1
|
Sano M, Hirosawa T, Yoshimura Y, Hasegawa C, An KM, Tanaka S, Yaoi K, Naitou N, Kikuchi M. Neural responses to syllable-induced P1m and social impairment in children with autism spectrum disorder and typically developing Peers. PLoS One 2024; 19:e0298020. [PMID: 38457397 PMCID: PMC10923473 DOI: 10.1371/journal.pone.0298020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/17/2024] [Indexed: 03/10/2024] Open
Abstract
In previous magnetoencephalography (MEG) studies, children with autism spectrum disorder (ASD) have been shown to respond differently to speech stimuli than typically developing (TD) children. Quantitative evaluation of this difference in responsiveness may support early diagnosis and intervention for ASD. The objective of this research is to investigate the relationship between syllable-induced P1m and social impairment in children with ASD and TD children. We analyzed 49 children with ASD aged 40-92 months and age-matched 26 TD children. We evaluated their social impairment by means of the Social Responsiveness Scale (SRS) and their intelligence ability using the Kaufman Assessment Battery for Children (K-ABC). Multiple regression analysis with SRS score as the dependent variable and syllable-induced P1m latency or intensity and intelligence ability as explanatory variables revealed that SRS score was associated with syllable-induced P1m latency in the left hemisphere only in the TD group and not in the ASD group. A second finding was that increased leftward-lateralization of intensity was correlated with higher SRS scores only in the ASD group. These results provide valuable insights but also highlight the intricate nature of neural mechanisms and their relationship with autistic traits.
Collapse
Affiliation(s)
- Masuhiko Sano
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tetsu Hirosawa
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Faculty of Education, Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Kyung-Min An
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Ken Yaoi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Nobushige Naitou
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
2
|
T. Zaatar M, Alhakim K, Enayeh M, Tamer R. The transformative power of music: Insights into neuroplasticity, health, and disease. Brain Behav Immun Health 2024; 35:100716. [PMID: 38178844 PMCID: PMC10765015 DOI: 10.1016/j.bbih.2023.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Music is a universal language that can elicit profound emotional and cognitive responses. In this literature review, we explore the intricate relationship between music and the brain, from how it is decoded by the nervous system to its therapeutic potential in various disorders. Music engages a diverse network of brain regions and circuits, including sensory-motor processing, cognitive, memory, and emotional components. Music-induced brain network oscillations occur in specific frequency bands, and listening to one's preferred music can grant easier access to these brain functions. Moreover, music training can bring about structural and functional changes in the brain, and studies have shown its positive effects on social bonding, cognitive abilities, and language processing. We also discuss how music therapy can be used to retrain impaired brain circuits in different disorders. Understanding how music affects the brain can open up new avenues for music-based interventions in healthcare, education, and wellbeing.
Collapse
Affiliation(s)
- Muriel T. Zaatar
- Department of Biological and Physical Sciences, American University in Dubai, Dubai, United Arab Emirates
| | | | | | | |
Collapse
|
3
|
Orekhova EV, Fadeev KA, Goiaeva DE, Obukhova TS, Ovsiannikova TM, Prokofyev AO, Stroganova TA. Different hemispheric lateralization for periodicity and formant structure of vowels in the auditory cortex and its changes between childhood and adulthood. Cortex 2024; 171:287-307. [PMID: 38061210 DOI: 10.1016/j.cortex.2023.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 02/12/2024]
Abstract
The spectral formant structure and periodicity pitch are the major features that determine the identity of vowels and the characteristics of the speaker. However, very little is known about how the processing of these features in the auditory cortex changes during development. To address this question, we independently manipulated the periodicity and formant structure of vowels while measuring auditory cortex responses using magnetoencephalography (MEG) in children aged 7-12 years and adults. We analyzed the sustained negative shift of source current associated with these vowel properties, which was present in the auditory cortex in both age groups despite differences in the transient components of the auditory response. In adults, the sustained activation associated with formant structure was lateralized to the left hemisphere early in the auditory processing stream requiring neither attention nor semantic mapping. This lateralization was not yet established in children, in whom the right hemisphere contribution to formant processing was strong and decreased during or after puberty. In contrast to the formant structure, periodicity was associated with a greater response in the right hemisphere in both children and adults. These findings suggest that left-lateralization for the automatic processing of vowel formant structure emerges relatively late in ontogenesis and pose a serious challenge to current theories of hemispheric specialization for speech processing.
