DOI: 10.3389/fnsys.2015.00098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/15/2015] [Indexed: 11/24/2022] Open
Abstract
The cerebellum is involved in sensory-motor integration and cognitive functions. The origin and function of the field potential oscillations in the cerebellum, especially in the high frequencies, have not been explored sufficiently. The primary objective of this study was to investigate the spatio-temporal characteristics of high frequency field potentials (150–350 Hz) in the cerebellar cortex in a behavioral context. To this end, we recorded from the paramedian lobule in rats using micro electro-corticogram (μ-ECoG) electrode arrays while the animal performed a lever press task using the forelimb. The phase synchrony analysis shows that the high frequency oscillations recorded at multiple points across the paramedian cortex episodically synchronize immediately before and desynchronize during the lever press. The electrode contacts were grouped according to their temporal course of phase synchrony around the time of lever press. Contact groups presented patches with slightly stronger synchrony values in the medio-lateral direction, and did not appear to form parasagittal zones. The size and location of these patches on the cortical surface are in agreement with the sensory evoked granular layer patches originally reported by Welker's lab (Shambes et al., 1978). Spatiotemporal synchrony of high frequency field potentials has not been reported at such large-scales previously in the cerebellar cortex.
Collapse
Affiliation(s)
- Jonathan D Groth
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark, NJ, USA
| | - Mesut Sahin
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark, NJ, USA
| |
Collapse
|
16
|
Erkens M, Tanaka-Yamamoto K, Cheron G, Márquez-Ruiz J, Prigogine C, Schepens JT, Nadif Kasri N, Augustine GJ, Hendriks WJ. Protein tyrosine phosphatase receptor type R is required for Purkinje cell responsiveness in cerebellar long-term depression. Mol Brain 2015; 8:1. [PMID: 25571783 PMCID: PMC4304614 DOI: 10.1186/s13041-014-0092-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/19/2014] [Indexed: 01/24/2023] Open
Abstract
Background Regulation of synaptic connectivity, including long-term depression (LTD), allows proper tuning of cellular signalling processes within brain circuitry. In the cerebellum, a key centre for motor coordination, a positive feedback loop that includes mitogen-activated protein kinases (MAPKs) is required for proper temporal control of LTD at cerebellar Purkinje cell synapses. Here we report that the tyrosine-specific MAPK-phosphatase PTPRR plays a role in coordinating the activity of this regulatory loop. Results LTD in the cerebellum of Ptprr−/− mice is strongly impeded, in vitro and in vivo. Comparison of basal phospho-MAPK levels between wild-type and PTPRR deficient cerebellar slices revealed increased levels in mutants. This high basal phospho-MAPK level attenuated further increases in phospho-MAPK during chemical induction of LTD, essentially disrupting the positive feedback loop and preventing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) phosphorylation and endocytosis. Conclusions Our findings indicate an important role for PTPRR in maintaining low basal MAPK activity in Purkinje cells. This creates an optimal ‘window’ to boost MAPK activity following signals that induce LTD, which can then propagate through feed-forward signals to cause AMPAR internalization and LTD.
Collapse
Affiliation(s)
- Mirthe Erkens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, Nijmegen, 6500, HB, The Netherlands.
| | - Keiko Tanaka-Yamamoto
- Center for Functional Connectomics, Korea Institute of Science and Technology, 39-1 Hawolgokdong, Seongbukgu, Seoul, 136-791, Republic of Korea.
| | - Guy Cheron
- Laboratory of Electrophysiology, Université de Mons, Mons, 7000, Belgium. .,Laboratory of Neurophysiology and Movement Biomechanics, CP601, ULB Neurosciences Institut, Université Libre de Bruxelles, Brussels, 1070, Belgium.
| | - Javier Márquez-Ruiz
- División de Neurociencias, Universidad Pablo de Olavide, Sevilla, 41013, Spain. .,Department of Cognitive Neurosciences, Nijmegen, 6500, HB, The Netherlands.
| | - Cynthia Prigogine
- Laboratory of Electrophysiology, Université de Mons, Mons, 7000, Belgium. .,Laboratory of Neurophysiology and Movement Biomechanics, CP601, ULB Neurosciences Institut, Université Libre de Bruxelles, Brussels, 1070, Belgium.
| | - Jan Tg Schepens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, Nijmegen, 6500, HB, The Netherlands.
| | - Nael Nadif Kasri
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, PO Box 9101, Nijmegen, HB, 6500, The Netherlands.
| | - George J Augustine
- Center for Functional Connectomics, Korea Institute of Science and Technology, 39-1 Hawolgokdong, Seongbukgu, Seoul, 136-791, Republic of Korea. .,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore. .,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Wiljan Jaj Hendriks
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, Nijmegen, 6500, HB, The Netherlands.
| |
Collapse
|
17
|
Ordek G, Proddutur A, Santhakumar V, Pfister BJ, Sahin M. Electrophysiological monitoring of injury progression in the rat cerebellar cortex. Front Syst Neurosci 2014; 8:197. [PMID: 25346664 PMCID: PMC4191519 DOI: 10.3389/fnsys.2014.00197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/23/2014] [Indexed: 12/05/2022] Open
Abstract
The changes of excitability in affected neural networks can be used as a marker to study the temporal course of traumatic brain injury (TBI). The cerebellum is an ideal platform to study brain injury mechanisms at the network level using the electrophysiological methods. Within its crystalline morphology, the cerebellar cortex contains highly organized topographical subunits that are defined by two main inputs, the climbing (CFs) and mossy fibers (MFs). Here we demonstrate the use of cerebellar evoked potentials (EPs) mediated through these afferent systems for monitoring the injury progression in a rat model of fluid percussion injury (FPI). A mechanical tap on the dorsal hand was used as a stimulus, and EPs were recorded from the paramedian lobule (PML) of the posterior cerebellum via multi-electrode arrays (MEAs). Post-injury evoked response amplitudes (EPAs) were analyzed on a daily basis for 1 week and compared with pre-injury values. We found a trend of consistently decreasing EPAs in all nine animals, losing as much as 72 ± 4% of baseline amplitudes measured before the injury. Notably, our results highlighted two particular time windows; the first 24 h of injury in the acute period and day-3 to day-7 in the delayed period where the largest drops (~50% and 24%) were observed in the EPAs. In addition, cross-correlations of spontaneous signals between electrode pairs declined (from 0.47 ± 0.1 to 0.35 ± 0.04, p < 0.001) along with the EPAs throughout the week of injury. In support of the electrophysiological findings, immunohistochemical analysis at day-7 post-injury showed detectable Purkinje cell loss at low FPI pressures and more with the largest pressures used. Our results suggest that sensory evoked potentials (SEPs) recorded from the cerebellar surface can be a useful technique to monitor the course of cerebellar injury and identify the phases of injury progression even at mild levels.
