1
|
Joshi O, Cooper A, Powell R, Martin MK, Rodriguez R, Kuechle JB, Bhattacharjee A. Localization of AP2α2, TRPV1 and PIEZO2 to the Large Dense Core Vesicles of Human Dorsal Root Ganglion Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646357. [PMID: 40236095 PMCID: PMC11996434 DOI: 10.1101/2025.03.31.646357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Dorsal Root Ganglia (DRG) consist of both peptidergic and non-peptidergic nociceptive neurons. CGRP, an inflammatory neuropeptide, is a classical marker of peptidergic nociceptors and CGRP is stored within the large dense core vesicles (LDCVs) of these neurons. In addition to storing large peptide neurotransmitters, LDCVs might also serve to transport key membrane proteins to the peripheral terminals. This immunohistochemical study investigated the localization of different membrane proteins to the LDCVs of human DRG neurons. Previously validated antibodies against the endocytotic subunit AP2α2, the heat-activated channel TRPV1 and the mechanosensitive channel PIEZO2 were used in conjunction with an antibody against CGRP on sections of intact human DRG isolated from de-identified human subjects. Immunohistochemical studies were also performed on human synovial tissue to examine peripheral terminals. High magnification confocal microscopy was used to determine the co-localization signal of these membrane proteins with CGRP. We observed a strong co-localization of AP2α2 with the CGRP containing LDCVs signifying its role in membrane recycling. Moreover, we also observed a strong colocalization of TRPV1 and PIEZO2 with CGRP suggesting that LDCV release controls the trafficking of these channels to the membrane. It is likely that during injury, bulk exocytosis of CGRP will concomitantly increase the surface expression of TRPV1 and PIEZO2 channels enhancing the responsiveness of these neurons to painful stimuli. This model suggests that neurons that co-localize TRPV1 and PIEZO2 to CGRP containing LDCVs are likely silent nociceptors.
Collapse
|
2
|
Pasquini E, Brouwer J, Di Rollo V, Baracchi D, Messina A, Frasnelli E. Central GABAergic neuromodulation of nocifensive behaviors in bumble bees. iScience 2025; 28:112024. [PMID: 40109378 PMCID: PMC11919611 DOI: 10.1016/j.isci.2025.112024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/09/2025] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
In mammals, nocifensive behaviors are modulated by neuroactive compounds indicating a complex pain-processing system. This study aimed to assess the role of gamma-aminobutyric acid (GABA) in modulating nocifensive behaviors in the bumble bee Bombus terrestris to better understand how pain-like behaviors are regulated in insects. Results showed that oral administration of gabapentin (0.24 mg/mL), a GABAergic analgesic acting at the central level, reduced heat sensitivity, making bees more likely to pass through a tunnel heated to 50°C, and suppressed their nocifensive behaviors. Gene expression analysis revealed a significant increase in brain expression of GAD1 in response to noxious stimulation. These findings indicate that GABA plays a key role in modulating nocifensive behaviors in insects, similar to its role in mammals, suggesting that insects may possess mechanisms for pain modulation that go beyond simple peripheral responses.
Collapse
Affiliation(s)
- Elisa Pasquini
- Center for Mind/Brain Science (CIMeC), University of Trento, Rovereto, Italy
| | - Jochem Brouwer
- Aeres University of Applied Sciences, Arboterium West 98, 1325 WB Almere, the Netherlands
| | - Victor Di Rollo
- National School of Chemistry Montpellier (ENSCM), University of Montpellier, 240 Av. du Professeur Emile Jeanbrau, 34090 Montpellier, France
| | - David Baracchi
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| | - Andrea Messina
- Center for Mind/Brain Science (CIMeC), University of Trento, Rovereto, Italy
| | - Elisa Frasnelli
- Center for Mind/Brain Science (CIMeC), University of Trento, Rovereto, Italy
| |
Collapse
|
3
|
David S, Pinter K, Nguyen KK, Lee DS, Lei Z, Sokolova Y, Sheets L, Kindt KS. Kif1a and intact microtubules maintain synaptic-vesicle populations at ribbon synapses in zebrafish hair cells. J Physiol 2024:10.1113/JP286263. [PMID: 39373584 PMCID: PMC11973241 DOI: 10.1113/jp286263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Sensory hair cells of the inner ear utilize specialized ribbon synapses to transmit sensory stimuli to the central nervous system. This transmission necessitates rapid and sustained neurotransmitter release, which depends on a large pool of synaptic vesicles at the hair-cell presynapse. While previous work in neurons has shown that kinesin motor proteins traffic synaptic material along microtubules to the presynapse, the mechanisms of this process in hair cells remain unclear. Our study demonstrates that the kinesin motor protein Kif1a, along with an intact microtubule network, is essential for enriching synaptic vesicles at the presynapse in hair cells. Through genetic and pharmacological approaches, we disrupt Kif1a function and impair microtubule networks in hair cells of the zebrafish lateral-line system. These manipulations led to a significant reduction in synaptic-vesicle populations at the presynapse in hair cells. Using electron microscopy, in vivo calcium imaging, and electrophysiology, we show that a diminished supply of synaptic vesicles adversely affects ribbon-synapse function. Kif1aa mutants exhibit dramatic reductions in spontaneous vesicle release and evoked postsynaptic calcium responses. Furthermore, kif1aa mutants exhibit impaired rheotaxis, a behaviour reliant on the ability of hair cells in the lateral line to respond to sustained flow stimuli. Overall, our results demonstrate that Kif1a-mediated microtubule transport is critical to enrich synaptic vesicles at the active zone, a process that is vital for proper ribbon-synapse function in hair cells. KEY POINTS: Kif1a mRNAs are present in zebrafish hair cells. Loss of Kif1a disrupts the enrichment of synaptic vesicles at ribbon synapses. Disruption of microtubules depletes synaptic vesicles at ribbon synapses. Kif1aa mutants have impaired ribbon-synapse and sensory-system function.
Collapse
Affiliation(s)
- Sandeep David
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
- National Institutes of Health-Brown University Graduate Partnership Program, Bethesda, Maryland, USA
| | - Katherine Pinter
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| | - Keziah-Khue Nguyen
- Department of Otolaryngology, Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David S Lee
- Department of Otolaryngology, Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhengchang Lei
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| | - Yuliya Sokolova
- Advanced Imaging Core, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| | - Lavinia Sheets
- Department of Otolaryngology, Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Zhang Y, Kunii M, Taniguchi M, Yoshimura SI, Harada A. Rab6-Mediated Polarized Transport of Synaptic Vesicle Precursors Is Essential for the Establishment of Neuronal Polarity and Brain Formation. J Neurosci 2024; 44:e2334232024. [PMID: 38830762 PMCID: PMC11223463 DOI: 10.1523/jneurosci.2334-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
Neurons are highly polarized cells that are composed of a single axon and multiple dendrites. Axon-dendrite polarity is essential for proper tissue formation and brain functions. Intracellular protein transport plays an important role in the establishment of neuronal polarity. However, the regulatory mechanism of polarized transport remains unclear. Here, we show that Rab6, a small GTPase that acts on the regulation of intracellular vesicular trafficking, plays key roles in neuronal polarization and brain development. Central nervous system-specific Rab6a/b double knock-out (Rab6 DKO) mice of both sexes exhibit severe dysplasia of the neocortex and the cerebellum. In the Rab6 DKO neocortex, impaired axonal extension of neurons results in hypoplasia of the intermediate zone. In vitro, deletion of Rab6a and Rab6b in cultured neurons from both sexes causes the abnormal accumulation of synaptic vesicle precursors (SVPs) adjacent to the Golgi apparatus, which leads to defects in axonal extension and the loss of axon-dendrite polarity. Moreover, Rab6 DKO causes significant expansion of lysosomes in the soma in neurons. Overall, our results reveal that Rab6-mediated polarized transport of SVPs is crucial for neuronal polarization and subsequent brain formation.
Collapse
Affiliation(s)
- Yu Zhang
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masataka Kunii
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Manabu Taniguchi
- Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Shin-Ichiro Yoshimura
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Akihiro Harada
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
5
|
David S, Pinter K, Nguyen KK, Lee DS, Lei Z, Sokolova Y, Sheets L, Kindt KS. Kif1a and intact microtubules maintain synaptic-vesicle populations at ribbon synapses in zebrafish hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595037. [PMID: 38903095 PMCID: PMC11188139 DOI: 10.1101/2024.05.20.595037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Sensory hair cells of the inner ear utilize specialized ribbon synapses to transmit sensory stimuli to the central nervous system. This sensory transmission necessitates rapid and sustained neurotransmitter release, which relies on a large pool of synaptic vesicles at the hair-cell presynapse. Work in neurons has shown that kinesin motor proteins traffic synaptic material along microtubules to the presynapse, but how new synaptic material reaches the presynapse in hair cells is not known. We show that the kinesin motor protein Kif1a and an intact microtubule network are necessary to enrich synaptic vesicles at the presynapse in hair cells. We use genetics and pharmacology to disrupt Kif1a function and impair microtubule networks in hair cells of the zebrafish lateral-line system. We find that these manipulations decrease synaptic-vesicle populations at the presynapse in hair cells. Using electron microscopy, along with in vivo calcium imaging and electrophysiology, we show that a diminished supply of synaptic vesicles adversely affects ribbon-synapse function. Kif1a mutants exhibit dramatic reductions in spontaneous vesicle release and evoked postsynaptic calcium responses. Additionally, we find that kif1a mutants exhibit impaired rheotaxis, a behavior reliant on the ability of hair cells in the lateral line to respond to sustained flow stimuli. Overall, our results demonstrate that Kif1a-based microtubule transport is critical to enrich synaptic vesicles at the active zone in hair cells, a process that is vital for proper ribbon-synapse function.
Collapse
Affiliation(s)
- Sandeep David
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
- National Institutes of Health-Brown University Graduate Partnership Program, Bethesda, MD, USA
| | - Katherine Pinter
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
| | - Keziah-Khue Nguyen
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - David S Lee
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhengchang Lei
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
| | - Yuliya Sokolova
- Advanced Imaging Core, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
| | - Lavinia Sheets
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
| |
Collapse
|
6
|
Parkes M, Landers NL, Gramlich MW. Recently recycled synaptic vesicles use multi-cytoskeletal transport and differential presynaptic capture probability to establish a retrograde net flux during ISVE in central neurons. Front Cell Dev Biol 2023; 11:1286915. [PMID: 38020880 PMCID: PMC10657820 DOI: 10.3389/fcell.2023.1286915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Presynapses locally recycle synaptic vesicles to efficiently communicate information. During use and recycling, proteins on the surface of synaptic vesicles break down and become less efficient. In order to maintain efficient presynaptic function and accommodate protein breakdown, new proteins are regularly produced in the soma and trafficked to presynaptic locations where they replace older protein-carrying vesicles. Maintaining a balance of new proteins and older proteins is thus essential for presynaptic maintenance and plasticity. While protein production and turnover have been extensively studied, it is still unclear how older synaptic vesicles are trafficked back to the soma for recycling in order to maintain balance. In the present study, we use a combination of fluorescence microscopy, hippocampal cell cultures, and computational analyses to determine the mechanisms that mediate older synaptic vesicle trafficking back to the soma. We show that synaptic vesicles, which have recently undergone exocytosis, can differentially utilize either the microtubule or the actin cytoskeleton networks. We show that axonally trafficked vesicles traveling with higher speeds utilize the microtubule network and are less likely to be captured by presynapses, while slower vesicles utilize the actin network and are more likely to be captured by presynapses. We also show that retrograde-driven vesicles are less likely to be captured by a neighboring presynapse than anterograde-driven vesicles. We show that the loss of synaptic vesicle with bound molecular motor myosin V is the mechanism that differentiates whether vesicles will utilize the microtubule or actin networks. Finally, we present a theoretical framework of how our experimentally observed retrograde vesicle trafficking bias maintains the balance with previously observed rates of new vesicle trafficking from the soma.