Collapse
Affiliation(s)
- Elena V Orekhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.
| | - Kirill A Fadeev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.
| | - Dzerassa E Goiaeva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.
| | - Tatiana S Obukhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.
| | - Tatiana M Ovsiannikova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.
| | - Andrey O Prokofyev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.
| | - Tatiana A Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.
| |
Collapse
|
4
|
Wang X, Zhang Y, Zhu L, Bai S, Li R, Sun H, Qi R, Cai R, Li M, Jia G, Cao X, Schriver KE, Li X, Gao L. Selective corticofugal modulation on sound processing in auditory thalamus of awake marmosets. Cereb Cortex 2022; 33:3372-3386. [PMID: 35851798 PMCID: PMC10068278 DOI: 10.1093/cercor/bhac278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Cortical feedback has long been considered crucial for the modulation of sensory perception and recognition. However, previous studies have shown varying modulatory effects of the primary auditory cortex (A1) on the auditory response of subcortical neurons, which complicate interpretations regarding the function of A1 in sound perception and recognition. This has been further complicated by studies conducted under different brain states. In the current study, we used cryo-inactivation in A1 to examine the role of corticothalamic feedback on medial geniculate body (MGB) neurons in awake marmosets. The primary effects of A1 inactivation were a frequency-specific decrease in the auditory response of most MGB neurons coupled with an increased spontaneous firing rate, which together resulted in a decrease in the signal-to-noise ratio. In addition, we report for the first time that A1 robustly modulated the long-lasting sustained response of MGB neurons, which changed the frequency tuning after A1 inactivation, e.g. some neurons are sharper with corticofugal feedback and some get broader. Taken together, our results demonstrate that corticothalamic modulation in awake marmosets serves to enhance sensory processing in a manner similar to center-surround models proposed in visual and somatosensory systems, a finding which supports common principles of corticothalamic processing across sensory systems.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Yuanqing Zhang
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Lin Zhu
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Siyi Bai
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Rui Li
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Hao Sun
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Runze Qi
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Ruolan Cai
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Min Li
- Division of Psychology , State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875 , China
| | - Guoqiang Jia
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Xinyuan Cao
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Kenneth E Schriver
- School of Brain Science and Brain Medicine , Zhejiang University School of Medicine, Hangzhou 310020 , China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
- Department of Neurobiology , NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310020 , China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
- Department of Neurobiology , NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310020 , China
| |
Collapse
|
5
|
Wang X, Zhang Y, Bai S, Qi R, Sun H, Li R, Zhu L, Cao X, Jia G, Li X, Gao L. Corticofugal Modulation of Temporal and Rate Representations in the Inferior Colliculus of the Awake Marmoset. Cereb Cortex 2022; 32:4080-4097. [PMID: 35029654 DOI: 10.1093/cercor/bhab467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/12/2021] [Accepted: 11/16/2021] [Indexed: 11/14/2022] Open
Abstract
Temporal processing is crucial for auditory perception and cognition, especially for communication sounds. Previous studies have shown that the auditory cortex and the thalamus use temporal and rate representations to encode slowly and rapidly changing time-varying sounds. However, how the primate inferior colliculus (IC) encodes time-varying sounds at the millisecond scale remains unclear. In this study, we investigated the temporal processing by IC neurons in awake marmosets to Gaussian click trains with varying interclick intervals (2-100 ms). Strikingly, we found that 28% of IC neurons exhibited rate representation with nonsynchronized responses, which is in sharp contrast to the current view that the IC only uses a temporal representation to encode time-varying signals. Moreover, IC neurons with rate representation exhibited response properties distinct from those with temporal representation. We further demonstrated that reversible inactivation of the primary auditory cortex modulated 17% of the stimulus-synchronized responses and 21% of the nonsynchronized responses of IC neurons, revealing that cortico-colliculus projections play a role, but not a crucial one, in temporal processing in the IC. This study has significantly advanced our understanding of temporal processing in the IC of awake animals and provides new insights into temporal processing from the midbrain to the cortex.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Yuanqing Zhang
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Siyi Bai
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Runze Qi
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Hao Sun
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Rui Li
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Lin Zhu
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Xinyuan Cao
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Guoqiang Jia
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
6
|