Collapse
Affiliation(s)
- Gokhan Ordek
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark, NJ, USA
| | - Archana Proddutur
- Department of Neurology and Neurosciences, Rutgers Biomedical and Health Sciences Newark, NJ, USA
| | | | - Bryan J Pfister
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark, NJ, USA
| | - Mesut Sahin
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark, NJ, USA
| |
Collapse
|
18
|
Neuronal oscillations in Golgi cells and Purkinje cells are accompanied by decreases in Shannon information entropy. THE CEREBELLUM 2014; 13:97-108. [PMID: 24057318 DOI: 10.1007/s12311-013-0523-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neuronal oscillations have been shown to contribute to the function of the cerebral cortex by coordinating the neuronal activities of distant cortical regions via a temporal synchronization of neuronal discharge patterns. This can occur regardless whether these regions are linked by cortico-cortical pathways or not. Less is known concerning the role of neuronal oscillations in the cerebellum. Golgi cells and Purkinje cells are both principal cell types in the cerebellum. Purkinje cells are the sole output cells of the cerebellar cortex while Golgi cells contribute to information processing at the input stage of the cerebellar cortex. Both cell types have large cell bodies, as well as dendritic structures, that can generate large currents. The discharge patterns of both these cell types also exhibit oscillations. In view of the massive afferent information conveyed by the mossy fiber-granule cell system to different and distant areas of the cerebellar cortex, it is relevant to inquire the role of cerebellar neuronal oscillations in information processing. In this study, we compared the discharge patterns of Golgi cells and Purkinje cells in conscious rats and in rats anesthetized with urethane. We assessed neuronal oscillations by analyzing the regularity in the timing of individual spikes within a spike train by using autocorrelograms and fast-Fourier transform. We measured the differences in neuronal oscillations and the amount of information content in a spike train (defined by Shannon entropy processed per unit time) in rats under anesthesia and in conscious, awake rats. Our findings indicated that anesthesia caused more prominent neuronal oscillations in both Golgi cells and Purkinje cells accompanied by decreases in Shannon information entropy in their spike trains.
Collapse
|
19
|
Masliukov PM, Korzina MB, Porseva VV, Bystrova EY, Nozdrachev AD. Age-dependent changes in the neurochemical properties of sensory neurons. ADVANCES IN GERONTOLOGY 2014. [DOI: 10.1134/s2079057014030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Combinatorial analysis of calcium-binding proteins in larval and adult zebrafish primary olfactory system identifies differential olfactory bulb glomerular projection fields. Brain Struct Funct 2014; 220:1951-70. [PMID: 24728871 DOI: 10.1007/s00429-014-0765-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/25/2014] [Indexed: 01/05/2023]
Abstract
In the zebrafish (Danio rerio) olfactory epithelium, the calcium-binding proteins (CBPs) calretinin and S100/S100-like protein are mainly expressed in ciliated or crypt olfactory sensory neurons (OSNs), respectively. In contrast parvalbumin and calbindin1 have not been investigated. We present a combinatorial immunohistological analysis of all four CBPs, including their expression in OSNs and their axonal projections to the olfactory bulb in larval and adult zebrafish. A major expression of calretinin and S100 in ciliated and crypt cells, respectively, with some expression of S100 in microvillous cells is confirmed. Parvalbumin and calbindin1 are strongly expressed in ciliated and microvillous cells, but not in crypt cells. Moreover, detailed combinatorial double-label experiments indicate that there are eight subpopulations of zebrafish OSNs: S100-positive crypt cells (negative for all other three CBPs), parvalbumin only, S100 and parvalbumin, parvalbumin and calbindin1, and parvalbumin and calbindin1 and calretinin-positive microvillous OSNs, as well as a major parvalbumin and calbindin1 and calretinin, and minor parvalbumin and calbindin1 and calretinin-only-positive ciliated OSN populations. CBP-positive projections to olfactory bulb are consistent with previous reports of ciliated OSNs projecting to dorsal and ventromedial glomerular fields and microvillous OSNs to ventrolateral glomerular fields. We newly describe parvalbumin-positive fibers to the mediodorsal field which is calretinin free, with its anterior part showing additionally calbindin1-positive fibers, but absence thereof in the posterior part, indicating an origin from microvillous OSNs in both parts. One singular glomerulus (mdG2) exhibits S100 and parvalbumin-positive fibers, apparently originating from all crypt cells plus some microvillous OSNs. Arguments for various olfactory labeled lines are discussed.
Collapse
|
21
|
Shirai Y, Sasajima T, Uchiyama S, Takegoshi Y, Tsushima E, Tabata T. [Activation of cerebellar B-type γ-aminobutyric acid receptor modulates optokinetic reflex adaptation]. YAKUGAKU ZASSHI 2013; 134:439-45. [PMID: 24304601 DOI: 10.1248/yakushi.13-00233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cerebellar cortex, the brain region responsible for motor coordination and learning expresses a high density of B-type γ-aminobutyric acid receptor (GABAbR). Previous in vitro and in situ studies indicated that cerebellar GABAbR may mediate multiple forms of inhibitory and excitatory modulation of cerebellar circuits. Nevertheless, the in vivo influence of cerebellar GABAbR activation is unclear. As the first step in addressing this issue, we examined how pharmacological activation of cerebellar GABAbR modulates optokinetic reflex (OKR), an involuntary cerebellum-dependent eye movement for stabilizing the retinal image against the drift of the visual scene. We injected baclofen, a GABAbR-selective agonist, or control saline into the cerebellar flocculi of adult mice and then performed 1-h OKR measurement sessions on two consecutive days. In the day 1 session, the baclofen (5 nM)-injected mice and control mice showed similar initial OKR gains and similar training-induced increases in the OKR gain (OKR adaptation). This result suggests that GABAbR activation does not affect cerebellar computation for executing OKR and formation of short-term memory for OKR adaptation. At the beginning of the day 2 session, the baclofen (5 nM or 50 μM)-injected mice showed an OKR gain higher than that achieved in the day 1 session while the control mice did not. This result suggests that GABAbR activation may facilitate the formation of OKR adaptation-related long-term memory. These findings provide a new insight into the functional architecture of the cerebellar circuits and indicate GABAbR to be a new target of pharmacological therapy against diseases with cerebellar dysfunction.
Collapse
Affiliation(s)
- Yoshihiro Shirai
- Laboratory for Neural Information Technology, Graduate School of Sciences and Engineering, University of Toyama
| | | | | | | | | | | |
Collapse
|
22
|
Courtemanche R, Robinson JC, Aponte DI. Linking oscillations in cerebellar circuits. Front Neural Circuits 2013; 7:125. [PMID: 23908606 PMCID: PMC3725427 DOI: 10.3389/fncir.2013.00125] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 07/11/2013] [Indexed: 11/13/2022] Open
Abstract
In many neuroscience fields, the study of local and global rhythmicity has been receiving increasing attention. These network influences could directly impact on how neuronal groups interact together, organizing for different contexts. The cerebellar cortex harbors a variety of such local circuit rhythms, from the rhythms in the cerebellar cortex per se, or those dictated from important afferents. We present here certain cerebellar oscillatory phenomena that have been recorded in rodents and primates. Those take place in a range of frequencies: from the more known oscillations in the 4-25 Hz band, such as the olivocerebellar oscillatory activity and the granule cell layer oscillations, to the more recently reported slow (<1 Hz oscillations), and the fast (>150 Hz) activity in the Purkinje cell layer. Many of these oscillations appear spontaneously in the circuits, and are modulated by behavioral imperatives. We review here how those oscillations are recorded, some of their modulatory mechanisms, and also identify some of the cerebellar nodes where they could interact. A particular emphasis has been placed on how these oscillations could be modulated by movement and certain neuropathological manifestations. Many of those oscillations could have a definite impact on the way information is processed in the cerebellum and how it interacts with other structures in a variety of contexts.