Collapse
|
7
|
Witchey SK, Doyle MG, Fredenburg JD, St Armour G, Horman B, Odenkirk MT, Aylor DL, Baker ES, Patisaul HB. Impacts of Gestational FireMaster 550 Exposure on the Neonatal Cortex Are Sex Specific and Largely Attributable to the Organophosphate Esters. Neuroendocrinology 2022; 113:1262-1282. [PMID: 36075192 PMCID: PMC9992460 DOI: 10.1159/000526959] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Flame retardants (FRs) are common bodily and environmental pollutants, creating concern about their potential toxicity. We and others have found that the commercial mixture FireMaster® 550 (FM 550) or its individual brominated (BFR) and organophosphate ester (OPFR) components are potential developmental neurotoxicants. Using Wistar rats, we previously reported that developmental exposure to FM 550 or its component classes produced sex- and compound-specific effects on adult socioemotional behaviors. The underlying mechanisms driving the behavioral phenotypes are unknown. METHODS To further mechanistic understanding, here we conducted transcriptomics in parallel with a novel lipidomics approach using cortical tissues from newborn siblings of the rats in the published behavioral study. Inclusion of lipid composition is significant because it is rarely examined in developmental neurotoxicity studies. Pups were gestationally exposed via oral dosing to the dam to FM 550 or the BFR or OPFR components at environmentally relevant doses. RESULTS The neonatal cortex was highly sexually dimorphic in lipid and transcriptome composition, and males were more significantly impacted by FR exposure. Multiple adverse modes of action for the BFRs and OPFRs on neurodevelopment were identified, with the OPFRs being more disruptive than the BFRs via multiple mechanisms including dysregulation of mitochondrial function and disruption of cholinergic and glutamatergic systems. Disrupted mitochondrial function by environmental factors has been linked to a higher risk of autism spectrum disorders and neurodegenerative disorders. Impacted lipid classes included ceramides, sphingomyelins, and triacylglycerides. Robust ceramide upregulation in the OPFR females could suggest a heightened risk of brain metabolic disease. CONCLUSIONS This study reveals multiple mechanisms by which the components of a common FR mixture are developmentally neurotoxic and that the OPFRs may be the compounds of greatest concern.
Collapse
Affiliation(s)
- Shannah K Witchey
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
| | - Michael G Doyle
- Department of Chemistry, NC State University, Raleigh, North Carolina, USA
| | - Jacob D Fredenburg
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
| | - Genevieve St Armour
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
| | - Brian Horman
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
| | - Melanie T Odenkirk
- Department of Chemistry, NC State University, Raleigh, North Carolina, USA
| | - David L Aylor
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
- Center for Human Health and the Environment, NC State University, Raleigh, North Carolina, USA
| | - Erin S Baker
- Department of Chemistry, NC State University, Raleigh, North Carolina, USA
| | - Heather B Patisaul
- Center for Human Health and the Environment, NC State University, Raleigh, North Carolina, USA
| |
Collapse
|
8
|
Wichmann C, Kuner T. Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. Physiol Rev 2022; 102:269-318. [PMID: 34727002 DOI: 10.1152/physrev.00039.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are commonly known as a structurally and functionally highly diverse class of cell-cell contacts specialized to mediate communication between neurons. They represent the smallest "computational" unit of the brain and are typically divided into excitatory and inhibitory as well as modulatory categories. These categories are subdivided into diverse types, each representing a different structure-function repertoire that in turn are thought to endow neuronal networks with distinct computational properties. The diversity of structure and function found among a given category of synapses is referred to as heterogeneity. The main building blocks for this heterogeneity are synaptic vesicles, the active zone, the synaptic cleft, the postsynaptic density, and glial processes associated with the synapse. Each of these five structural modules entails a distinct repertoire of functions, and their combination specifies the range of functional heterogeneity at mammalian excitatory synapses, which are the focus of this review. We describe synapse heterogeneity that is manifested on different levels of complexity ranging from the cellular morphology of the pre- and postsynaptic cells toward the expression of different protein isoforms at individual release sites. We attempt to define the range of structural building blocks that are used to vary the basic functional repertoire of excitatory synaptic contacts and discuss sources and general mechanisms of synapse heterogeneity. Finally, we explore the possible impact of synapse heterogeneity on neuronal network function.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg, Germany
| |
Collapse
|
9
|
Berezovskaya AS, Tyganov SA, Nikolaeva SD, Naumova AA, Merkulyeva NS, Shenkman BS, Glazova MV. Dynamic Foot Stimulations During Short-Term Hindlimb Unloading Prevent Dysregulation of the Neurotransmission in the Hippocampus of Rats. Cell Mol Neurobiol 2021; 41:1549-1561. [PMID: 32683580 PMCID: PMC11448613 DOI: 10.1007/s10571-020-00922-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022]
Abstract
Spaceflight and simulated microgravity both affect learning and memory, which are mostly controlled by the hippocampus. However, data about molecular alterations in the hippocampus in real or simulated microgravity conditions are limited. Adult Wistar rats were recruited in the experiments. Here we analyzed whether short-term simulated microgravity caused by 3-day hindlimb unloading (HU) will affect the glutamatergic and GABAergic systems of the hippocampus and how dynamic foot stimulation (DFS) to the plantar surface applied during HU can contribute in the regulation of hippocampus functioning. The results demonstrated a decreased expression of vesicular glutamate transporters 1 and 2 (VGLUT1/2) in the hippocampus after 3 days of HU, while glutamate decarboxylase 67 (GAD67) expression was not affected. HU also significantly induced Akt signaling and transcriptional factor CREB that are supposed to activate the neuroprotective mechanisms. On the other hand, DFS led to normalization of VGLUT1/2 expression and activity of Akt and CREB. Analysis of exocytosis proteins revealed the inhibition of SNAP-25, VAMP-2, and syntaxin 1 expression in DFS group proposing attenuation of excitatory neurotransmission. Thus, we revealed that short-term HU causes dysregulation of glutamatergic system of the hippocampus, but, at the same time, stimulates neuroprotective Akt-dependent mechanism. In addition, most importantly, we demonstrated positive effect of DFS on the hippocampus functioning that probably depends on the regulation of neurotransmitter exocytosis.
Collapse
Affiliation(s)
- Anna S Berezovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia
| | - Sergey A Tyganov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana D Nikolaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia
| | - Natalia S Merkulyeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Boris S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia.
| |
Collapse
|
10
|
Götz TWB, Puchkov D, Lysiuk V, Lützkendorf J, Nikonenko AG, Quentin C, Lehmann M, Sigrist SJ, Petzoldt AG. Rab2 regulates presynaptic precursor vesicle biogenesis at the trans-Golgi. J Cell Biol 2021; 220:211946. [PMID: 33822845 PMCID: PMC8025234 DOI: 10.1083/jcb.202006040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/08/2021] [Accepted: 02/26/2021] [Indexed: 11/22/2022] Open
Abstract
Reliable delivery of presynaptic material, including active zone and synaptic vesicle proteins from neuronal somata to synaptic terminals, is prerequisite for successful synaptogenesis and neurotransmission. However, molecular mechanisms controlling the somatic assembly of presynaptic precursors remain insufficiently understood. We show here that in mutants of the small GTPase Rab2, both active zone and synaptic vesicle proteins accumulated in the neuronal cell body at the trans-Golgi and were, consequently, depleted at synaptic terminals, provoking neurotransmission deficits. Ectopic presynaptic material accumulations consisted of heterogeneous vesicles and short tubules of 40 × 60 nm, segregating in subfractions either positive for active zone or synaptic vesicle proteins and LAMP1, a lysosomal membrane protein. Genetically, Rab2 acts upstream of Arl8, a lysosomal adaptor controlling axonal export of precursors. Collectively, we identified a Golgi-associated assembly sequence of presynaptic precursor biogenesis dependent on a Rab2-regulated protein export and sorting step at the trans-Golgi.
Collapse
Affiliation(s)
- Torsten W B Götz
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Campus Berlin-Buch, Berlin, Germany
| | - Veronika Lysiuk
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Janine Lützkendorf
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | | | - Christine Quentin
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Campus Berlin-Buch, Berlin, Germany
| | - Stephan J Sigrist
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany.,NeuroCure, Charité, Berlin, Germany
| | - Astrid G Petzoldt
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| |
Collapse
|
11
|
Wang XM, Gu P, Saligan L, Iadarola M, Wong SSC, Ti LK, Cheung CW. Dysregulation of EAAT2 and VGLUT2 Spinal Glutamate Transports via Histone Deacetylase 2 (HDAC2) Contributes to Paclitaxel-induced Painful Neuropathy. Mol Cancer Ther 2020; 19:2196-2209. [PMID: 32847971 DOI: 10.1158/1535-7163.mct-20-0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/24/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022]
Abstract
Effective treatments for chemotherapy-induced peripheral neuropathy (CIPN) remain unavailable. Given the significance of spinal cord glutamate transporters in neuronal plasticity and central sensitization, this study investigated the role of excitatory amino acid transporter 2 (EAAT2) and vesicular-glutamate transporter 2 (VGLUT2) in the development of paclitaxel-induced painful neuropathy. Paclitaxel (2 mg/kg, i.p., cumulative dose 8 mg/kg) induced long-lasting mechanical allodynia (>28 days) with increased glutamate concentration and decreased EAAT2 expression with no changes in GABA/glycine or VGAT (vesicular GABA transporter) in rat spinal dorsal horn. VGLUT2 expression was upregulated and coexpressed with enhanced synaptophysin, characterizing nociceptive afferent sprouting and new synapse formation of glutamatergic neurons in the spinal cord dorsal horn. HDAC2 and transcription factor YY1 were also upregulated, and their interaction and colocalization were confirmed following paclitaxel treatment using co-immunoprecipitation. Inhibition or knockdown of HDAC2 expression by valproic acid, BRD6688, or HDAC2 siRNA not only attenuated paclitaxel-induced mechanical allodynia but also suppressed HDAC2 upregulation, glutamate accumulation, and the corresponding changes in EAAT2/VGLUT/synaptophysin expression and HDAC2/YY1 interaction. These findings indicate that loss of the balance between glutamate release and reuptake due to dysregulation EAAT2/VGLUT2/synaptophysin cascade in the spinal dorsal horn plays an important role in the development of paclitaxel-induced neuropathic pain. HDAC2/YY1 interaction as a complex appears essential in regulating this pathway, which can potentially be a therapeutic target to relieve CIPN by reversing central sensitization of spinal nociceptive neurons.