Li Y, Wang X, Li Z, Chen J, Qin L. Effect of locomotion on the auditory steady state response of head-fixed mice. World J Biol Psychiatry 2021; 22:362-372. [PMID: 32901530 DOI: 10.1080/15622975.2020.1814409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Electroencephalographic (EEG) examinations of the auditory steady-state response (ASSR) can non-invasively probe cortical function to generate the gamma-band (40 Hz) oscillation, which is increasingly applied to the neurophysiological studies on the rodent models of psychiatric disorders. Though, it has been well established that the brain activities are significantly modulated by the behavioural state (such as locomotion), how the ASSR is affected remains unclear. METHODS We investigated the effect of locomotion by recording local field potential (LFP) evoked by 40-Hz click-train from multiple brain areas: auditory cortex (AC), medial geniculate body (MGB), hippocampus (HP) and prefrontal cortex (PFC), in head-fixed mice free to run on a treadmill. Comparisons were conducted on the LFPs during spontaneous movement and stationary conditions. RESULTS We found that in both the auditory (AC and MGB) and non-auditory areas (HP and PFC), locomotion reduced the initial negative deflection of LFP (early response during 0-100 ms from stimulus onset), and had no significant effect on the ASSR phase-locking to the late stimulus (100-500 ms). CONCLUSIONS Our results suggest that different neural mechanisms contribute to the early response and ASSR, and the ASSR is a more robust biomarker to investigate the pathogenesis of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yingzhuo Li
- Department of Physiology, China Medical University, Shenyang, PR China
| | - Xuejiao Wang
- Department of Physiology, China Medical University, Shenyang, PR China
| | - Zijie Li
- Department of Physiology, China Medical University, Shenyang, PR China
| | - Jingyu Chen
- Department of Physiology, China Medical University, Shenyang, PR China
| | - Ling Qin
- Department of Physiology, China Medical University, Shenyang, PR China
| |
Collapse
|
7
|
Asokan MM, Williamson RS, Hancock KE, Polley DB. Inverted central auditory hierarchies for encoding local intervals and global temporal patterns. Curr Biol 2021; 31:1762-1770.e4. [PMID: 33609455 DOI: 10.1016/j.cub.2021.01.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 01/02/2023]
Abstract
In sensory systems, representational features of increasing complexity emerge at successive stages of processing. In the mammalian auditory pathway, the clearest change from brainstem to cortex is defined by what is lost, not by what is gained, in that high-fidelity temporal coding becomes increasingly restricted to slower acoustic modulation rates.1,2 Here, we explore the idea that sluggish temporal processing is more than just an inability for fast processing, but instead reflects an emergent specialization for encoding sound features that unfold on very slow timescales.3,4 We performed simultaneous single unit ensemble recordings from three hierarchical stages of auditory processing in awake mice - the inferior colliculus (IC), medial geniculate body of the thalamus (MGB) and primary auditory cortex (A1). As expected, temporal coding of brief local intervals (0.001 - 0.1 s) separating consecutive noise bursts was robust in the IC and declined across MGB and A1. By contrast, slowly developing (∼1 s period) global rhythmic patterns of inter-burst interval sequences strongly modulated A1 spiking, were weakly captured by MGB neurons, and not at all by IC neurons. Shifts in stimulus regularity were not represented by changes in A1 spike rates, but rather in how the spikes were arranged in time. These findings show that low-level auditory neurons with fast timescales encode isolated sound features but not the longer gestalt, while the extended timescales in higher-level areas can facilitate sensitivity to slower contextual changes in the sensory environment.
Collapse
Affiliation(s)
- Meenakshi M Asokan
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 USA; Division of Medical Sciences, Harvard Medical School, Boston MA 02114 USA
| | - Ross S Williamson
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA 02114 USA
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA 02114 USA
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA 02114 USA.
| |
Collapse
|
8
|
Speech frequency-following response in human auditory cortex is more than a simple tracking. Neuroimage 2020; 226:117545. [PMID: 33186711 DOI: 10.1016/j.neuroimage.2020.117545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022] Open
Abstract
The human auditory cortex is recently found to contribute to the frequency following response (FFR) and the cortical component has been shown to be more relevant to speech perception. However, it is not clear how cortical FFR may contribute to the processing of speech fundamental frequency (F0) and the dynamic pitch. Using intracranial EEG recordings, we observed a significant FFR at the fundamental frequency (F0) for both speech and speech-like harmonic complex stimuli in the human auditory cortex, even in the missing fundamental condition. Both the spectral amplitude and phase coherence of the cortical FFR showed a significant harmonic preference, and attenuated from the primary auditory cortex to the surrounding associative auditory cortex. The phase coherence of the speech FFR was found significantly higher than that of the harmonic complex stimuli, especially in the left hemisphere, showing a high timing fidelity of the cortical FFR in tracking dynamic F0 in speech. Spectrally, the frequency band of the cortical FFR was largely overlapped with the range of the human vocal pitch. Taken together, our study parsed the intrinsic properties of the cortical FFR and reveals a preference for speech-like sounds, supporting its potential role in processing speech intonation and lexical tones.