Collapse
Affiliation(s)
- Richard Courtemanche
- Department of Exercise Science, Groupe de Recherche en Neurobiologie Comportementale/Center for Studies in Behavioral Neurobiology, Concordia UniversityMontréal, QC, Canada
| | | | | |
Collapse
|
23
|
Impaired motor function in senescence-accelerated mouse prone 1 (SAMP1). Brain Res 2013; 1515:48-54. [PMID: 23583482 DOI: 10.1016/j.brainres.2013.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/07/2013] [Accepted: 03/31/2013] [Indexed: 01/08/2023]
Abstract
Senescence-accelerated mouse prone (SAMP) strains of mice show early onset of senescence, whereas senescence-accelerated mouse resistant (SAMR) strains are resistant to early senescence and serve as controls. Although SAMP6 and SAMP8 are established models of central nervous system alterations, it is unclear whether SAMP1/Sku (SAMP1) is characterized by brain alterations and dysfunction related to behavioral functioning. In the present study, behavioral tests (i.e., locomotor activity, Y-maze, rotating rod, hind-limb extension, and traction), histochemistry, and Western blot analyses were employed to study this mouse model using 2- and 4-month-old SAMP1 and age-matched control SAMR1. Although 2-month-old SAMP1 and SAMR1 showed similar activity, 4-month-old SAMP1 exhibited less activity than age-matched SAMR1 in locomotor activity and Y-maze tests. In rotating rod test, 2- and 4-month-old SAMP1 showed motor-coordination dysfunction. An abnormal extension reflex in the hind-limb test was observed in 2- and 4-month-old SAMP1. There were no significant differences between SAMP1 and SAMR1 with respect to grip strength in the traction test or alternation behavior in the Y-maze test. Histochemistry and Western blot analyses exhibited that cerebellar Purkinje cells in 4-month-old SAMP1 mice persistently expressed tyrosine hydroxylase. These results suggest that SAMP1 is a useful model for examining mechanisms underlying motor dysfunction.
Collapse
|
24
|
Byron CD, Vanvalkinburgh D, Northcutt K, Young V. Plasticity in the Cerebellum and Primary Somatosensory Cortex Relating to Habitual and Continuous Slender Branch Climbing in Laboratory Mice (Mus musculus). Anat Rec (Hoboken) 2013; 296:822-33. [DOI: 10.1002/ar.22685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 02/05/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Craig D. Byron
- Department of Biology; Mercer University; 1400 Coleman Avenue Macon Georgia
| | | | | | - Virginia Young
- Department of Biology; Mercer University; 1400 Coleman Avenue Macon Georgia
| |
Collapse
|
25
|
Martin S, Zekri L, Metz A, Maurice T, Chebli K, Vignes M, Tazi J. Deficiency of G3BP1, the stress granules assembly factor, results in abnormal synaptic plasticity and calcium homeostasis in neurons. J Neurochem 2013; 125:175-84. [PMID: 23373770 DOI: 10.1111/jnc.12189] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/17/2013] [Accepted: 02/01/2013] [Indexed: 12/12/2022]
Abstract
Ras-GAP SH3-domain-binding protein, G3BP, is an important component in the assembly of stress granules (SGs), which are cytoplasmic aggregates assembled following translational stress. To assess the physiological function of G3BP, we generated viable G3bp1-knockout (KO) mice, which demonstrated behavioral defects linked to the CNS-associated with ataxia phenotype. Immunohistochemistry pinpointed high expression of G3BP in the cytoplasm of hippocampal neurons and Purkinje cells of the cerebellum of wild-type mice. Also, electrophysiological measurements revealed that the absence of G3BP1 leads to an enhancement of short-term potentiation (STP) and long-term depression in the CA1 area of G3bp1 KO mice compared with wild-type mice. Consistently, G3BP1 deficiency in neurons leads to an increase in intracellular calcium and calcium release in response to (S)-3,5-Dihydroxyphenylglycine, a selective agonist of group I metabotropic glutamate receptors. These results show, for the first time, a requirement for G3BP1 in the control of neuronal plasticity and calcium homeostasis and further establish a direct link between SG formation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sophie Martin
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Université Montpellier 2, Montpellier cedex 5, France
| | - Latifa Zekri
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Université Montpellier 2, Montpellier cedex 5, France
| | - Alexandra Metz
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Université Montpellier 2, Montpellier cedex 5, France
| | - Tangui Maurice
- INSERM U 710, Université Montpellier 2, Montpellier cedex 5, France
| | - Karim Chebli
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Université Montpellier 2, Montpellier cedex 5, France
| | - Michel Vignes
- Institut des biomolécules Max Mousseron UMR 5247, IBMM, Université Montpellier 2, Montpellier cedex 5, France
| | - Jamal Tazi
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Université Montpellier 2, Montpellier cedex 5, France
| |
Collapse
|
26
|
Fosser NS, Ronco L, Bejarano A, Paganelli AR, Ríos H. Calbindin-D28k and calretinin in chicken inner retina during postnatal development and neuroplasticity by dim red light. Dev Neurobiol 2013; 73:530-42. [PMID: 23447106 DOI: 10.1002/dneu.22081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 01/01/2023]
Abstract
Members of the family of calcium binding proteins (CBPs) are involved in the buffering of calcium (Ca2+) by regulating how Ca2+ can operate within synapses or more globally in the entire cytoplasm and they are present in a particular arrangement in all types of retinal neurons. Calbindin D28k and calretinin belong to the family of CBPs and they are mainly co-expressed with other CBPs. Calbindin D28k is expressed in doubles cones, bipolar cells and in a subpopulation of amacrine and ganglion neurons. Calretinin is present in horizontal cells as well as in a subpopulation of amacrine and ganglion neurons. Both proteins fill the soma at the inner nuclear layer and the neuronal projections at the inner plexiform layer. Moreover, calbindin D28k and calretinin have been associated with neuronal plasticity in the central nervous system. During pre and early postnatal visual development, the visual system shows high responsiveness to environmental influences. In this work we observed modifications in the pattern of stratification of calbindin immunoreactive neurons, as well as in the total amount of calbindin through the early postnatal development. In order to test whether or not calbindin is involved in retinal plasticity we analyzed phosphorylated p38 MAPK expression, which showed a decrease in p-p38 MAPK, concomitant to the observed decrease of calbindin D28k. Results showed in this study suggest that calbindin is a molecule related with neuroplasticity, and we suggest that calbindin D28k has significant roles in neuroplastic changes in the retina, when retinas are stimulated with different light conditions.
Collapse
Affiliation(s)
- Nicolás Sebastián Fosser
- Instituto de Biología Celular y Neurociencias Prof. E. De Robertis, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 2do. piso, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | | | | | | | | |
Collapse
|
27
|
Nissenkorn A, Hassin-Baer S, Lerman SF, Levi YB, Tzadok M, Ben-Zeev B. Movement disorder in ataxia-telangiectasia: treatment with amantadine sulfate. J Child Neurol 2013; 28:155-60. [PMID: 22550086 DOI: 10.1177/0883073812441999] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ataxia-telangiectasia is a cerebellar neurodegenerative disorder presenting with ataxia, chorea, myoclonus, and bradykinesia. Literature on treatment of movement disorders is scarce. We treated 17 children (aged 11.2 ± 3.9 years) for 8 weeks with the dopaminergic and anti-N-methyl-d-aspartate (NMDA) agent amantadine sulfate 6.3 ± 0.87 mg/kg/d. Ataxia was assessed by using the International Cooperative Ataxia Scale, parkinsonism by the Unified Parkinson Disease Rating Scale, and chorea/myoclonus by the Abnormal Involuntary Movement Scale. Responders were considered those patients who had at least 20% improvement in the summation of the 3 scales. Overall, 76.5% of patients were responders, with a mean 29.3% improvement. Ataxia, involuntary movements, and parkinsonism improved significantly (25.3%, 32.5%, and 29.5%, respectively); (P < .001, t test). Side effects were mild and transient, and they did not lead to drug discontinuation. Amantadine is a well-tolerated and effective treatment for motor symptoms in ataxia telangiectasia. Assessment of long-term effects and a double-blind study should follow.