Collapse
Affiliation(s)
- Xiao-Min Wang
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China.
| | - Pan Gu
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
| | - Leorey Saligan
- National Institute of Nursing Research, Division of Intramural Research, NIH, Bethesda, Maryland
| | - Michael Iadarola
- Anesthesiology Research Laboratories, Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, Maryland
| | - Stanley Sau Ching Wong
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
| | - Lian Kah Ti
- Department of Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China. .,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
12
|
Cevikbas F, Lerner EA. Physiology and Pathophysiology of Itch. Physiol Rev 2020; 100:945-982. [PMID: 31869278 PMCID: PMC7474262 DOI: 10.1152/physrev.00017.2019] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/31/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Itch is a topic to which everyone can relate. The physiological roles of itch are increasingly understood and appreciated. The pathophysiological consequences of itch impact quality of life as much as pain. These dynamics have led to increasingly deep dives into the mechanisms that underlie and contribute to the sensation of itch. When the prior review on the physiology of itching was published in this journal in 1941, itch was a black box of interest to a small number of neuroscientists and dermatologists. Itch is now appreciated as a complex and colorful Rubik's cube. Acute and chronic itch are being carefully scratched apart and reassembled by puzzle solvers across the biomedical spectrum. New mediators are being identified. Mechanisms blur boundaries of the circuitry that blend neuroscience and immunology. Measures involve psychophysics and behavioral psychology. The efforts associated with these approaches are positively impacting the care of itchy patients. There is now the potential to markedly alleviate chronic itch, a condition that does not end life, but often ruins it. We review the itch field and provide a current understanding of the pathophysiology of itch. Itch is a disease, not only a symptom of disease.
Collapse
Affiliation(s)
- Ferda Cevikbas
- Dermira, Inc., Menlo Park, California; and Harvard Medical School and the Cutaneous Biology Research Center at Massachusetts General Hospital, Charlestown, Massachusetts
| | - Ethan A Lerner
- Dermira, Inc., Menlo Park, California; and Harvard Medical School and the Cutaneous Biology Research Center at Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
13
|
Chase LA, VerHeulen Kleyn M, Schiller N, King AG, Flores G, Engelsman SB, Bowles C, Smith SL, Robinson AE, Rothstein J. Hydrogen peroxide triggers an increase in cell surface expression of system x c- in cultured human glioma cells. Neurochem Int 2019; 134:104648. [PMID: 31874187 DOI: 10.1016/j.neuint.2019.104648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
System xc- exchanges extracellular cystine for intracellular glutamate across the plasma membrane of many cell types. One of the physiological roles of System xc- is to provide cystine for synthesis of the antioxidant glutathione. Here we report that hydrogen peroxide (H2O2) triggers the translocation of System xc- to the plasma membrane within 10 min of the initial exposure. Specifically, we observed a three-fold increase in 35S-l-cystine uptake following a 10 min exposure to 0.3 mM H2O2. This effect was dose-dependent with an EC50 for H2O2 of 65 μM. We then used cell surface biotinylation analysis to test the hypothesis that the increase in activity is due to an increased number of transporters on the plasma membrane. We demonstrated that the amount of transporter protein, xCT, localized to the plasma membrane doubles within 10 min of H2O2 exposure as a result of an increase in its delivery rate and a reduction in its internalization rate. In addition, we demonstrated that H2O2 triggered a rapid decrease in total cellular glutathione which recovered within 2 h of the oxidative insult. The kinetics of glutathione recovery matched the time course for the recovery of xCT cell surface expression and System xc- activity following removal of the oxidative insult. Collectively, these results suggest that oxidants acutely modulate the activity of System xc- by increasing its cell surface expression, and that this process may serve as an important mechanism to increase de novo glutathione synthesis during periods of oxidative stress.
Collapse
Affiliation(s)
- Leah A Chase
- Department of Chemistry, Hope College, Holland, MI, 49423, USA; Department of Biology, Hope College, Holland, MI, 49423, USA.
| | | | - NaTasha Schiller
- Department of Chemistry, Hope College, Holland, MI, 49423, USA; Department of Biology, Hope College, Holland, MI, 49423, USA
| | - Abby Goltz King
- Department of Chemistry, Hope College, Holland, MI, 49423, USA
| | - Guillermo Flores
- Department of Chemistry, Hope College, Holland, MI, 49423, USA; Department of Biology, Hope College, Holland, MI, 49423, USA
| | | | | | - Sara Lang Smith
- Department of Biology, Hope College, Holland, MI, 49423, USA
| | - Anne E Robinson
- Department of Chemistry, Hope College, Holland, MI, 49423, USA; Department of Biology, Hope College, Holland, MI, 49423, USA
| | - Jeffrey Rothstein
- Department of Neurology, Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21287, USA
| |
Collapse
|
14
|
Zhou J, Liao Z, Jia J, Chen JL, Xiao Q. The effects of resveratrol feeding and exercise training on the skeletal muscle function and transcriptome of aged rats. PeerJ 2019; 7:e7199. [PMID: 31304063 PMCID: PMC6610545 DOI: 10.7717/peerj.7199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/27/2019] [Indexed: 02/05/2023] Open
Abstract
This study investigated the effects of resveratrol feeding and exercise training on the skeletal muscle function and transcriptome of aged rats. Male SD rats (25 months old) were divided into the control group (Old), the daily exercise training group (Trained), and the resveratrol feeding group (Resveratrol). After 6 weeks of intervention, the body mass, grip strength, and gastrocnemius muscle mass were determined, and the muscle samples were analyzed by transcriptome sequencing. The differentially expressed genes were analyzed followed by GO enrichment analysis and KEGG analysis. The Old group showed positive increases in body mass, while both the Trained and Resveratrol groups showed negative growth. No significant differences in the gastrocnemius muscle index and absolute grip strength were found among the three groups. However, the relative grip strength was higher in the Trained group than in the Old group. Only 21 differentially expressed genes were identified in the Trained group vs. the Old group, and 12 differentially expressed genes were identified in the Resveratrol group vs. the Old group. The most enriched GO terms in the Trained group vs. the Old group were mainly associated with RNA metabolic processes and transmembrane transporters, and the significantly upregulated KEGG pathways included mucin-type O-glycan biosynthesis, drug metabolism, and pyrimidine metabolism. The most enriched GO terms in the Resveratrol group vs. the Old group were primarily associated with neurotransmitter transport and synaptic vesicle, and the upregulated KEGG pathways included synaptic vesicle cycle, nicotine addiction, retinol metabolism, insulin secretion, retrograde endocannabinoid signaling, and glutamatergic synapse. Neither exercise training nor resveratrol feeding has a notable effect on skeletal muscle function and related gene expression in aged rats. However, both exercise training and resveratrol feeding have strong effects on weight loss, which is beneficial for reducing the exercise loads of the elderly.
Collapse
Affiliation(s)
- Jing Zhou
- Chongqing Medical and Pharmaceutical College, Chongqing, China.,Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyin Liao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Jia
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jin-Liang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Inverted U-shaped response of a standardized extract of Centella asiatica (ECa 233) on memory enhancement. Sci Rep 2019; 9:8404. [PMID: 31182820 PMCID: PMC6557898 DOI: 10.1038/s41598-019-44867-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/24/2019] [Indexed: 01/02/2023] Open
Abstract
The herb Centella asiatica has long been considered a memory tonic. A recent review found no strong evidence for improvement of cognitive function, suggesting negative results were due to limitations in dose, standardization and product variation. We used a standardized extract of C. asiatica (ECa 233) to study behavioral, cellular and molecular effects on learning and memory enhancement. ECa 233 (10, 30, and 100 mg/kg) was given orally to normal rats twice a day for 30 days. We used the Morris water maze to test spatial learning and performed acute brain slice recording to measure changes of synaptic plasticity in the hippocampus, a core brain region for memory formation. Plasticity-related protein expressions (NR2A, NR2B, PSD-95, BDNF and TrkB) in hippocampus was also measured. Rats receiving 10 and 30 mg/kg doses showed significantly enhanced memory retention, and hippocampal long-term potentiation; however, only the 30 mg/kg dose showed increased plasticity-related proteins. There was an inverted U-shaped response of ECa 233 on memory enhancement; 30 mg/kg maximally enhanced memory retention with an increase of synaptic plasticity and plasticity-related proteins in hippocampus. Our data clearly support the beneficial effect on memory retention of a standardized extract of Centella asiatica within a specific therapeutic range.
Collapse
|
16
|
Engin AB, Engin A. Nanoparticles and neurotoxicity: Dual response of glutamatergic receptors. PROGRESS IN BRAIN RESEARCH 2019; 245:281-303. [PMID: 30961871 DOI: 10.1016/bs.pbr.2019.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although the use of nanoparticles for neuro-diagnostic and neurotherapeutic purposes provides superior benefits than the conventional approaches, it may be potentially toxic in central nervous system. In this respect, nanotechnological research focuses on nanoneurotoxicity-nanoneurosafety concepts. Despite these efforts, nanoparticles (NPs) may cause neurotoxicity, neuroinflammation, and neurodegeneration by penetrating the brain-olfactory route and blood-brain barrier (BBB). Indeed, due to their unique structures nanomaterials can easily cross biological barriers, thus avoid drug delivery problems. Despite the advancement of nanotechnology for designing therapeutic agents, toxicity of these nanomaterials is still a concern. Activation of neurons by astrocytic glutamate is a result of NPs-mediated astrocyte-neuron crosstalk. Increased extracellular glutamate levels due to enhanced synthesis and reduced reuptake may induce neuronal damage by abnormal activation of extrasynaptic N-methyl d-aspartate receptor (NMDAR) subunits. NMDAR is the key factor that mediates the disturbances in intracellular calcium homeostasis, mitochondrial dysfunction and generation of reactive oxygen species in NPs exposed neurons. While some NPs cause neuronal death by inducing NMDARs, others may be neurotoxic through the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors or protect the neurons via blocking NMDARs. However, mechanisms of dual effects of NPs, neurotoxicity or neuroprotection are not precisely known. Some NPs present neuroprotective effect either by selectively inhibiting extrasynaptic subunit of NMDARs or by attenuating oxidative stress. NPs-related proinflammatory activation of microglia contributes to the dysfunction and cytotoxicity in neurons. Therefore, investigation of the interaction of NPs with the neuronal signaling molecules and neuronal receptors is necessary for the better understanding of the neurotoxicity or neurosafety of nanomaterials.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
17
|
Chung J, Franklin JF, Lee HJ. Central expression of synaptophysin and synaptoporin in nociceptive afferent subtypes in the dorsal horn. Sci Rep 2019; 9:4273. [PMID: 30862809 PMCID: PMC6414693 DOI: 10.1038/s41598-019-40967-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/20/2019] [Indexed: 11/09/2022] Open
Abstract
Central sprouting of nociceptive afferents in response to neural injury enhances excitability of nociceptive pathways in the central nervous system, often causing pain. A reliable quantification of central projections of afferent subtypes and their synaptic terminations is essential for understanding neural plasticity in any pathological condition. We previously characterized central projections of cutaneous nociceptive A and C fibers, selectively labeled with cholera toxin subunit B (CTB) and Isolectin B4 (IB4) respectively, and found that they expressed a general synaptic molecule, synaptophysin, largely depending on afferent subtypes (A vs. C fibers) across thoracic dorsal horns. The current studies extended the central termination profiles of nociceptive afferents with synaptoporin, an isoform of synaptophysin, known to be preferentially expressed in C fibers in lumbar dorsal root ganglions. Our findings demonstrated that synaptophysin was predominantly expressed in both peptidergic and IB4-binding C fiber populations in superficial laminae of the thoracic dorsal horn. Cutaneous IB4-labeled C fibers showed comparable expression levels of both isoforms, while cutaneous CTB-labeled A fibers exclusively expressed synaptophysin. These data suggest that central expression of synaptophysin consistently represents synaptic terminations of projecting afferents, at least in part, including nociceptive A-delta and C fibers in the dorsal horn.