Collapse
|
9
|
Whiteford KL, Kreft HA, Oxenham AJ. The role of cochlear place coding in the perception of frequency modulation. eLife 2020; 9:58468. [PMID: 32996463 PMCID: PMC7556860 DOI: 10.7554/elife.58468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Natural sounds convey information via frequency and amplitude modulations (FM and AM). Humans are acutely sensitive to the slow rates of FM that are crucial for speech and music. This sensitivity has long been thought to rely on precise stimulus-driven auditory-nerve spike timing (time code), whereas a coarser code, based on variations in the cochlear place of stimulation (place code), represents faster FM rates. We tested this theory in listeners with normal and impaired hearing, spanning a wide range of place-coding fidelity. Contrary to predictions, sensitivity to both slow and fast FM correlated with place-coding fidelity. We also used incoherent AM on two carriers to simulate place coding of FM and observed poorer sensitivity at high carrier frequencies and fast rates, two properties of FM detection previously ascribed to the limits of time coding. The results suggest a unitary place-based neural code for FM across all rates and carrier frequencies.
Collapse
Affiliation(s)
- Kelly L Whiteford
- Department of Psychology, University of Minnesota, Minneapolis, United States
| | - Heather A Kreft
- Department of Psychology, University of Minnesota, Minneapolis, United States
| | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, Minneapolis, United States
| |
Collapse
|
10
|
Kaya EM, Huang N, Elhilali M. Pitch, Timbre and Intensity Interdependently Modulate Neural Responses to Salient Sounds. Neuroscience 2020; 440:1-14. [PMID: 32445938 DOI: 10.1016/j.neuroscience.2020.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 01/31/2023]
Abstract
As we listen to everyday sounds, auditory perception is heavily shaped by interactions between acoustic attributes such as pitch, timbre and intensity; though it is not clear how such interactions affect judgments of acoustic salience in dynamic soundscapes. Salience perception is believed to rely on an internal brain model that tracks the evolution of acoustic characteristics of a scene and flags events that do not fit this model as salient. The current study explores how the interdependency between attributes of dynamic scenes affects the neural representation of this internal model and shapes encoding of salient events. Specifically, the study examines how deviations along combinations of acoustic attributes interact to modulate brain responses, and subsequently guide perception of certain sound events as salient given their context. Human volunteers have their attention focused on a visual task and ignore acoustic melodies playing in the background while their brain activity using electroencephalography is recorded. Ambient sounds consist of musical melodies with probabilistically-varying acoustic attributes. Salient notes embedded in these scenes deviate from the melody's statistical distribution along pitch, timbre and/or intensity. Recordings of brain responses to salient notes reveal that neural power in response to the melodic rhythm as well as cross-trial phase alignment in the theta band are modulated by degree of salience of the notes, estimated across all acoustic attributes given their probabilistic context. These neural nonlinear effects across attributes strongly parallel behavioral nonlinear interactions observed in perceptual judgments of auditory salience using similar dynamic melodies; suggesting a neural underpinning of nonlinear interactions that underlie salience perception.