Collapse
Affiliation(s)
- Andreea Nissenkorn
- The National A-T Clinic, Edmond and Lilly Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.
| | | | | | | | | | | |
Collapse
|
28
|
Baldaçara L, Borgio JGF, Araújo C, Nery-Fernandes F, Lacerda ALT, Moraes WADS, Montaño MBMM, Rocha M, Quarantini LC, Schoedl A, Pupo M, Mello MF, Andreoli SB, Miranda-Scippa A, Ramos LR, Mari JJ, Bressan RA, Jackowski AP. Relationship between structural abnormalities in the cerebellum and dementia, posttraumatic stress disorder and bipolar disorder. Dement Neuropsychol 2012; 6:203-211. [PMID: 29213799 PMCID: PMC5619331 DOI: 10.1590/s1980-57642012dn06040003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
New evidence suggests that the cerebellum has structural and functional abnormalities in psychiatric disorders. Objective In this research, the goal was to measure the volume of the cerebellum and its subregions in individuals with psychiatric disorders and to relate these findings to their symptoms. Methods Patients with different degrees of cognitive impairment (Epidemiology of the Elderly - UNIFESP) and patients with post-traumatic stress disorder (PTSD) from population studies were analyzed. Also, patients with bipolar disorder from an outpatient clinic (Center for the Study of Mood and Anxiety Disorders, Universidade Federal da Bahia) were recruited for this study. All subjects underwent a 1.5T structural magnetic resonance scan. Volumetric measures and symptom measurements, by psychometric scales, were performed and compared between patients and controls. Results The cerebellum volume was reduced in patients with cognitive impairment without dementia and with dementia, in patients with PTSD, and in patients with bipolar disorder compared to controls. In dementia and PTSD, the left cerebellar hemisphere and vermis volume were reduced. In bipolar disorder, volumes of both hemispheres and the vermis were reduced. In the first two studies, these cerebellar volumetric reductions correlated with symptoms of the disease. Conclusion The exact nature of cerebellar involvement in mental processes is still not fully understood. However, abnormalities in cerebellar structure and its functions have been reported in some of these diseases. Future studies with larger samples are needed to clarify these findings and investigate whether they are important for treatment and prognosis.
Collapse
Affiliation(s)
- Leonardo Baldaçara
- Federal University of São Paulo, SP, Brazil.,Federal University of Tocantins, TO, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gao H, Solages CD, Lena C. Tetrode recordings in the cerebellar cortex. ACTA ACUST UNITED AC 2011; 106:128-36. [PMID: 22057014 DOI: 10.1016/j.jphysparis.2011.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/16/2011] [Accepted: 10/18/2011] [Indexed: 01/30/2023]
Abstract
Multi-unit recordings with tetrodes have been used in brain studies for many years, but surprisingly, scarcely in the cerebellum. The cerebellum is subdivided in multiple small functional zones. Understanding the proper features of the cerebellar computations requires a characterization of neuronal activity within each area. By allowing simultaneous recordings of neighboring cells, tetrodes provide a helpful technique to study the dynamics of the cerebellar local networks. Here, we discuss experimental configurations to optimize such recordings and demonstrate their use in the different layers of the cerebellar cortex. We show that tetrodes can also be used to perform simultaneous recordings from neighboring units in freely moving rats using a custom-made drive, thus permitting studies of cerebellar network dynamics in a large variety of behavioral conditions.
Collapse
Affiliation(s)
- Hongying Gao
- Institut de Biologie de l'Ecole Normale Supérieure, IBENS, Paris F-75005, France
| | | | | |
Collapse
|
30
|
Abstract
OBJECTIVE To investigate the spike activities of cerebellar cortical cells in a computational network model constructed based on the anatomical structure of cerebellar cortex. METHODS AND RESULTS The multicompartment model of neuron and NEURON software were used to study the external influences on cerebellar cortical cells. Various potential spike patterns in these cells were obtained. By analyzing the impacts of different incoming stimuli on the potential spike of Purkinje cell, temporal focusing caused by the granule cell-golgi cell feedback inhibitory loop to Purkinje cell and spatial focusing caused by the parallel fiber-basket/stellate cell local inhibitory loop to Purkinje cell were discussed. Finally, the motor learning process of rabbit eye blink conditioned reflex was demonstrated in this model. The simulation results showed that when the afferent from climbing fiber existed, rabbit adaptation to eye blinking gradually became stable under the Spike Timing-Dependent Plasticity (STDP) learning rule. CONCLUSION The constructed cerebellar cortex network is a reliable and feasible model. The model simulation results confirmed the output signal stability of cerebellar cortex after STDP learning and the network can execute the function of spatial and temporal focusing.
Collapse
|
31
|
Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 2010; 90:1195-268. [PMID: 20664082 DOI: 10.1152/physrev.00035.2008] [Citation(s) in RCA: 1234] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Synchronous rhythms represent a core mechanism for sculpting temporal coordination of neural activity in the brain-wide network. This review focuses on oscillations in the cerebral cortex that occur during cognition, in alert behaving conditions. Over the last two decades, experimental and modeling work has made great strides in elucidating the detailed cellular and circuit basis of these rhythms, particularly gamma and theta rhythms. The underlying physiological mechanisms are diverse (ranging from resonance and pacemaker properties of single cells to multiple scenarios for population synchronization and wave propagation), but also exhibit unifying principles. A major conceptual advance was the realization that synaptic inhibition plays a fundamental role in rhythmogenesis, either in an interneuronal network or in a reciprocal excitatory-inhibitory loop. Computational functions of synchronous oscillations in cognition are still a matter of debate among systems neuroscientists, in part because the notion of regular oscillation seems to contradict the common observation that spiking discharges of individual neurons in the cortex are highly stochastic and far from being clocklike. However, recent findings have led to a framework that goes beyond the conventional theory of coupled oscillators and reconciles the apparent dichotomy between irregular single neuron activity and field potential oscillations. From this perspective, a plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention. Finally, implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Department of Neurobiology and Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
32
|
Botta P, de Souza FMS, Sangrey T, De Schutter E, Valenzuela CF. Alcohol excites cerebellar Golgi cells by inhibiting the Na+/K+ ATPase. Neuropsychopharmacology 2010; 35:1984-96. [PMID: 20520600 PMCID: PMC2904864 DOI: 10.1038/npp.2010.76] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alcohol-induced alterations of cerebellar function cause motor coordination impairments that are responsible for millions of injuries and deaths worldwide. Cognitive deficits associated with alcoholism are also a consequence of cerebellar dysfunction. The mechanisms responsible for these effects of ethanol are poorly understood. Recent studies have identified neurons in the input layer of the cerebellar cortex as important ethanol targets. In this layer, granule cells (GrCs) receive the majority of sensory inputs to the cerebellum through the mossy fibers. Information flow at these neurons is gated by a specialized pacemaker interneuron known as the Golgi cell, which provides divergent GABAergic input to thousands of GrCs. In vivo electrophysiological experiments have previously shown that acute ethanol exposure abolishes GrC responsiveness to sensory inputs carried by mossy fibers. Slice electrophysiological studies suggest that ethanol causes this effect by potentiating GABAergic transmission at Golgi cell-to-GrC synapses through an increase in Golgi cell excitability. Using patch-clamp electrophysiological techniques in cerebellar slices and computer modeling, we show here that ethanol excites Golgi cells by inhibiting the Na(+)/K(+) ATPase. Voltage-clamp recordings of Na(+)/K(+) ATPase currents indicated that ethanol partially inhibits this pump and this effect could be mimicked by low concentrations of ouabain. Partial inhibition of Na(+)/K(+) ATPase function in a computer model of the Golgi cell reproduced these experimental findings. These results establish a novel mechanism of action of ethanol on neuronal excitability, which likely has a role in ethanol-induced cerebellar dysfunction and may also contribute to neuronal functional alterations in other brain regions.