Collapse
Affiliation(s)
- Jumi Chung
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA.,Research Service, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, 39216, USA
| | - John F Franklin
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Hyun Joon Lee
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA. .,Research Service, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
18
|
Maruo T, Sakakibara S, Miyata M, Itoh Y, Kurita S, Mandai K, Sasaki T, Takai Y. Involvement of l-afadin, but not s-afadin, in the formation of puncta adherentia junctions of hippocampal synapses. Mol Cell Neurosci 2018; 92:40-49. [PMID: 29969655 DOI: 10.1016/j.mcn.2018.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/16/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022] Open
Abstract
A hippocampal mossy fiber synapse has a complex structure in which presynaptic boutons attach to the dendritic trunk by puncta adherentia junctions (PAJs) and wrap multiply-branched spines, forming synaptic junctions. It was previously shown that afadin regulates the formation of the PAJs cooperatively with nectin-1, nectin-3, and N-cadherin. Afadin is a nectin-binding protein with two splice variants, l-afadin and s-afadin: l-afadin has an actin filament-binding domain, whereas s-afadin lacks it. It remains unknown which variant is involved in the formation of the PAJs or how afadin regulates it. We showed here that re-expression of l-afadin, but not s-afadin, in the afadin-deficient cultured hippocampal neurons in which the PAJ-like structure was disrupted, restored this structure as estimated by the accumulation of N-cadherin and αΝ-catenin. The l-afadin mutant, in which the actin filament-binding domain was deleted, or the l-afadin mutant, in which the αΝ-catenin-binding domain was deleted, did not restore the PAJ-like structure. These results indicate that l-afadin, but not s-afadin, regulates the formation of the hippocampal synapse PAJ-like structure through the binding to actin filaments and αN-catenin. We further found here that l-afadin bound αN-catenin, but not γ-catenin, whereas s-afadin bound γ-catenin, but hardly αN-catenin. These results suggest that the inability of s-afadin to form the hippocampal synapse PAJ-like structure is due to its inability to efficiently bind αN-catenin.
Collapse
Affiliation(s)
- Tomohiko Maruo
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Shotaro Sakakibara
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yu Itoh
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Souichi Kurita
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Takuya Sasaki
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
19
|
Johnson CS, Bains JS, Watts AG. Neurotransmitter diversity in pre-synaptic terminals located in the parvicellular neuroendocrine paraventricular nucleus of the rat and mouse hypothalamus. J Comp Neurol 2018; 526:1287-1306. [PMID: 29424419 DOI: 10.1002/cne.24407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 02/02/2023]
Abstract
Virtually all rodent neuroendocrine corticotropin-releasing-hormone (CRH) neurons are in the dorsal medial parvicellular (mpd) part of the paraventricular nucleus of the hypothalamus (PVH). They form the final common pathway for adrenocortical stress responses. Their activity is controlled by sets of GABA-, glutamate-, and catecholamine-containing inputs arranged in an interactive pre-motor network. Defining the nature and arrangement of these inputs can help clarify how stressor type and intensity information is conveyed to neuroendocrine neurons. Here we use immunohistochemistry with high-resolution 3-dimensional image analyses to examine the arrangement of single- and co-occurring GABA, glutamate, and catecholamine markers in synaptophysin-defined pre-synaptic terminals in the PVHmpd of unstressed rats and Crh-IRES-Cre;Ai14 transgenic mice: respectively, vesicular glutamate transporter 2 (VGluT2), vesicular GABA transporter (VGAT), dopamine β-hydroxylase (DBH), and phenylethanolamine n-methyltransferase (PNMT). Just over half of all PVHmpd pre-synaptic terminals contain VGAT, with slightly less containing VGluT2. The vast majority of terminal appositions with mouse CRH neurons occur non-somatically. However, there are significantly more somatic VGAT than VGluT2 appositions. In the rat PVHmpd, about five times as many pre-synaptic terminals contain PNMT than DBH only. However, because epinephrine release has never been detected in the PVH, PNMT terminals may functionally be noradrenergic not adrenergic. PNMT and VGluT2 co-occur in some pre-synaptic terminals indicating the potential for co-transmission of glutamate and norepinephrine. Collectively, these results provide a structural basis for how GABA/glutamate/catecholamine interactions enable adrenocortical responses to fast-onset interosensory stimuli, and more broadly, how combinations of PVH neurotransmitters and neuromodulators interact dynamically to control adrenocortical activity.
Collapse
Affiliation(s)
- Caroline S Johnson
- The Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, and Neuroscience, Graduate Program, University of Southern California, Los Angeles, California
| | - Jaideep S Bains
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | - Alan G Watts
- The Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, and Neuroscience, Graduate Program, University of Southern California, Los Angeles, California
| |
Collapse
|
20
|
Maruo T, Mandai K, Miyata M, Sakakibara S, Wang S, Sai K, Itoh Y, Kaito A, Fujiwara T, Mizoguchi A, Takai Y. NGL-3-induced presynaptic differentiation of hippocampal neurons in an afadin-dependent, nectin-1-independent manner. Genes Cells 2017; 22:742-755. [DOI: 10.1111/gtc.12510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Tomohiko Maruo
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
| | - Shotaro Sakakibara
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
| | - Shujie Wang
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Kousyoku Sai
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Yu Itoh
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
| | - Aika Kaito
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Takeshi Fujiwara
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Akira Mizoguchi
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
| |
Collapse
|
21
|
Janickova H, Prado VF, Prado MAM, El Mestikawy S, Bernard V. Vesicular acetylcholine transporter (VAChT) over-expression induces major modifications of striatal cholinergic interneuron morphology and function. J Neurochem 2017. [DOI: 10.1111/jnc.14105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Helena Janickova
- Department of Physiology and Pharmacology and Department of Anatomy & Cell Biology; Robarts Research Institute; Molecular Medicine Laboratories; The University of Western Ontario; London Ontario Canada
| | - Vania F. Prado
- Department of Physiology and Pharmacology and Department of Anatomy & Cell Biology; Robarts Research Institute; Molecular Medicine Laboratories; The University of Western Ontario; London Ontario Canada
| | - Marco A. M. Prado
- Department of Physiology and Pharmacology and Department of Anatomy & Cell Biology; Robarts Research Institute; Molecular Medicine Laboratories; The University of Western Ontario; London Ontario Canada
| | - Salah El Mestikawy
- Sorbonne Universités; Université Pierre et Marie Curie UM 119 - CNRS UMR 8246 - INSERM U1130; Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS); Paris France
- Department of Psychiatry; Douglas Mental Health University Institute; McGill University; Montreal Canada
| | - Véronique Bernard
- Sorbonne Universités; Université Pierre et Marie Curie UM 119 - CNRS UMR 8246 - INSERM U1130; Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS); Paris France
| |
Collapse
|
22
|
Stein LR, Zorumski CF, Izumi Y. Hippocampal slice preparation in rats acutely suppresses immunoreactivity of microtubule-associated protein (Map2) and glycogen levels without affecting numbers of glia or levels of the glutamate transporter VGlut1. Brain Behav 2017; 7:e00736. [PMID: 28729941 PMCID: PMC5516609 DOI: 10.1002/brb3.736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION With its preservation of cytoarchitecture and synaptic circuitry, the hippocampal slice preparation has been a critical tool for studying the electrophysiological effects of pharmacological and genetic manipulations. To analyze the maximum number of slices or readouts per dissection, long incubation times postslice preparation are commonly used. We were interested in how slice integrity is affected by incubation postslice preparation. METHODS Hippocampal slices were prepared by three different methods: a chopper, a vibratome, and a rotary slicer. To test slice integrity, we compared glycogen levels and immunohistochemistry of selected proteins in rat hippocampal slices immediately after dissection and following 2 and 4 hr of incubation. RESULTS We found that immunoreactivity of the dendritic marker microtubule-associated protein 2 (Map2) drastically decreased during this incubation period, whereas immunoreactivity of the glutamate transporter VGlut1 did not significantly change with incubation time. Astrocytic and microglial cell numbers also did not significantly change with incubation time whereas glycogen levels markedly increased during incubation. CONCLUSION Immunoreactivity of the dendritic marker Map2 quickly decreased after dissection with all the slicing methods. This work highlights a need for caution when using long incubation periods following slice preparation.