Collapse
Affiliation(s)
- Emine Merve Kaya
- Laboratory for Computational Audio Perception, Department of Electrical and Computer Engineering Johns Hopkins University, Baltimore, MD, USA
| | - Nicolas Huang
- Laboratory for Computational Audio Perception, Department of Electrical and Computer Engineering Johns Hopkins University, Baltimore, MD, USA
| | - Mounya Elhilali
- Laboratory for Computational Audio Perception, Department of Electrical and Computer Engineering Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
11
|
Bigelow J, Malone B. Extracellular voltage thresholds for maximizing information extraction in primate auditory cortex: implications for a brain computer interface. J Neural Eng 2020; 18. [PMID: 32126540 DOI: 10.1088/1741-2552/ab7c19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/03/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Research by Oby et al (2016) demonstrated that the optimal threshold for extracting information from visual and motor cortices may differ from the optimal threshold for identifying single neurons via spike sorting methods. The optimal threshold for extracting information from auditory cortex has yet to be identified, nor has the optimal temporal scale for representing auditory cortical activity. Here, we describe a procedure to jointly optimize the extracellular threshold and bin size with respect to the decoding accuracy achieved by a linear classifier for a diverse set of auditory stimuli. APPROACH We used linear multichannel arrays to record extracellular neural activity from the auditory cortex of awake squirrel monkeys passively listening to both simple and complex sounds. We executed a grid search of the coordinate space defined by the voltage threshold (in units of standard deviation) and the bin size (in units of milliseconds), and computed decoding accuracy at each point. MAIN RESULTS The optimal threshold for information extraction was consistently near two standard deviations below the voltage trace mean, which falls significantly below the range of three to five standard deviations typically used as inputs to spike sorting algorithms in basic research and in brain-computer interface (BCI) applications. The optimal binwidth was minimized at the optimal voltage threshold, particularly for acoustic stimuli dominated by temporally dynamic features, indicating that permissive thresholding permits readout of cortical responses with temporal precision on the order of a few milliseconds. SIGNIFICANCE The improvements in decoding accuracy we observed for optimal readout parameters suggest that standard thresholding methods substantially underestimate the information present in auditory cortical spiking patterns. The fact that optimal thresholds were relatively low indicates that local populations of cortical neurons exhibit high temporal coherence that could be leveraged in service of future auditory BCI applications.
Collapse
Affiliation(s)
- James Bigelow
- OHNS, University of California System, San Francisco, California, UNITED STATES
| | - Brian Malone
- OHNS, University of California System, 675 Nelson Rising Lane (Room 535), University of California San Francisco, San Francisco, San Francisco, California, 94158, UNITED STATES
| |
Collapse
|
12
|
Ewert SD, Paraouty N, Lorenzi C. A two‐path model of auditory modulation detection using temporal fine structure and envelope cues. Eur J Neurosci 2020; 51:1265-1278. [DOI: 10.1111/ejn.13846] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Stephan D. Ewert
- Medizinische Physik and Cluster of Excellence Hearing4All Universität Oldenburg 26111 Oldenburg Germany
| | - Nihaad Paraouty
- Laboratoire des systèmes perceptifs Département d’études cognitives, École normale supérieure CNRS PSL Research University Paris France
| | - Christian Lorenzi
- Laboratoire des systèmes perceptifs Département d’études cognitives, École normale supérieure CNRS PSL Research University Paris France
| |
Collapse
|
13
|
Experience- and Sex-Dependent Intrinsic Plasticity in the Zebra Finch Auditory Cortex during Song Memorization. J Neurosci 2020; 40:2047-2055. [PMID: 31937558 DOI: 10.1523/jneurosci.2137-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/09/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022] Open
Abstract
For vocal communicators like humans and songbirds, survival and reproduction depend on highly developed auditory processing systems that can detect and differentiate nuanced differences in vocalizations, even amid noisy environments. Early auditory experience is critical to the development of these systems. In zebra finches and other songbirds, there is a sensitive period when young birds memorize a song that will serve as a model for their own vocal production. In addition to learning a specific tutor's song, the auditory system may also undergo critical developmental processes that support auditory perception of vocalizations more generally. Here, we investigate changes in intrinsic spiking dynamics among neurons in the caudal mesopallium, a cortical-level auditory area implicated in discriminating and learning species-specific vocalizations. A subset of neurons in this area only fire transiently at the onset of current injections (i.e., phasic firing), a dynamical property that can enhance the reliability and selectivity of neural responses to complex acoustic stimuli. At the beginning of the sensitive period, just after zebra finches have fledged from the nest, there is an increase in the proportion of caudal mesopallium neurons with phasic excitability, and in the proportion of neurons expressing Kv1.1, a low-threshold channel that facilitates phasic firing. This plasticity requires exposure to a complex, noisy environment and is greater in males, the only sex that sings in this species. This shift to more phasic dynamics is therefore an experience-dependent adaptation that could facilitate auditory processing in noisy, acoustically complex conditions during a key stage of vocal development.SIGNIFICANCE STATEMENT Auditory experience early in life shapes how humans and songbirds perceive the vocal communication sounds produced by their species. However, the changes that occur in the brain as this learning takes place are poorly understood. In this study, we show that in young zebra finches that are just beginning to learn the structure of their species' song, neurons in a key cortical area adapt their intrinsic firing patterns in response to the acoustic environment. In the complex, cocktail-party-like environment of a colony, more neurons adopt transient firing dynamics, which can facilitate neural coding of songs amid such challenging conditions.