Collapse
Affiliation(s)
- Paolo Botta
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Fabio M Simões de Souza
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Thomas Sangrey
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
- Department of Theoretical Neurobiology, University of Antwerp, Wilrijk, Belgium
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, BMSB 145-915 Camino de Salud, N.E, Albuquerque, NM 87131-0001, USA, Tel: +505 272 3128, Fax: +505 272 8082, E-mail:
| |
Collapse
|
33
|
Bonthuis P, Cox K, Searcy B, Kumar P, Tobet S, Rissman E. Of mice and rats: key species variations in the sexual differentiation of brain and behavior. Front Neuroendocrinol 2010; 31:341-58. [PMID: 20457175 PMCID: PMC2910167 DOI: 10.1016/j.yfrne.2010.05.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 12/25/2022]
Abstract
Mice and rats are important mammalian models in biomedical research. In contrast to other biomedical fields, work on sexual differentiation of brain and behavior has traditionally utilized comparative animal models. As mice are gaining in popularity, it is essential to acknowledge the differences between these two rodents. Here we review neural and behavioral sexual dimorphisms in rats and mice, which highlight species differences and experimental gaps in the literature, that are needed for direct species comparisons. Moving forward, investigators must answer fundamental questions about their chosen organism, and attend to both species and strain differences as they select the optimal animal models for their research questions.
Collapse
Affiliation(s)
- P.J. Bonthuis
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA
| | - K.H. Cox
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA
| | - B.T. Searcy
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - P. Kumar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - S. Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - E.F. Rissman
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
34
|
Abrams ZR, Warrier A, Trauner D, Zhang X. A Signal Processing Analysis of Purkinje Cells in vitro. Front Neural Circuits 2010; 4:13. [PMID: 20508748 PMCID: PMC2876879 DOI: 10.3389/fncir.2010.00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 04/12/2010] [Indexed: 11/13/2022] Open
Abstract
Cerebellar Purkinje cells in vitro fire recurrent sequences of Sodium and Calcium spikes. Here, we analyze the Purkinje cell using harmonic analysis, and our experiments reveal that its output signal is comprised of three distinct frequency bands, which are combined using Amplitude and Frequency Modulation (AM/FM). We find that the three characteristic frequencies – Sodium, Calcium and Switching – occur in various combinations in all waveforms observed using whole-cell current clamp recordings. We found that the Calcium frequency can display a frequency doubling of its frequency mode, and the Switching frequency can act as a possible generator of pauses that are typically seen in Purkinje output recordings. Using a reversibly photo-switchable kainate receptor agonist, we demonstrate the external modulation of the Calcium and Switching frequencies. These experiments and Fourier analysis suggest that the Purkinje cell can be understood as a harmonic signal oscillator, enabling a higher level of interpretation of Purkinje signaling based on modern signal processing techniques.
Collapse
Affiliation(s)
- Ze'ev R Abrams
- Applied Science and Technology, University of California Berkeley, CA, USA
| | | | | | | |
Collapse
|
35
|
Shimada N, Handa S, Uchida Y, Fukuda M, Maruyama N, Asaga H, Choi EK, Lee J, Ishigami A. Developmental and age-related changes of peptidylarginine deiminase 2 in the mouse brain. J Neurosci Res 2010; 88:798-806. [PMID: 19830834 DOI: 10.1002/jnr.22255] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Peptidylarginine deiminases (PADs) are a group of posttranslational modification enzymes that citrullinate (deiminate) protein arginine residues in a Ca(2+)-dependent manner. Enzymatic citrullination abolishes positive charges of native protein molecules, inevitably causing significant alterations in their structure and functions. Among the five isoforms of PADs, PAD2 and PAD4 are proved occupants of the central nervous system (CNS), and especially PAD2 is a main PAD enzyme expressed in the CNS. We previously reported that abnormal protein citrullination by PAD2 has been closely associated with the pathogenesis of neurodegenerative disorders such as Alzheimer's disease and prion disease. Protein citrullination in these patients is thought to play a role during the initiation and/or progression of disease. However, the contribution of changes in PAD2 levels, and consequent citrullination, during developmental and aging processes remained unclear. Therefore, we used quantitative real-time RT-PCR, Western blot analysis, and immunohistochemical methods to measure PAD2 expression and localization in the brain during those processes. PAD2 mRNA expression was detected in the brains of mice as early as embryonic day 15, and its expression in cerebral cortex, hippocampus, and cerebellum increased significantly as the animals aged from 3 to 30 months old. No citrullinated proteins were detected during that period. Moreover, we found here, for the first time, that PAD2 localized specifically in the neuronal cells of the cerebral cortex and Purkinje cells of the cerebellum. These findings indicate that, despite PAD2's normally inactive status, it becomes active and citrullinates cellular proteins, but only when the intracellular Ca(2+) balance is upset during neurodegenerative changes.
Collapse
Affiliation(s)
- Nobuko Shimada
- Aging Regulation, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lathrop MJ, Chakrabarti L, Eng J, Rhodes CH, Lutz T, Nieto A, Liggitt HD, Warner S, Fields J, Stöger R, Fiering S. Deletion of the Chd6 exon 12 affects motor coordination. Mamm Genome 2010; 21:130-42. [PMID: 20111866 PMCID: PMC2844962 DOI: 10.1007/s00335-010-9248-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 12/08/2009] [Indexed: 01/03/2023]
Abstract
Members of the CHD protein family play key roles in gene regulation through ATP-dependent chromatin remodeling. This is facilitated by chromodomains that bind histone tails, and by the SWI2/SNF2-like ATPase/helicase domain that remodels chromatin by moving histones. Chd6 is ubiquitously expressed in both mouse and human, with the highest levels of expression in the brain. The Chd6 gene contains 37 exons, of which exons 12-19 encode the highly conserved ATPase domain. To determine the biological role of Chd6, we generated mouse lines with a deletion of exon 12. Chd6 without exon 12 is expressed at normal levels in mice, and Chd6 Exon 12 −/− mice are viable, fertile, and exhibit no obvious morphological or pathological phenotype. Chd6 Exon 12 −/− mice lack coordination as revealed by sensorimotor analysis. Further behavioral testing revealed that the coordination impairment was not due to muscle weakness or bradykinesia. Histological analysis of brain morphology revealed no differences between Chd6 Exon 12 −/− mice and wild-type (WT) controls. The location of CHD6 on human chromosome 20q12 is overlapped by the linkage map regions of several human ataxias, including autosomal recessive infantile cerebellar ataxia (SCAR6), a nonprogressive cerebrospinal ataxia. The genomic location, expression pattern, and ataxic phenotype of Chd6 Exon 12 −/− mice indicate that mutations within CHD6 may be responsible for one of these ataxias.