Collapse
Affiliation(s)
- Liana R Stein
- Department of Psychiatry Washington University School of Medicine St. Louis MO USA
| | - Charles F Zorumski
- Department of Psychiatry Washington University School of Medicine St. Louis MO USA.,The Taylor Family Institute for Innovative Psychiatric Research Washington University School of Medicine St. Louis MO USA.,Center for Brain Research in Mood Disorders Washington University School of Medicine St. Louis MO USA
| | - Yukitoshi Izumi
- Department of Psychiatry Washington University School of Medicine St. Louis MO USA.,The Taylor Family Institute for Innovative Psychiatric Research Washington University School of Medicine St. Louis MO USA.,Center for Brain Research in Mood Disorders Washington University School of Medicine St. Louis MO USA
| |
Collapse
|
23
|
Geng X, Maruo T, Mandai K, Supriyanto I, Miyata M, Sakakibara S, Mizoguchi A, Takai Y, Mori M. Roles of afadin in functional differentiations of hippocampal mossy fiber synapse. Genes Cells 2017. [DOI: 10.1111/gtc.12508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoqi Geng
- Faculty of Health Sciences; Kobe University Graduate School of Health Sciences; Kobe Hyogo 654-0142 Japan
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
| | - Tomohiko Maruo
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Kenji Mandai
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Irwan Supriyanto
- Faculty of Health Sciences; Kobe University Graduate School of Health Sciences; Kobe Hyogo 654-0142 Japan
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Shotaro Sakakibara
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Akira Mizoguchi
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Yoshimi Takai
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Masahiro Mori
- Faculty of Health Sciences; Kobe University Graduate School of Health Sciences; Kobe Hyogo 654-0142 Japan
- CREST; Japan Science and Technology Agency; Kobe Hyogo 650-0047 Japan
| |
Collapse
|
24
|
Sai K, Wang S, Kaito A, Fujiwara T, Maruo T, Itoh Y, Miyata M, Sakakibara S, Miyazaki N, Murata K, Yamaguchi Y, Haruta T, Nishioka H, Motojima Y, Komura M, Kimura K, Mandai K, Takai Y, Mizoguchi A. Multiple roles of afadin in the ultrastructural morphogenesis of mouse hippocampal mossy fiber synapses. J Comp Neurol 2017; 525:2719-2734. [PMID: 28498492 DOI: 10.1002/cne.24238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
Abstract
A hippocampal mossy fiber synapse, which is implicated in learning and memory, has a complex structure in which mossy fiber boutons attach to the dendritic shaft by puncta adherentia junctions (PAJs) and wrap around a multiply-branched spine, forming synaptic junctions. Here, we electron microscopically analyzed the ultrastructure of this synapse in afadin-deficient mice. Transmission electron microscopy analysis revealed that typical PAJs with prominent symmetrical plasma membrane darkening undercoated with the thick filamentous cytoskeleton were observed in the control synapse, whereas in the afadin-deficient synapse, atypical PAJs with the symmetrical plasma membrane darkening, which was much less in thickness and darkness than those of the control typical PAJs, were observed. Immunoelectron microscopy analysis revealed that nectin-1, nectin-3, and N-cadherin were localized at the control typical PAJs, whereas nectin-1 and nectin-3 were localized at the afadin-deficient atypical PAJs to extents lower than those in the control synapse and N-cadherin was localized at their nonjunctional flanking regions. These results indicate that the atypical PAJs are formed by nectin-1 and nectin-3 independently of afadin and N-cadherin and that the typical PAJs are formed by afadin and N-cadherin cooperatively with nectin-1 and nectin-3. Serial block face-scanning electron microscopy analysis revealed that the complexity of postsynaptic spines and mossy fiber boutons, the number of spine heads, the area of postsynaptic densities, and the density of synaptic vesicles docked to active zones were decreased in the afadin-deficient synapse. These results indicate that afadin plays multiple roles in the complex ultrastructural morphogenesis of hippocampal mossy fiber synapses.
Collapse
Affiliation(s)
- Kousyoku Sai
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Shujie Wang
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan.,CREST, Japan Science and Technology Agency, Kobe, Hyogo, 650-0047, Japan
| | - Aika Kaito
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Takeshi Fujiwara
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan.,CREST, Japan Science and Technology Agency, Kobe, Hyogo, 650-0047, Japan
| | - Tomohiko Maruo
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, 650-0047, Japan.,Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0047, Japan
| | - Yu Itoh
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0047, Japan
| | - Shotaro Sakakibara
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0047, Japan
| | - Naoyuki Miyazaki
- National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Yuuki Yamaguchi
- SM Application Department, JEOL Ltd., Akishima, Tokyo, 196-8556, Japan
| | - Tomohiro Haruta
- EM Application Department, JEOL Ltd., Akishima, Tokyo, 196-8556, Japan
| | - Hideo Nishioka
- EM Application Department, JEOL Ltd., Akishima, Tokyo, 196-8556, Japan
| | - Yuki Motojima
- Scientific Solutions Department, Olympus Corp., Tokyo, 163-0914, Japan
| | - Miyuki Komura
- Scientific Solutions Department, Olympus Corp., Tokyo, 163-0914, Japan
| | - Kazushi Kimura
- Faculty of Human Science, Department of Physical Therapy, Hokkaido Bunkyo University, Eniwa, Hokkaido, 061-1449, Japan
| | - Kenji Mandai
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, 650-0047, Japan.,Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0047, Japan
| | - Yoshimi Takai
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, 650-0047, Japan.,Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0047, Japan
| | - Akira Mizoguchi
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan.,CREST, Japan Science and Technology Agency, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
25
|
|
26
|
Clark IA, Vissel B. Excess cerebral TNF causing glutamate excitotoxicity rationalizes treatment of neurodegenerative diseases and neurogenic pain by anti-TNF agents. J Neuroinflammation 2016; 13:236. [PMID: 27596607 PMCID: PMC5011997 DOI: 10.1186/s12974-016-0708-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023] Open
Abstract
The basic mechanism of the major neurodegenerative diseases, including neurogenic pain, needs to be agreed upon before rational treatments can be determined, but this knowledge is still in a state of flux. Most have agreed for decades that these disease states, both infectious and non-infectious, share arguments incriminating excitotoxicity induced by excessive extracellular cerebral glutamate. Excess cerebral levels of tumor necrosis factor (TNF) are also documented in the same group of disease states. However, no agreement exists on overarching mechanism for the harmful effects of excess TNF, nor, indeed how extracellular cerebral glutamate reaches toxic levels in these conditions. Here, we link the two, collecting and arguing the evidence that, across the range of neurodegenerative diseases, excessive TNF harms the central nervous system largely through causing extracellular glutamate to accumulate to levels high enough to inhibit synaptic activity or kill neurons and therefore their associated synapses as well. TNF can be predicted from the broader literature to cause this glutamate accumulation not only by increasing glutamate production by enhancing glutaminase, but in addition simultaneously reducing glutamate clearance by inhibiting re-uptake proteins. We also discuss the effects of a TNF receptor biological fusion protein (etanercept) and the indirect anti-TNF agents dithio-thalidomides, nilotinab, and cannabinoids on these neurological conditions. The therapeutic effects of 6-diazo-5-oxo-norleucine, ceptriaxone, and riluzole, agents unrelated to TNF but which either inhibit glutaminase or enhance re-uptake proteins, but do not do both, as would anti-TNF agents, are also discussed in this context. By pointing to excess extracellular glutamate as the target, these arguments greatly strengthen the case, put now for many years, to test appropriately delivered ant-TNF agents to treat neurodegenerative diseases in randomly controlled trials.
Collapse
Affiliation(s)
- Ian A Clark
- Biomedical Sciences and Biochemistry, Research School of Biology, Australian National University, Acton, Canberra, Australian Capital Territory, 0200, Australia.
| | - Bryce Vissel
- Neurodegeneration Research Group, Garvan Institute, 384 Victoria Street, Sydney, New South Wales, 2010, Australia
| |
Collapse
|
27
|
Kobayashi S, Hida Y, Ishizaki H, Inoue E, Tanaka-Okamoto M, Yamasaki M, Miyazaki T, Fukaya M, Kitajima I, Takai Y, Watanabe M, Ohtsuka T, Manabe T. The active zone protein CAST regulates synaptic vesicle recycling and quantal size in the mouse hippocampus. Eur J Neurosci 2016; 44:2272-84. [PMID: 27422015 DOI: 10.1111/ejn.13331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 01/13/2023]
Abstract
Synaptic efficacy is determined by various factors, including the quantal size, which is dependent on the amount of neurotransmitters in synaptic vesicles at the presynaptic terminal. It is essential for stable synaptic transmission that the quantal size is kept within a constant range and that synaptic efficacy during and after repetitive synaptic activation is maintained by replenishing release sites with synaptic vesicles. However, the mechanisms for these fundamental properties have still been undetermined. We found that the active zone protein CAST (cytomatrix at the active zone structural protein) played pivotal roles in both presynaptic regulation of quantal size and recycling of endocytosed synaptic vesicles. In the CA1 region of hippocampal slices of the CAST knockout mice, miniature excitatory synaptic responses were increased in size, and synaptic depression after prolonged synaptic activation was larger, which was attributable to selective impairment of synaptic vesicle trafficking via the endosome in the presynaptic terminal likely mediated by Rab6. Therefore, CAST serves as a key molecule that regulates dynamics and neurotransmitter contents of synaptic vesicles in the excitatory presynaptic terminal in the central nervous system.
Collapse
Affiliation(s)
- Shizuka Kobayashi
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Yamato Hida
- Department of Biochemistry, University of Yamanashi, Chuo, 409-3898, Japan
| | | | | | - Miki Tanaka-Okamoto
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Miwako Yamasaki
- Department of Anatomy and Embryology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Taisuke Miyazaki
- Department of Anatomy and Embryology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiro Fukaya
- Department of Anatomy and Embryology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Isao Kitajima
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Yoshimi Takai
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiko Watanabe
- Department of Anatomy and Embryology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, University of Yamanashi, Chuo, 409-3898, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| |
Collapse
|
28
|
Stein LR, O'Dell KA, Funatsu M, Zorumski CF, Izumi Y. Short-term environmental enrichment enhances synaptic plasticity in hippocampal slices from aged rats. Neuroscience 2016; 329:294-305. [PMID: 27208617 DOI: 10.1016/j.neuroscience.2016.05.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022]
Abstract
Age-associated changes in cognition are mirrored by impairments in cellular models of memory and learning, such as long-term potentiation (LTP) and long-term depression (LTD). In young rodents, environmental enrichment (EE) can enhance memory, alter LTP and LTD, as well as reverse cognitive deficits induced by aging. Whether short-term EE can benefit cognition and synaptic plasticity in aged rodents is unclear. Here, we tested if short-term EE could overcome age-associated impairments in induction of LTP and LTD. LTP and LTD could not be induced in the CA1 region of hippocampal slices in control, aged rats using standard stimuli that are highly effective in young rats. However, exposure of aged littermates to EE for three weeks enabled successful induction of LTP and LTD. EE-facilitated LTP was dependent upon N-methyl-d-aspartate receptors (NMDARs). These alterations in synaptic plasticity occurred with elevated levels of phosphorylated cAMP response element-binding protein and vascular endothelial growth factor, but in the absence of changes in several other synaptic and cellular markers. Importantly, our study suggests that even a relatively short period of EE is sufficient to alter synaptic plasticity and molecular markers linked to cognitive function in aged animals.