Collapse
|
14
|
Lu H, Zhang K, Liu Q. Reading fluency and pitch discrimination abilities in children with learning disabilities. Technol Health Care 2020; 28:361-370. [PMID: 32364169 PMCID: PMC7369083 DOI: 10.3233/thc-209037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Pitch perception and pitch matching may link to individual reading skills. OBJECTIVE In this study, we examined pitch perception and pitch matching tasks in children with learning disabilities to determine whether there was any connection between these tests and the reading fluency in these children. METHOD The study used different types of pitch discrimination tests and reading fluency tests to compare the two groups. RESULTS Results indicated that the accuracy of pitch discrimination and reading fluency was significantly different in these children with learning disabilities relative to typically developing children. This study also indicated that they exhibit impaired pitch matching, which linked to their reading skills. CONCLUSION The results indicate that processing and production of speech may be impacted by individuals' musical pitch perception and matching ability. The results may also give us a piece of evidence that we need further research on how these deficits in musical pitch perception affect our speech and language production in children and adults.
Collapse
Affiliation(s)
- Haidan Lu
- Education and Rehabilitation Department, Faculty of Education, East China Normal University, Shanghai, China
| | - Kaili Zhang
- Education and Rehabilitation Department, Faculty of Education, East China Normal University, Shanghai, China
| | - Qiaoyun Liu
- Education and Rehabilitation Department, Faculty of Education, East China Normal University, Shanghai, China
| |
Collapse
|
15
|
Distinct processing of tone offset in two primary auditory cortices. Sci Rep 2019; 9:9581. [PMID: 31270350 PMCID: PMC6610078 DOI: 10.1038/s41598-019-45952-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/19/2019] [Indexed: 11/08/2022] Open
Abstract
In the rodent auditory system, the primary cortex is subdivided into two regions, both receiving direct inputs from the auditory thalamus: the primary auditory cortex (A1) and the anterior auditory field (AAF). Although neurons in the two regions display different response properties, like response latency, firing threshold or tuning bandwidth, it is still not clear whether they process sound in a distinct way. Using in vivo electrophysiological recordings in the mouse auditory cortex, we found that AAF neurons have significantly stronger responses to tone offset than A1 neurons. AAF neurons also display faster and more transient responses than A1 neurons. Additionally, offset responses in AAF – unlike in A1, increase with sound duration. Local field potential (LFP) and laminar analyses suggest that the differences in sound responses between these two primary cortices are both of subcortical and intracortical origin. These results emphasize the potentially critical role of AAF for temporal processing. Our study reveals a distinct role of two primary auditory cortices in tone processing and highlights the complexity of sound encoding at the cortical level.
Collapse
|
16
|
Kommajosyula SP, Cai R, Bartlett E, Caspary DM. Top-down or bottom up: decreased stimulus salience increases responses to predictable stimuli of auditory thalamic neurons. J Physiol 2019; 597:2767-2784. [PMID: 30924931 DOI: 10.1113/jp277450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/25/2019] [Indexed: 01/29/2023] Open
Abstract
KEY POINTS Temporal imprecision leads to deficits in the comprehension of signals in cluttered acoustic environments, and the elderly are shown to use cognitive resources to disambiguate these signals. To mimic ageing in young rats, we delivered sound signals that are temporally degraded, which led to temporally imprecise neural codes. Instead of adaptation to repeated stimuli, with degraded signals, there was a relative increase in firing rates, similar to that seen in aged rats. We interpret this increase with repetition as a repair mechanism for strengthening the internal representations of degraded signals by the higher-order structures. ABSTRACT To better understand speech in challenging environments, older adults increasingly use top-down cognitive and contextual resources. The medial geniculate body (MGB) integrates ascending inputs with descending predictions to dynamically gate auditory representations based on salience and context. A previous MGB single-unit study found an increased preference for predictable sinusoidal amplitude modulated (SAM) stimuli in aged rats relative to young rats. The results suggested that the age-degraded/jittered up-stream acoustic code may engender an increased preference for predictable/repeating acoustic signals, possibly reflecting increased use of top-down resources. In the present study, we recorded from units in young-adult MGB, comparing responses to standard SAM with those evoked by less salient SAM (degraded) stimuli. We hypothesized that degrading the SAM stimulus would simulate the degraded ascending acoustic code seen in the elderly, increasing the preference for predictable stimuli. Single units were recorded from clusters of advanceable tetrodes implanted above the MGB of young-adult awake rats. Less salient SAM significantly increased the preference for predictable stimuli, especially at higher modulation frequencies. Rather than adaptation, higher modulation frequencies elicited increased numbers of spikes with each successive trial/repeat of the less salient SAM. These findings are consistent with previous findings obtained in aged rats suggesting that less salient acoustic signals engage the additional use of top-down resources, as reflected by an increased preference for repeating stimuli that enhance the representation of complex environmental/communication sounds.