Collapse
Affiliation(s)
- Melissa J Lathrop
- Department of Microbiology/Immunology, and Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Weaver MS, Workman G, Cardo-Vila M, Arap W, Pasqualini R, Sage EH. Processing of the matricellular protein hevin in mouse brain is dependent on ADAMTS4. J Biol Chem 2009; 285:5868-77. [PMID: 20018883 DOI: 10.1074/jbc.m109.070318] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The matricellular SPARC family member hevin (SPARC-like 1/SPARCL-1/SC1/Mast9) contributes to neural development and alters tumor progression in a range of mammalian models. The distribution of hevin in mouse tissues was reexamined with a novel monoclonal antibody that discriminates between hevin and its ortholog SPARC. We now report proteolysis of hevin in many tissues, with the most extensive processing in the brain. We demonstrate a cleavage site within the hevin sequence for the neural tissue proteinase ADAMTS4. Digestion of hevin by ADAMTS4 in vitro produced fragments similar to those present in brain lysates. Monoclonal antibodies revealed a SPARC-like fragment generated from hevin that was co-localized with ADAMTS4 in vivo. We show that proteolysis of hevin by ADAMTS4 in the mouse cerebellum is important for the normal development of this tissue. In conclusion, we have identified the fragmentation of hevin by ADAMTS4 in the mouse brain and propose that this specific proteolysis is integral to cell morphology and extracellular matrix deposition in the developing brain.
Collapse
Affiliation(s)
- Matt S Weaver
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101-2795, USA
| | | | | | | | | | | |
Collapse
|
38
|
Cheron G, Sausbier M, Sausbier U, Neuhuber W, Ruth P, Dan B, Servais L. BK channels control cerebellar Purkinje and Golgi cell rhythmicity in vivo. PLoS One 2009; 4:e7991. [PMID: 19956720 PMCID: PMC2776494 DOI: 10.1371/journal.pone.0007991] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 10/23/2009] [Indexed: 12/02/2022] Open
Abstract
Calcium signaling plays a central role in normal CNS functioning and dysfunction. As cerebellar Purkinje cells express the major regulatory elements of calcium control and represent the sole integrative output of the cerebellar cortex, changes in neural activity- and calcium-mediated membrane properties of these cells are expected to provide important insights into both intrinsic and network physiology of the cerebellum. We studied the electrophysiological behavior of Purkinje cells in genetically engineered alert mice that do not express BK calcium-activated potassium channels and in wild-type mice with pharmacological BK inactivation. We confirmed BK expression in Purkinje cells and also demonstrated it in Golgi cells. We demonstrated that either genetic or pharmacological BK inactivation leads to ataxia and to the emergence of a beta oscillatory field potential in the cerebellar cortex. This oscillation is correlated with enhanced rhythmicity and synchronicity of both Purkinje and Golgi cells. We hypothesize that the temporal coding modification of the spike firing of both Purkinje and Golgi cells leads to the pharmacologically or genetically induced ataxia.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Electrophysiology, Université Mons-Hainaut (UMH), Mons, Belgium
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Matthias Sausbier
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Universität Tübingen, Tübingen, Germany
| | - Ulrike Sausbier
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Universität Tübingen, Tübingen, Germany
| | - Winfried Neuhuber
- Institute of Anatomy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Ruth
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Universität Tübingen, Tübingen, Germany
| | - Bernard Dan
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurent Servais
- Laboratory of Electrophysiology, Université Mons-Hainaut (UMH), Mons, Belgium
- Department of child neurology, Hôpital Robert Debré, Paris, France
- * E-mail:
| |
Collapse
|
39
|
Abstract
Angelman syndrome is a neurogenetic disorder characterized by developmental delay, severe intellectual disability, absent speech, exuberant behavior with happy demeanor, motor impairment, and epilepsy, due to deficient UBE3A gene expression that may be caused by various abnormalities of chromosome 15. Recent findings in animal models demonstrated altered dendritic spine formation as well as both synaptic [including gamma-aminobutyric acid (GABA)(A) and N-methyl-D-aspartate (NMDA) transmission] and nonsynaptic (including gap junction) influences in various brain regions, including hippocampus and cerebellar cortex. Reversal of selected abnormalities in rescue genetically engineered animal models is encouraging, although it should not be misinterpreted as promising "cure" for affected patients. Much research is still required to fully understand the functional links between lack of UBE3A expression and clinical manifestations of Angelman syndrome. Studies of regulation of UBE3A expression, including imprinting-related methylation, may point to possibilities of therapeutic upregulation. Understanding relevant roles of the gene product might lead to targeted intervention. Further documentation of brain network dynamics, with particular emphasis on hippocampus, thalamocortical, and cerebellar networks is needed, including in a developmental perspective. There is also a need for further clinical research for improving management of problems such as epilepsy, behavior, communication, learning, motor impairment, and sleep disturbances.
Collapse
Affiliation(s)
- Bernard Dan
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
40
|
Camp AJ, Wijesinghe R. Calretinin: Modulator of neuronal excitability. Int J Biochem Cell Biol 2009; 41:2118-21. [DOI: 10.1016/j.biocel.2009.05.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 05/03/2009] [Accepted: 05/05/2009] [Indexed: 11/28/2022]
|
41
|
Kim BJ, Lee SY, Kim HW, Park EJ, Kim J, Kim SJ, So I, Jeon JH. Optimized immunohistochemical analysis of cerebellar purkinje cells using a specific biomarker, calbindin d28k. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:373-378. [PMID: 19915700 PMCID: PMC2776898 DOI: 10.4196/kjpp.2009.13.5.373] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 09/18/2009] [Accepted: 10/07/2009] [Indexed: 11/15/2022]
Abstract
Cerebellar Purkinje cells (PCs) play a crucial role in motor functions and their progressive degeneration is closely associated with spinocerebellar ataxias. Although immunohistochemical (IHC) analysis can provide a valuable tool for understanding the pathophysiology of PC disorders, the method validation of IHC analysis with cerebellar tissue specimens is unclear. Here we present an optimized and validated IHC method using antibodies to calbindin D28k, a specific PC marker in the cerebellum. To achieve the desired sensitivity, specificity, and reproducibility, we modified IHC analysis procedures for cerebellar tissues. We found that the sensitivity of staining varies depending on the commercial source of primary antibody. In addition, we showed that a biotin-free signal amplification method using a horseradish peroxidase polymer-conjugated secondary antibody increases both the sensitivity and specificity of ICH analysis. Furthermore, we demonstrated that dye filtration using a 0.22 microm filter eliminates or minimizes nonspecific staining while preserving the analytical sensitivity. These results suggest that our protocol can be adapted for future investigations aiming to understand the pathophysiology of cerebellar PC disorders and to evaluate the efficacy of therapeutic strategies for treating these diseases.