Collapse
Affiliation(s)
- Liana R Stein
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Kazuko A O'Dell
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Michiyo Funatsu
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Center for Brain Research in Mood Disorders, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Center for Brain Research in Mood Disorders, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
29
|
Seal RP. Do the distinct synaptic properties of VGLUTs shape pain? Neurochem Int 2016; 98:82-8. [PMID: 27180049 DOI: 10.1016/j.neuint.2016.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 11/25/2022]
Abstract
The somatosensory system transmits touch, temperature, itch and pain. Three vesicular glutamate transporter isoforms mediate the release of glutamate throughout the mammalian nervous system with largely non-overlapping distributions and unique roles at the synapse. This review discusses the contribution of each of these essential transporters to circuits underlying pain and other somatosensory behaviors throughout postnatal development and in the adult. A better understanding of the individual contributions of the VGLUT isoforms could provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
30
|
Pathways for Emotions: Specializations in the Amygdalar, Mediodorsal Thalamic, and Posterior Orbitofrontal Network. J Neurosci 2015; 35:11976-87. [PMID: 26311778 DOI: 10.1523/jneurosci.2157-15.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The primate amygdala projects to posterior orbitofrontal cortex (pOFC) directly and possibly indirectly through a pathway to the magnocellular mediodorsal thalamic nucleus (MDmc), which may convey signals about the significance of stimuli. However, because MDmc receives input from structures in addition to the amygdala and MDmc projects to areas in addition to pOFC, it is unknown whether amygdalar pathways in MDmc innervate pOFC-bound neurons. We addressed this issue using double- or triple-labeling approaches to identify pathways and key cellular and molecular features in rhesus monkeys. We found that amygdalar terminations innervated labeled neurons in MDmc that project to pOFC. Projection neurons in MDmc directed to pOFC included comparatively fewer "core" parvalbumin neurons that project focally to the middle cortical layers and more "matrix" calbindin neurons that project expansively to the upper cortical layers. In addition, a small and hitherto unknown pathway originated from MDmc calretinin neurons and projected to pOFC. Further, whereas projection neurons directed to MDmc and to pOFC were intermingled in the amygdala, none projected to both structures. Larger amygdalar neurons projected to MDmc and expressed the vesicular glutamate transporter 2 (VGLUT2), which is found in highly efficient "driver" pathways. In contrast, smaller amygdalar neurons directed to pOFC expressed VGLUT1 found in modulatory pathways. The indirect pathway from the amygdala to pOFC via MDmc may provide information about the emotional significance of events and, along with a parallel direct pathway, ensures transfer of signals to all layers of pOFC. SIGNIFICANCE STATEMENT The amygdala-the brain's center for emotions-is strongly linked with the orbital cortex, a region associated with social interactions. This study provides evidence that a robust pathway from the amygdala reaches neurons in the thalamus that link directly with the orbital cortex, forming a tight tripartite network. The dual pathways from the amygdala to the orbital cortex and to the thalamus are distinct by morphology, neurochemistry, and function. This tightly linked network suggests the presence of fool-proof avenues for emotions to influence high-order cortical areas associated with affective reasoning. Specific nodes of this tripartite network are disrupted in psychiatric diseases, divorcing areas that integrate emotions and thoughts for decisions and flexible behavior.
Collapse
|
31
|
Hussain S, Davanger S. Postsynaptic VAMP/Synaptobrevin Facilitates Differential Vesicle Trafficking of GluA1 and GluA2 AMPA Receptor Subunits. PLoS One 2015; 10:e0140868. [PMID: 26488171 PMCID: PMC4619507 DOI: 10.1371/journal.pone.0140868] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 10/01/2015] [Indexed: 12/03/2022] Open
Abstract
Vertebrate organisms adapt to a continuously changing environment by regulating the strength of synaptic connections between brain cells. Excitatory synapses are believed to increase their strength by vesicular insertion of transmitter glutamate receptors into the postsynaptic plasma membrane. These vesicles, however, have never been demonstrated or characterized. For the first time, we show the presence of small vesicles in postsynaptic spines, often closely adjacent to the plasma membrane and PSD (postsynaptic density). We demonstrate that they harbor vesicle-associated membrane protein 2 (VAMP2/synaptobrevin-2) and glutamate receptor subunit 1 (GluA1). Disrupting VAMP2 by tetanus toxin treatment reduces the concentration of GluA1 in the postsynaptic plasma membrane. GluA1/VAMP2-containing vesicles, but not GluA2/VAMP2-vesicles, are concentrated in postsynaptic spines relative to dendrites. Our results indicate that small postsynaptic vesicles containing GluA1 are inserted directly into the spine plasma membrane through a VAMP2-dependent mechanism.
Collapse
Affiliation(s)
- Suleman Hussain
- Laboratory for Synaptic Plasticity, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, P.O. Box 1105 Blindern, 0317 Oslo, Norway
| | - Svend Davanger
- Laboratory for Synaptic Plasticity, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, P.O. Box 1105 Blindern, 0317 Oslo, Norway
- * E-mail:
| |
Collapse
|
32
|
Hackett TA, Clause AR, Takahata T, Hackett NJ, Polley DB. Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing. Brain Struct Funct 2015; 221:2619-73. [PMID: 26159773 DOI: 10.1007/s00429-015-1062-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/07/2015] [Indexed: 02/04/2023]
Abstract
Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 (+) and VGluT2 (+) transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT (+) transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to-and to some extent may enable-the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA.
| | - Amanda R Clause
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Toru Takahata
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA
| | | | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Inhibition of vesicular glutamate transporters contributes to attenuate methamphetamine-induced conditioned place preference in rats. Behav Brain Res 2014; 267:1-5. [DOI: 10.1016/j.bbr.2014.02.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/19/2014] [Accepted: 02/22/2014] [Indexed: 11/23/2022]
|
34
|
Doxakis E. RNA binding proteins: a common denominator of neuronal function and dysfunction. Neurosci Bull 2014; 30:610-26. [PMID: 24962082 DOI: 10.1007/s12264-014-1443-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/28/2014] [Indexed: 12/13/2022] Open
Abstract
In eukaryotic cells, gene activity is not directly reflected by protein levels because mRNA processing, transport, stability, and translation are co- and post-transcriptionally regulated. These processes, collectively known as the ribonome, are tightly controlled and carried out by a plethora of trans-acting RNA-binding proteins (RBPs) that bind to specific cis elements throughout the RNA sequence. Within the nervous system, the role of RBPs in brain function turns out to be essential due to the architectural complexity of neurons exemplified by a relatively small somal size and an extensive network of projections and connections. Thus far, RBPs have been shown to be indispensable for several aspects of neurogenesis, neurite outgrowth, synapse formation, and plasticity. Consequently, perturbation of their function is central in the etiology of an ever-growing spectrum of neurological diseases, including fragile X syndrome and the neurodegenerative disorders frontotemporal lobar degeneration and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Epaminondas Doxakis
- Laboratory of Molecular and Cellular Neuroscience, Center of Basic Neuroscience, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, Athens, 11527, Greece,
| |
Collapse
|
35
|
Expression of Nampt in hippocampal and cortical excitatory neurons is critical for cognitive function. J Neurosci 2014; 34:5800-15. [PMID: 24760840 DOI: 10.1523/jneurosci.4730-13.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) is an enzyme cofactor or cosubstrate in many essential biological pathways. To date, the primary source of neuronal NAD(+) has been unclear. NAD(+) can be synthesized from several different precursors, among which nicotinamide is the substrate predominantly used in mammals. The rate-limiting step in the NAD(+) biosynthetic pathway from nicotinamide is performed by nicotinamide phosphoribosyltransferase (Nampt). Here, we tested the hypothesis that neurons use intracellular Nampt-mediated NAD(+) biosynthesis by generating and evaluating mice lacking Nampt in forebrain excitatory neurons (CaMKIIαNampt(-/-) mice). CaMKIIαNampt(-/-) mice showed hippocampal and cortical atrophy, astrogliosis, microgliosis, and abnormal CA1 dendritic morphology by 2-3 months of age. Importantly, these histological changes occurred with altered intrahippocampal connectivity and abnormal behavior; including hyperactivity, some defects in motor skills, memory impairment, and reduced anxiety, but in the absence of impaired sensory processes or long-term potentiation of the Schaffer collateral pathway. These results clearly demonstrate that forebrain excitatory neurons mainly use intracellular Nampt-mediated NAD(+) biosynthesis to mediate their survival and function. Studying this particular NAD(+) biosynthetic pathway in these neurons provides critical insight into their vulnerability to pathophysiological stimuli and the development of therapeutic and preventive interventions for their preservation.
Collapse
|
36
|
Abstract
Synaptic vesicle recycling is one of the best-studied cellular pathways. Many of the proteins involved are known, and their interactions are becoming increasingly clear. However, as for many other pathways, it is still difficult to understand synaptic vesicle recycling as a whole. While it is generally possible to point out how synaptic reactions take place, it is not always easy to understand what triggers or controls them. Also, it is often difficult to understand how the availability of the reaction partners is controlled: how the reaction partners manage to find each other in the right place, at the right time. I present here an overview of synaptic vesicle recycling, discussing the mechanisms that trigger different reactions, and those that ensure the availability of reaction partners. A central argument is that synaptic vesicles bind soluble cofactor proteins, with low affinity, and thus control their availability in the synapse, forming a buffer for cofactor proteins. The availability of cofactor proteins, in turn, regulates the different synaptic reactions. Similar mechanisms, in which one of the reaction partners buffers another, may apply to many other processes, from the biogenesis to the degradation of the synaptic vesicle.
Collapse
Affiliation(s)
- Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen European Neuroscience Institute, Göttingen, Germany
| |
Collapse
|
37
|
Muntané G, Horvath JE, Hof PR, Ely JJ, Hopkins WD, Raghanti MA, Lewandowski AH, Wray GA, Sherwood CC. Analysis of synaptic gene expression in the neocortex of primates reveals evolutionary changes in glutamatergic neurotransmission. ACTA ACUST UNITED AC 2014; 25:1596-607. [PMID: 24408959 DOI: 10.1093/cercor/bht354] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Increased relative brain size characterizes the evolution of primates, suggesting that enhanced cognition plays an important part in the behavioral adaptations of this mammalian order. In addition to changes in brain anatomy, cognition can also be regulated by molecular changes that alter synaptic function, but little is known about modifications of synapses in primate brain evolution. The aim of the current study was to investigate the expression patterns and evolution of 20 synaptic genes from the prefrontal cortex of 12 primate species. The genes investigated included glutamate receptors, scaffolding proteins, synaptic vesicle components, as well as factors involved in synaptic vesicle release and structural components of the nervous system. Our analyses revealed that there have been significant changes during primate brain evolution in the components of the glutamatergic signaling pathway in terms of gene expression, protein expression, and promoter sequence changes. These results could entail functional modifications in the regulation of specific genes related to processes underlying learning and memory.