Collapse
Affiliation(s)
- Srinivasa P Kommajosyula
- Southern Illinois University School of Medicine, , Department of Pharmacology, Springfield, IL, USA
| | - Rui Cai
- Southern Illinois University School of Medicine, , Department of Pharmacology, Springfield, IL, USA
| | - Edward Bartlett
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Donald M Caspary
- Southern Illinois University School of Medicine, , Department of Pharmacology, Springfield, IL, USA
| |
Collapse
|
17
|
Xu N, Luo L, Wang Q, Li L. Binaural unmasking of the accuracy of envelope-signal representation in rat auditory cortex but not auditory midbrain. Hear Res 2019; 377:224-233. [PMID: 30991272 DOI: 10.1016/j.heares.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 01/16/2023]
Abstract
Accurate neural representations of acoustic signals under noisy conditions are critical for animals' survival. Detecting signal against background noise can be improved by binaural hearing particularly when an interaural-time-difference (ITD) disparity is introduced between the signal and the noise, a phenomenon known as binaural unmasking. Previous studies have mainly focused on the binaural unmasking effect on response magnitudes, and it is not clear whether binaural unmasking affects the accuracy of central representations of target acoustic signals and the relative contributions of different central auditory structures to this accuracy. Frequency following responses (FFRs), which are sustained phase-locked neural activities, can be used for measuring the accuracy of the representation of signals. Using intracranial recordings of local field potentials, this study aimed to assess whether the binaural unmasking effects include an improvement of the accuracy of neural representations of sound-envelope signals in the rat IC and/or auditory cortex (AC). The results showed that (1) when a narrow-band noise was presented binaurally, the stimulus-response (S-R) coherence of the FFRs to the envelope (FFRenvelope) of the narrow-band noise recorded in the IC was higher than that recorded in the AC. (2) Presenting a broad-band masking noise caused a larger reduction of the S-R coherence for FFRenvelope in the IC than that in the AC. (3) Introducing an ITD disparity between the narrow-band signal noise and the broad-band masking noise did not affect the IC S-R coherence, but enhanced both the AC S-R coherence and the coherence between the IC FFRenvelope and AC FFRenvelope. Thus, although the accuracy of representing envelope signals in the AC is lower than that in the IC, it can be binaurally unmasked, indicating a binaural-unmasking mechanism that is formed during the signal transmission from the IC to the AC.
Collapse
Affiliation(s)
- Na Xu
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100080, China
| | - Lu Luo
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100080, China
| | - Qian Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100080, China; Beijing Key Laboratory of Epilepsy, Epilepsy Center, Department of Functional Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Liang Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100080, China; Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100871, China; Beijing Institute for Brain Disorders, Beijing, 100096, China.
| |
Collapse
|
18
|
Krause BM, Murphy CA, Uhlrich DJ, Banks MI. PV+ Cells Enhance Temporal Population Codes but not Stimulus-Related Timing in Auditory Cortex. Cereb Cortex 2019; 29:627-647. [PMID: 29300837 PMCID: PMC6319178 DOI: 10.1093/cercor/bhx345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 01/05/2023] Open
Abstract
Spatio-temporal cortical activity patterns relative to both peripheral input and local network activity carry information about stimulus identity and context. GABAergic interneurons are reported to regulate spiking at millisecond precision in response to sensory stimulation and during gamma oscillations; their role in regulating spike timing during induced network bursts is unclear. We investigated this issue in murine auditory thalamo-cortical (TC) brain slices, in which TC afferents induced network bursts similar to previous reports in vivo. Spike timing relative to TC afferent stimulation during bursts was poor in pyramidal cells and SOM+ interneurons. It was more precise in PV+ interneurons, consistent with their reported contribution to spiking precision in pyramidal cells. Optogenetic suppression of PV+ cells unexpectedly improved afferent-locked spike timing in pyramidal cells. In contrast, our evidence suggests that PV+ cells do regulate the spatio-temporal spike pattern of pyramidal cells during network bursts, whose organization is suited to ensemble coding of stimulus information. Simulations showed that suppressing PV+ cells reduces the capacity of pyramidal cell networks to produce discriminable spike patterns. By dissociating temporal precision with respect to a stimulus versus internal cortical activity, we identified a novel role for GABAergic cells in regulating information processing in cortical networks.