Collapse
Affiliation(s)
- Byung Joo Kim
- School of Korean Medicine, Pusan National University, Yangsan 626-870, Korea
| | - So Yeon Lee
- Department of Physiology, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | - Hyung Woo Kim
- School of Korean Medicine, Pusan National University, Yangsan 626-870, Korea
| | - Eun-Jung Park
- Department of Physiology, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | - Jun Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | - Sang Jeong Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | - Insuk So
- Department of Physiology, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | - Ju-Hong Jeon
- Department of Physiology, College of Medicine, Seoul National University, Seoul 110-799, Korea
| |
Collapse
|
42
|
Mardirossian S, Rampon C, Salvert D, Fort P, Sarda N. Impaired hippocampal plasticity and altered neurogenesis in adult Ube3a maternal deficient mouse model for Angelman syndrome. Exp Neurol 2009; 220:341-8. [PMID: 19782683 DOI: 10.1016/j.expneurol.2009.08.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 08/27/2009] [Accepted: 08/31/2009] [Indexed: 02/02/2023]
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder characterized by mental retardation, seizures and sleep disturbances. It results from lack of the functional maternal allele of UBE3A gene. Ube3a maternal-deficient mice (Ube3a m-/p+), animal models for AS, are impaired in hippocampal-dependent learning tasks as compared with control (Ube3a m+/p+) mice. We first examined the basal expression of immediate early genes which expression is required for synaptic plasticity and memory formation. We found that basal expression of c-fos and Arc genes is reduced in the DG of Ube3a maternal deficient mice compared to their non-transgenic littermates. We then examined whether adult hippocampal neurogenesis, which likely serves as a mechanism toward brain plasticity, is altered in these transgenic mice. Neurogenesis occurs throughout life in mammalian dentate gyrus (DG) and recent findings suggest that newborn granule cells are involved in some forms of learning and memory. Whether maternal Ube3a deletion is detrimental on hippocampal neurogenesis is unclear. Herein, we show, using the mitotic marker Ki67, the birthdating marker 5-bromo-2'-dexoyuridine (BrdU) and the marker doublecortin (DCX) to respectively label cell proliferation, cell survival or young neuron production, that the Ube3a maternal deletion does not affect the proliferation nor the survival of newborn cells in the hippocampus. In contrast, using the postmitotic neuronal marker (NeuN), we show that Ube3a maternal deletion is associated with a lower fraction of BrdU+/NeuN+ newborn neurons among the population of surviving new cells in the hippocampus. Collectively, these findings suggest that some aspects of adult neurogenesis and plasticity are affected by Ube3a deletion and may contribute to the hippocampal dysfunction observed in AS mice.
Collapse
Affiliation(s)
- Sandrine Mardirossian
- EA4170-UCBL, Faculté de Médecine Rockefeller, Université Claude Bernard, Lyon cedex 08, France
| | | | | | | | | |
Collapse
|
43
|
Abstract
We assessed here true causal directionalities in cerebellar-motoneuron (MN) network associations during the classical conditioning of eyelid responses. For this, the firing activities of identified facial MNs and cerebellar interpositus (IP) nucleus neurons were recorded during the acquisition of this type of associative learning in alert behaving cats. Simultaneously, the eyelid conditioned response (CR) and the EMG activity of the orbicularis oculi (OO) muscle were recorded. Nonlinear association analysis and time-dependent causality method allowed us to determine the asymmetry, time delays, direction in coupling, and functional interdependences between neuronal recordings and learned motor responses. We concluded that the functional nonlinear association between the IP neurons and OO muscle activities was bidirectional and asymmetric, and the time delays in the two directions of coupling always lagged the start of the CR. Additionally, the strength of coupling depended inversely on the level of expression of eyeblink CRs, whereas causal inferences were significantly dependent on the phase information status. In contrast, the functional association between OO MNs and OO muscle activities was unidirectional and quasisymmetric, and the time delays in coupling were always of opposed signs. Moreover, information transfer in cerebellar-MN network associations during the learning process required a "driving common source" that induced the mere "modulating coupling" of the IP nucleus with the final common pathway for the eyelid motor system. Thus, it can be proposed that the cerebellum is always looking back and reevaluating its own function, using the information acquired in the process, to play a modulating-reinforcing role in motor learning.
Collapse
|
44
|
Arif SH. A Ca(2+)-binding protein with numerous roles and uses: parvalbumin in molecular biology and physiology. Bioessays 2009; 31:410-21. [PMID: 19274659 DOI: 10.1002/bies.200800170] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Parvalbumins (PVs) are acidic, intracellular Ca(2+)-binding proteins of low molecular weight. They are associated with several Ca(2+)-mediated cellular activities and physiological processes. It has been suggested that PV might function as a "Ca2+ shuttle" transporting Ca2+ from troponin-C (TnC) to the sarcoplasmic reticulum (SR) Ca2+ pump during muscle relaxation. Thus, PV may contribute to the performance of rapid, phasic movements by accelerating the contraction-relaxation cycle of fast-twitch muscle fibers. Interestingly, PVs promote the generation of power stroke in fish by speeding up the rate of relaxation and thus provide impetus to attain maximal sustainable speeds. However, immunological monitoring of diverse tissues demonstrated that PVs are also present in non-muscle cells. The axoplasmic transport and various intracellular secretory mechanisms including the endocrine secretions seem to be controlled by the Ca2+ regulation machinery. Any defect in the Ca2+ handling apparatus may cause several clinical problems; for instance, PV deficiency alters the neuronal activity, a key mechanism leading to epileptic seizures. Moreover, atypical relaxation of the heart results in diastolic dysfunction, which is a major cause of heart failure predominantly among the aged people. PV may offer a unique potential to correct defective relaxation in energetically compromised failing hearts through PV gene transfer. Consequently, PV gene transfer may present a new therapeutic approach to correct cellular disturbances in Ca2+ signaling pathways of diseased organs. Hence, PVs appear to be amazingly useful candidate proteins regulating a variety of cellular functions through action on Ca2+ flux management.
Collapse
Affiliation(s)
- Syed Hasan Arif
- Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, UP, India.
| |
Collapse
|
45
|
Herd MB, Foister N, Chandra D, Peden DR, Homanics GE, Brown VJ, Balfour DJK, Lambert JJ, Belelli D. Inhibition of thalamic excitability by 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol: a selective role for delta-GABA(A) receptors. Eur J Neurosci 2009; 29:1177-87. [PMID: 19302153 DOI: 10.1111/j.1460-9568.2009.06680.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sedative and hypnotic agent 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol (THIP) is a GABA(A) receptor (GABA(A)R) agonist that preferentially activates delta-subunit-containing GABA(A)Rs (delta-GABA(A)Rs). To clarify the role of delta-GABA(A)Rs in mediating the sedative actions of THIP, we utilized mice lacking the alpha(1)- or delta-subunit in a combined electrophysiological and behavioural analysis. Whole-cell patch-clamp recordings were obtained from ventrobasal thalamic nucleus (VB) neurones at a holding potential of -60 mV. Application of bicuculline to wild-type (WT) VB neurones revealed a GABA(A)R-mediated tonic current of 92 +/- 19 pA, which was greatly reduced (13 +/- 5 pA) for VB neurones of delta(0/0) mice. Deletion of the delta- but not the alpha(1)-subunit dramatically reduced the THIP (1 mum)-induced inward current in these neurones (WT, -309 +/- 23 pA; delta(0/0), -18 +/- 3 pA; alpha(1) (0/0), -377 +/- 45 pA). Furthermore, THIP selectively decreased the excitability of WT and alpha(1) (0/0) but not delta(0/0) VB neurones. THIP did not affect the properties of miniature inhibitory post-synaptic currents in any of the genotypes. No differences in rotarod performance and locomotor activity were observed across the three genotypes. In WT mice, performance of these behaviours was impaired by THIP in a dose-dependent manner. The effect of THIP on rotarod performance was blunted for delta(0/0) but not alpha(1) (0/0) mice. We previously reported that deletion of the alpha(1)-subunit abolished synaptic GABA(A) responses of VB neurones. Therefore, collectively, these findings suggest that extrasynaptic delta-GABA(A)Rs vs. synaptic alpha(1)-subunit-containing GABA(A)Rs of thalamocortical neurones represent an important molecular target underpinning the sedative actions of THIP.