Collapse
Affiliation(s)
- Gerard Muntané
- Department of Anthropology, The George Washington University, Washington, DC 20052, USA
| | - Julie E Horvath
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27707, USA North Carolina Museum of Natural Sciences, Nature Research Center, Raleigh, NC 27601, USA Department of Biology, NC Central University, Durham, NC 27707, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 New York Consortium for Primate Evolution, New York, NY 10024, USA
| | - John J Ely
- Alamogordo Primate Facility, Holloman Air Force Base, NM 88330, USA
| | - William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302, USA
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | | | - Gregory A Wray
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27707, USA Biology Department, Duke University, Durham, NC, USA
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
38
|
VGLUTs in Peripheral Neurons and the Spinal Cord: Time for a Review. ISRN NEUROLOGY 2013; 2013:829753. [PMID: 24349795 PMCID: PMC3856137 DOI: 10.1155/2013/829753] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/25/2013] [Indexed: 02/07/2023]
Abstract
Vesicular glutamate transporters (VGLUTs) are key molecules for the incorporation of glutamate in synaptic vesicles across the nervous system, and since their discovery in the early 1990s, research on these transporters has been intense and productive. This review will focus on several aspects of VGLUTs research on neurons in the periphery and the spinal cord. Firstly, it will begin with a historical account on the evolution of the morphological analysis of glutamatergic systems and the pivotal role played by the discovery of VGLUTs. Secondly, and in order to provide an appropriate framework, there will be a synthetic description of the neuroanatomy and neurochemistry of peripheral neurons and the spinal cord. This will be followed by a succinct description of the current knowledge on the expression of VGLUTs in peripheral sensory and autonomic neurons and neurons in the spinal cord. Finally, this review will address the modulation of VGLUTs expression after nerve and tissue insult, their physiological relevance in relation to sensation, pain, and neuroprotection, and their potential pharmacological usefulness.
Collapse
|
39
|
Nardo G, Iennaco R, Fusi N, Heath PR, Marino M, Trolese MC, Ferraiuolo L, Lawrence N, Shaw PJ, Bendotti C. Transcriptomic indices of fast and slow disease progression in two mouse models of amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2013; 136:3305-32. [PMID: 24065725 DOI: 10.1093/brain/awt250] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amyotrophic lateral sclerosis is heterogeneous with high variability in the speed of progression even in cases with a defined genetic cause such as superoxide dismutase 1 (SOD1) mutations. We reported that SOD1(G93A) mice on distinct genetic backgrounds (C57 and 129Sv) show consistent phenotypic differences in speed of disease progression and life-span that are not explained by differences in human SOD1 transgene copy number or the burden of mutant SOD1 protein within the nervous system. We aimed to compare the gene expression profiles of motor neurons from these two SOD1(G93A) mouse strains to discover the molecular mechanisms contributing to the distinct phenotypes and to identify factors underlying fast and slow disease progression. Lumbar spinal motor neurons from the two SOD1(G93A) mouse strains were isolated by laser capture microdissection and transcriptome analysis was conducted at four stages of disease. We identified marked differences in the motor neuron transcriptome between the two mice strains at disease onset, with a dramatic reduction of gene expression in the rapidly progressive (129Sv-SOD1(G93A)) compared with the slowly progressing mutant SOD1 mice (C57-SOD1(G93A)) (1276 versus 346; Q-value ≤ 0.01). Gene ontology pathway analysis of the transcriptional profile from 129Sv-SOD1(G93A) mice showed marked downregulation of specific pathways involved in mitochondrial function, as well as predicted deficiencies in protein degradation and axonal transport mechanisms. In contrast, the transcriptional profile from C57-SOD1(G93A) mice with the more benign disease course, revealed strong gene enrichment relating to immune system processes compared with 129Sv-SOD1(G93A) mice. Motor neurons from the more benign mutant strain demonstrated striking complement activation, over-expressing genes normally involved in immune cell function. We validated through immunohistochemistry increased expression of the C3 complement subunit and major histocompatibility complex I within motor neurons. In addition, we demonstrated that motor neurons from the slowly progressing mice activate a series of genes with neuroprotective properties such as angiogenin and the nuclear factor (erythroid-derived 2)-like 2 transcriptional regulator. In contrast, the faster progressing mice show dramatically reduced expression at disease onset of cell pathways involved in neuroprotection. This study highlights a set of key gene and molecular pathway indices of fast or slow disease progression which may prove useful in identifying potential disease modifiers responsible for the heterogeneity of human amyotrophic lateral sclerosis and which may represent valid therapeutic targets for ameliorating the disease course in humans.
Collapse
Affiliation(s)
- Giovanni Nardo
- 1 Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa, 19, 20156 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Malet M, Vieytes CA, Lundgren KH, Seal RP, Tomasella E, Seroogy KB, Hökfelt T, Gebhart GF, Brumovsky PR. Transcript expression of vesicular glutamate transporters in lumbar dorsal root ganglia and the spinal cord of mice - effects of peripheral axotomy or hindpaw inflammation. Neuroscience 2013; 248:95-111. [PMID: 23727452 PMCID: PMC3800240 DOI: 10.1016/j.neuroscience.2013.05.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 11/30/2022]
Abstract
Using specific riboprobes, we characterized the expression of vesicular glutamate transporter (VGLUT)₁-VGLUT₃ transcripts in lumbar 4-5 (L4-5) dorsal root ganglions (DRGs) and the thoracolumbar to lumbosacral spinal cord in male BALB/c mice after a 1- or 3-day hindpaw inflammation, or a 7-day sciatic nerve axotomy. Sham animals were also included. In sham and contralateral L4-5 DRGs of injured mice, VGLUT₁-, VGLUT₂- and VGLUT₃ mRNAs were expressed in ∼45%, ∼69% or ∼17% of neuron profiles (NPs), respectively. VGLUT₁ was expressed in large and medium-sized NPs, VGLUT₂ in NPs of all sizes, and VGLUT₃ in small and medium-sized NPs. In the spinal cord, VGLUT₁ was restricted to a number of NPs at thoracolumbar and lumbar segments, in what appears to be the dorsal nucleus of Clarke, and in mid laminae III-IV. In contrast, VGLUT₂ was present in numerous NPs at all analyzed spinal segments, except the lateral aspects of the ventral horns, especially at the lumbar enlargement, where it was virtually absent. VGLUT₃ was detected in a discrete number of NPs in laminae III-IV of the dorsal horn. Axotomy resulted in a moderate decrease in the number of DRG NPs expressing VGLUT₃, whereas VGLUT₁ and VGLUT₂ were unaffected. Likewise, the percentage of NPs expressing VGLUT transcripts remained unaltered after hindpaw inflammation, both in DRGs and the spinal cord. Altogether, these results confirm previous descriptions on VGLUTs expression in adult mice DRGs, with the exception of VGLUT₁, whose protein expression was detected in a lower percentage of mouse DRG NPs. A detailed account on the location of neurons expressing VGLUTs transcripts in the adult mouse spinal cord is also presented. Finally, the lack of change in the number of neurons expressing VGLUT₁ and VGLUT₂ transcripts after axotomy, as compared to data on protein expression, suggests translational rather than transcriptional regulation of VGLUTs after injury.
Collapse
Affiliation(s)
- M Malet
- Faculty of Biomedical Sciences, Austral University, Buenos Aires, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - C A Vieytes
- Faculty of Biomedical Sciences, Austral University, Buenos Aires, Argentina
| | - K H Lundgren
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - R P Seal
- Pittsburgh Center for Pain Research, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Tomasella
- Faculty of Biomedical Sciences, Austral University, Buenos Aires, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - K B Seroogy
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - T Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - G F Gebhart
- Pittsburgh Center for Pain Research, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - P R Brumovsky
- Faculty of Biomedical Sciences, Austral University, Buenos Aires, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina; Pittsburgh Center for Pain Research, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
41
|
Sorting of the vesicular GABA transporter to functional vesicle pools by an atypical dileucine-like motif. J Neurosci 2013; 33:10634-46. [PMID: 23804087 DOI: 10.1523/jneurosci.0329-13.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence indicates that individual synaptic vesicle proteins may use different signals, endocytic adaptors, and trafficking pathways for sorting to distinct pools of synaptic vesicles. Here, we report the identification of a unique amino acid motif in the vesicular GABA transporter (VGAT) that controls its synaptic localization and activity-dependent recycling. Mutational analysis of this atypical dileucine-like motif in rat VGAT indicates that the transporter recycles by interacting with the clathrin adaptor protein AP-2. However, mutation of a single acidic residue upstream of the dileucine-like motif leads to a shift to an AP-3-dependent trafficking pathway that preferentially targets the transporter to the readily releasable and recycling pool of vesicles. Real-time imaging with a VGAT-pHluorin fusion provides a useful approach to explore how unique sorting sequences target individual proteins to synaptic vesicles with distinct functional properties.
Collapse
|
42
|
Lau JC, Kroes RA, Moskal JR, Linsenmeier RA. Diabetes changes expression of genes related to glutamate neurotransmission and transport in the Long-Evans rat retina. Mol Vis 2013; 19:1538-53. [PMID: 23878504 PMCID: PMC3716414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/16/2013] [Indexed: 12/02/2022] Open
Abstract
PURPOSE This study investigated changes in the transcript levels of genes related to glutamate neurotransmission and transport as diabetes progresses in the Long-Evans rat retina. Transcript levels of vascular endothelial growth factor (VEGF), erythropoietin, and insulin-like growth factor binding protein 3 (IGFBP3) were also measured due to their protective effects on the retinal vasculature and neurons. METHODS Diabetes was induced in Long-Evans rats with a single intraperitoneal (IP) injection of streptozotocin (STZ; 65 mg/kg) in sodium citrate buffer. Rats with blood glucose >300 mg/dl were deemed diabetic. Age-matched controls received a single IP injection of sodium citrate buffer only. The retinas were dissected at 4 and 12 weeks after induction of diabetes, and mRNA and protein were extracted from the left and right retinas of each rat, respectively. Gene expression was analyzed using quantitative real-time reverse-transcription PCR. Enzyme-linked immunosorbent assay was used to quantify the concentration of VEGF protein in each retina. Statistical significance was determined using 2×2 analysis of variance followed by post-hoc analysis using Fisher's protected least squares difference. RESULTS Transcript levels of two ionotropic glutamate receptor subunits and one glutamate transporter increased after 4 weeks of diabetes. In contrast, 12 weeks of diabetes decreased the transcript levels of several genes, including two glutamate transporters, four out of five N-methyl-D-aspartate (NMDA) receptor subunits, and all five kainate receptor subunits. Diabetes had a greater effect on gene expression of NMDA and kainate receptor subunits than on the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits, for which only GRIA4 significantly decreased after 12 weeks. VEGF protein levels were significantly increased in 4-week diabetic rats compared to age-matched control rats whereas the increase was not significant after 12 weeks. Transcript levels of VEGF and VEGF receptors were unchanged with diabetes. Erythropoietin and IGFBP3 mRNA levels significantly increased at both time points, and IGFBP2 mRNA levels increased after 12 weeks. CONCLUSIONS Diabetes caused significant changes in the transcriptional expression of genes related to ionotropic glutamate neurotransmission, especially after 12 weeks. Most genes with decreased transcript levels after 12 weeks were expressed by retinal ganglion cells, which include glutamate transporters and ionotropic glutamate receptors. Two genes expressed by retinal ganglion cells but unrelated to glutamate neurotransmission, γ-synuclein (SNCG) and adenosine A1 receptor (ADORA1), also had decreased mRNA expression after 12 weeks. These findings may indicate ganglion cells were lost as diabetes progressed in the retina. Decreased expression of the glutamate transporter SLC1A3 would lead to decreased removal of glutamate from the extracellular space, suggesting that diabetes impairs this function of Müller cells. These findings suggest that ganglion cells were lost due to glutamate excitotoxicity. The changes at 12 weeks occurred without significant changes in retinal VEGF protein or mRNA, although higher VEGF protein levels at 4 weeks may be an early protective response. Increased transcript levels of erythropoietin and IGFBP3 may also be a protective response.
Collapse
Affiliation(s)
- Jennifer C.M. Lau
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL,Department of Biomedical Engineering, Northwestern University, Evanston, IL
| | - Roger A. Kroes
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, IL
| | - Joseph R. Moskal
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, IL
| | - Robert A. Linsenmeier
- Department of Biomedical Engineering, Northwestern University, Evanston, IL,Department of Neurobiology, Northwestern University, Evanston, IL,Department of Ophthalmology, Northwestern University, Chicago, IL
| |
Collapse
|
43
|
Zabouri N, Haverkamp S. Calcium channel-dependent molecular maturation of photoreceptor synapses. PLoS One 2013; 8:e63853. [PMID: 23675510 PMCID: PMC3652833 DOI: 10.1371/journal.pone.0063853] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 04/08/2013] [Indexed: 01/08/2023] Open
Abstract
Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The CaV1.4(α1F) knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the CaV1.4(α1F) knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the CaV1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the CaV1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the CaV1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.
Collapse
Affiliation(s)
- Nawal Zabouri
- Neuroanatomy, Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany.
| | | |
Collapse
|
44
|
Pearring JN, Salinas RY, Baker SA, Arshavsky VY. Protein sorting, targeting and trafficking in photoreceptor cells. Prog Retin Eye Res 2013; 36:24-51. [PMID: 23562855 DOI: 10.1016/j.preteyeres.2013.03.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 01/24/2023]
Abstract
Vision is the most fundamental of our senses initiated when photons are absorbed by the rod and cone photoreceptor neurons of the retina. At the distal end of each photoreceptor resides a light-sensing organelle, called the outer segment, which is a modified primary cilium highly enriched with proteins involved in visual signal transduction. At the proximal end, each photoreceptor has a synaptic terminal, which connects this cell to the downstream neurons for further processing of the visual information. Understanding the mechanisms involved in creating and maintaining functional compartmentalization of photoreceptor cells remains among the most fascinating topics in ocular cell biology. This review will discuss how photoreceptor compartmentalization is supported by protein sorting, targeting and trafficking, with an emphasis on the best-studied cases of outer segment-resident proteins.
Collapse
Affiliation(s)
- Jillian N Pearring
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
45
|
Differential expression of vesicular glutamate transporters 1 and 2 may identify distinct modes of glutamatergic transmission in the macaque visual system. J Chem Neuroanat 2013; 50-51:21-38. [PMID: 23524295 DOI: 10.1016/j.jchemneu.2013.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 11/21/2022]
Abstract
Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006).
Collapse
|
46
|
Melo CV, Mele M, Curcio M, Comprido D, Silva CG, Duarte CB. BDNF regulates the expression and distribution of vesicular glutamate transporters in cultured hippocampal neurons. PLoS One 2013; 8:e53793. [PMID: 23326507 PMCID: PMC3543267 DOI: 10.1371/journal.pone.0053793] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 12/05/2012] [Indexed: 11/18/2022] Open
Abstract
BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT) 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7), indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during embryonic and neonatal development in contrast to adult tissue expressing only VGLUT1. These results suggest that BDNF regulates VGLUT expression during development and its effect on VGLUT1 may contribute to enhance glutamate release in LTP.
Collapse
Affiliation(s)
- Carlos V. Melo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Michele Curcio
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Biological and Environmental Science, University of Sannio, Benevento, Italy
| | - Diogo Comprido
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carla G. Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos B. Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
47
|
Paschou M, Paraskevopoulou MD, Vlachos IS, Koukouraki P, Hatzigeorgiou AG, Doxakis E. miRNA regulons associated with synaptic function. PLoS One 2012; 7:e46189. [PMID: 23071543 PMCID: PMC3468272 DOI: 10.1371/journal.pone.0046189] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 08/28/2012] [Indexed: 11/19/2022] Open
Abstract
Differential RNA localization and local protein synthesis regulate synapse function and plasticity in neurons. MicroRNAs are a conserved class of regulatory RNAs that control mRNA stability and translation in tissues. They are abundant in the brain but the extent into which they are involved in synaptic mRNA regulation is poorly known. Herein, a computational analysis of the coding and 3′UTR regions of 242 presynaptic and 304 postsynaptic proteins revealed that 91% of them are predicted to be microRNA targets. Analysis of the longest 3′UTR isoform of synaptic transcripts showed that presynaptic mRNAs have significantly longer 3′UTR than control and postsynaptic mRNAs. In contrast, the shortest 3′UTR isoform of postsynaptic mRNAs is significantly shorter than control and presynaptic mRNAs, indicating they avert microRNA regulation under specific conditions. Examination of microRNA binding site density of synaptic 3′UTRs revealed that they are twice as dense as the rest of protein-coding transcripts and that approximately 50% of synaptic transcripts are predicted to have more than five different microRNA sites. An interaction map exploring the association of microRNAs and their targets revealed that a small set of ten microRNAs is predicted to regulate 77% and 80% of presynaptic and postsynaptic transcripts, respectively. Intriguingly, many of these microRNAs have yet to be identified outside primate mammals, implicating them in cognition differences observed between high-level primates and non-primate mammals. Importantly, the identified miRNAs have been previously associated with psychotic disorders that are characterized by neural circuitry dysfunction, such as schizophrenia. Finally, molecular dissection of their KEGG pathways showed enrichment for neuronal and synaptic processes. Adding on current knowledge, this investigation revealed the extent of miRNA regulation at the synapse and predicted critical microRNAs that would aid future research on the control of neuronal plasticity and etiology of psychiatric diseases.
Collapse
Affiliation(s)
- Maria Paschou
- Basic Neurosciences Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria D. Paraskevopoulou
- Institute of Molecular Oncology, Biomedical Sciences Research Center “Alexander Fleming” Vari, Greece
| | - Ioannis S. Vlachos
- Institute of Molecular Oncology, Biomedical Sciences Research Center “Alexander Fleming” Vari, Greece
| | - Pelagia Koukouraki
- Basic Neurosciences Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Artemis G. Hatzigeorgiou
- Institute of Molecular Oncology, Biomedical Sciences Research Center “Alexander Fleming” Vari, Greece
- Department of Computer and Communication Engineering, University of Thessaly, Volos, Greece
| | - Epaminondas Doxakis
- Basic Neurosciences Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
48
|
Zerari-Mailly F, Braud A, Davido N, Touré B, Azérad J, Boucher Y. Glutamate control of pulpal blood flow in the incisor dental pulp of the rat. Eur J Oral Sci 2012; 120:402-7. [DOI: 10.1111/j.1600-0722.2012.00989.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2012] [Indexed: 01/02/2023]
Affiliation(s)
| | - Adeline Braud
- UFR d'Odontologie; Université Diderot; Paris; France
| | - Nicolas Davido
- Service d'Odontologie; Groupe Hospitalier Pitie Salpêtrière; Paris; France
| | - Babacar Touré
- Faculté de Médecine Pharmacie et d'Odontologie; Université Cheikh Anta Diop; Dakar; Sénégal
| | | | | |
Collapse
|
49
|
Vasileva M, Horstmann H, Geumann C, Gitler D, Kuner T. Synapsin-dependent reserveo pool of synaptic vesicles supports replenishment of the readily releasable pool under intense synaptic transmission. Eur J Neurosci 2012; 36:3005-20. [DOI: 10.1111/j.1460-9568.2012.08225.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Barker M, Solinski HJ, Hashimoto H, Tagoe T, Pilati N, Hamann M. Acoustic overexposure increases the expression of VGLUT-2 mediated projections from the lateral vestibular nucleus to the dorsal cochlear nucleus. PLoS One 2012; 7:e35955. [PMID: 22570693 PMCID: PMC3343051 DOI: 10.1371/journal.pone.0035955] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 03/28/2012] [Indexed: 11/19/2022] Open
Abstract
The dorsal cochlear nucleus (DCN) is a first relay of the central auditory system as well as a site for integration of multimodal information. Vesicular glutamate transporters VGLUT-1 and VGLUT-2 selectively package glutamate into synaptic vesicles and are found to have different patterns of organization in the DCN. Whereas auditory nerve fibers predominantly co-label with VGLUT-1, somatosensory inputs predominantly co-label with VGLUT-2. Here, we used retrograde and anterograde transport of fluorescent conjugated dextran amine (DA) to demonstrate that the lateral vestibular nucleus (LVN) exhibits ipsilateral projections to both fusiform and deep layers of the rat DCN. Stimulating the LVN induced glutamatergic synaptic currents in fusiform cells and granule cell interneurones. We combined the dextran amine neuronal tracing method with immunohistochemistry and showed that labeled projections from the LVN are co-labeled with VGLUT-2 by contrast to VGLUT-1. Wistar rats were exposed to a loud single tone (15 kHz, 110 dB SPL) for 6 hours. Five days after acoustic overexposure, the level of expression of VGLUT-1 in the DCN was decreased whereas the level of expression of VGLUT-2 in the DCN was increased including terminals originating from the LVN. VGLUT-2 mediated projections from the LVN to the DCN are likely to play a role in the head position in response to sound. Amplification of VGLUT-2 expression after acoustic overexposure could be a compensatory mechanism from vestibular inputs in response to hearing loss and to a decrease of VGLUT-1 expression from auditory nerve fibers.
Collapse
Affiliation(s)
- Matthew Barker
- Department of Cell Physiology and Pharmacology, Leicester University, Leicester, United Kingdom
| | - Hans Jürgen Solinski
- Department of Cell Physiology and Pharmacology, Leicester University, Leicester, United Kingdom
| | - Haruka Hashimoto
- Department of Cell Physiology and Pharmacology, Leicester University, Leicester, United Kingdom
| | - Thomas Tagoe
- Department of Cell Physiology and Pharmacology, Leicester University, Leicester, United Kingdom
| | - Nadia Pilati
- Department of Cell Physiology and Pharmacology, Leicester University, Leicester, United Kingdom
| | - Martine Hamann
- Department of Cell Physiology and Pharmacology, Leicester University, Leicester, United Kingdom
| |
Collapse
|