Collapse
Affiliation(s)
- Murray B Herd
- Division of Medical Sciences, Centre for Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
D'Angelo E, Koekkoek SKE, Lombardo P, Solinas S, Ros E, Garrido J, Schonewille M, De Zeeuw CI. Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience 2009; 162:805-15. [PMID: 19409229 DOI: 10.1016/j.neuroscience.2009.01.048] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/21/2009] [Accepted: 01/24/2009] [Indexed: 11/16/2022]
Abstract
The brain generates many rhythmic activities, and the olivo-cerebellar system is not an exception. In recent years, the cerebellum has revealed activities ranging from low frequency to very high-frequency oscillations. These rhythms depend on the brain functional state and are typical of certain circuit sections or specific neurons. Interestingly, the granular layer, which gates sensorimotor and cognitive signals to the cerebellar cortex, can also sustain low frequency (7-25 Hz) and perhaps higher-frequency oscillations. In this review we have considered (i) how these oscillations are generated in the granular layer network depending on intrinsic electroresponsiveness and circuit connections, (ii) how these oscillations are correlated with those in other cerebellar circuit sections, and (iii) how the oscillating cerebellum communicates with extracerebellar structures. It is suggested that the granular layer can generate oscillations that integrate well with those generated in the inferior olive, in deep-cerebellar nuclei and in Purkinje cells. These rhythms, in turn, might play a role in cognition and memory consolidation by interacting with the mechanisms of long-term synaptic plasticity.
Collapse
Affiliation(s)
- E D'Angelo
- Department of Physiology, University of Pavia, CNISM (Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia), Via Forlanini 6, I-27100, Pavia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Hofbauer A, Ebel T, Waltenspiel B, Oswald P, Chen YC, Halder P, Biskup S, Lewandrowski U, Winkler C, Sickmann A, Buchner S, Buchner E. The Wuerzburg hybridoma library against Drosophila brain. J Neurogenet 2009; 23:78-91. [PMID: 19132598 DOI: 10.1080/01677060802471627] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This review describes the present state of a project to identify and characterize novel nervous system proteins by using monoclonal antibodies (mAbs) against the Drosophila brain. Some 1,000 hybridoma clones were generated by injection of homogenized Drosophila brains or heads into mice and fusion of their spleen cells with myeloma cells. Testing the mAbs secreted by these clones identified a library of about 200 mAbs, which selectively stain specific structures of the Drosophila brain. Using the approach "from antibody to gene", several genes coding for novel proteins of the presynaptic terminal were cloned and characterized. These include the "cysteine string protein" gene (Csp, mAb ab49), the "synapse-associated protein of 47 kDa" gene (Sap47, mAbs nc46 and nb200), and the "Bruchpilot" gene (brp, mAb nc82). By a "candidate" approach, mAb nb33 was shown to recognize the pigment dispersing factor precursor protein. mAbs 3C11 and pok13 were raised against bacterially expressed Drosophila synapsin and calbindin-32, respectively, after the corresponding cDNAs had been isolated from an expression library by using antisera against mammalian proteins. Recently, it was shown that mAb aa2 binds the Drosophila homolog of "epidermal growth factor receptor pathway substrate clone 15" (Eps15). Identification of the targets of mAbs na21, ab52, and nb181 is presently attempted. Here, we review the available information on the function of these proteins and present staining patterns in the Drosophila brain for classes of mAbs that either bind differentially in the eye, in neuropil, in the cell-body layer, or in small subsets of neurons. The prospects of identifying the corresponding antigens by various approaches, including protein purification and mass spectrometry, are discussed.
Collapse
Affiliation(s)
- Alois Hofbauer
- Institut für Zoologie, Lehrstuhl für Entwicklungsbiologie, Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cheron G, Cebolla AM, Petieau M, Bengoetxea A, Palmero-Soler E, Leroy A, Dan B. Adaptive changes of rhythmic EEG oscillations in space implications for brain-machine interface applications. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 86:171-87. [PMID: 19607999 DOI: 10.1016/s0074-7742(09)86013-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The dramatic development of brain machine interfaces has enhanced the use of human brain signals conveying mental action for controlling external actuators. This chapter will outline current evidences that the rhythmic electroencephalographic activity of the brain is sensitive to microgravity environment. Experiments performed in the International Space Station have shown significant changes in the power of the astronauts' alpha and mu oscillations in resting condition, and other adaptive modifications in the beta and gamma frequency range during the immersion in virtual navigation. In this context, the dynamic aspects of the resting or default condition of the awaken brain, the influence of the "top-down" dynamics, and the possibility to use a more constrained configuration by a new somatosensory-evoked potential (gating approach) are discussed in the sense of future uses of brain computing interface in space mission. Although, the state of the art of the noninvasive BCI approach clearly demonstrates their ability and the great expectance in the field of rehabilitation for the restoration of defective communication between the brain and external world, their future application in space mission urgently needs a better understanding of brain neurophysiology, in particular in aspects related to neural network rhythmicity in microgravity.
Collapse
Affiliation(s)
- G Cheron
- Laboratory of Neurophysiology and Biomechanics of Movementa, Université Libre de Bruxelles, CP 168, 50 Av. F. Roosevelt, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
49
|
D'Angelo E, De Zeeuw CI. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci 2008; 32:30-40. [PMID: 18977038 DOI: 10.1016/j.tins.2008.09.007] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 02/02/2023]
Abstract
Two of the most striking properties of the cerebellum are its control in timing of motor operations and its ability to adapt behavior to new sensorimotor associations. Here, we propose a 'time-window matching' hypothesis for granular layer processing. Our hypothesis states that mossy fiber inputs to the granular layer are transformed into well-timed spike bursts by intrinsic granule cell processing, that feedforward Golgi cell inhibition sets a limit to the duration of such bursts and that these activities are spread over particular fields in the granular layer so as to generate ongoing time-windows for proper control of interacting motor domains. The role of synaptic plasticity would be that of fine-tuning pre-wired circuits favoring activation of specific granule cell groups in relation to particular time windows. This concept has wide implications for processing in the olivo-cerebellar system as a whole.
Collapse
Affiliation(s)
- Egidio D'Angelo
- Department of Cellular and Molecular Physiological and Pharmacological Sciences, University of Pavia and CNISM, Via Forlanini 6, I-27100 Pavia, Italy.
| | | |
Collapse
|
50
|
De Zeeuw CI, Hoebeek FE, Schonewille M. Causes and consequences of oscillations in the cerebellar cortex. Neuron 2008; 58:655-8. [PMID: 18549777 DOI: 10.1016/j.neuron.2008.05.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cerebellar high-frequency oscillations have been observed for many decades, but their underlying mechanisms have remained enigmatic. In this issue of Neuron, two papers indicate that specific intrinsic mechanisms in the cerebellar cortex contribute to the generation of these oscillations. Middleton et al. show that GABA(A) receptor activation and nonchemical transmission are required for nicotine-dependent oscillations at 30-80 Hz and 80-160 Hz, respectively, while de Solages et al. provide evidence that recurrent inhibition by Purkinje cells is essential for oscillations around 200 Hz.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Royal Academy of Sciences (KNAW), 1105 BA Amsterdam, The Netherlands.
| | | | | |
Collapse
|