Collapse
Affiliation(s)
- Bryan M Krause
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Caitlin A Murphy
- Physiology Graduate Training Program, University of Wisconsin, Madison, WI, USA
| | - Daniel J Uhlrich
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
19
|
Peng F, Innes-Brown H, McKay CM, Fallon JB, Zhou Y, Wang X, Hu N, Hou W. Temporal Coding of Voice Pitch Contours in Mandarin Tones. Front Neural Circuits 2018; 12:55. [PMID: 30087597 PMCID: PMC6066958 DOI: 10.3389/fncir.2018.00055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Accurate perception of time-variant pitch is important for speech recognition, particularly for tonal languages with different lexical tones such as Mandarin, in which different tones convey different semantic information. Previous studies reported that the auditory nerve and cochlear nucleus can encode different pitches through phase-locked neural activities. However, little is known about how the inferior colliculus (IC) encodes the time-variant periodicity pitch of natural speech. In this study, the Mandarin syllable /ba/ pronounced with four lexical tones (flat, rising, falling then rising and falling) were used as stimuli. Local field potentials (LFPs) and single neuron activity were simultaneously recorded from 90 sites within contralateral IC of six urethane-anesthetized and decerebrate guinea pigs in response to the four stimuli. Analysis of the temporal information of LFPs showed that 93% of the LFPs exhibited robust encoding of periodicity pitch. Pitch strength of LFPs derived from the autocorrelogram was significantly (p < 0.001) stronger for rising tones than flat and falling tones. Pitch strength are also significantly increased (p < 0.05) with the characteristic frequency (CF). On the other hand, only 47% (42 or 90) of single neuron activities were significantly synchronized to the fundamental frequency of the stimulus suggesting that the temporal spiking pattern of single IC neuron could encode the time variant periodicity pitch of speech robustly. The difference between the number of LFPs and single neurons that encode the time-variant F0 voice pitch supports the notion of a transition at the level of IC from direct temporal coding in the spike trains of individual neurons to other form of neural representation.
Collapse
Affiliation(s)
- Fei Peng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Hamish Innes-Brown
- Bionics Institute, East Melbourne, VIC, Australia
- Department of Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia
| | - Colette M. McKay
- Bionics Institute, East Melbourne, VIC, Australia
- Department of Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia
| | - James B. Fallon
- Bionics Institute, East Melbourne, VIC, Australia
- Department of Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia
- Department of Otolaryngology, University of Melbourne, Melbourne, VIC, Australia
| | - Yi Zhou
- Chongqing Key Laboratory of Neurobiology, Department of Neurobiology, Third Military Medical University, Chongqing, China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Wensheng Hou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| |
Collapse
|
20
|
Abstract
How the cerebral cortex encodes auditory features of biologically important sounds, including speech and music, is one of the most important questions in auditory neuroscience. The pursuit to understand related neural coding mechanisms in the mammalian auditory cortex can be traced back several decades to the early exploration of the cerebral cortex. Significant progress in this field has been made in the past two decades with new technical and conceptual advances. This article reviews the progress and challenges in this area of research.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
21
|
Banks MI, Moran NS, Krause BM, Grady SM, Uhlrich DJ, Manning KA. Altered stimulus representation in rat auditory cortex is not causal for loss of consciousness under general anaesthesia. Br J Anaesth 2018; 121:605-615. [PMID: 30115259 DOI: 10.1016/j.bja.2018.05.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/13/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current concepts suggest that impaired representation of information in cortical networks contributes to loss of consciousness under anaesthesia. We tested this idea in rat auditory cortex using information theory analysis of multiunit responses recorded under three anaesthetic agents with different molecular targets: isoflurane, propofol, and dexmedetomidine. We reasoned that if changes in the representation of sensory stimuli are causal for loss of consciousness, they should occur regardless of the specific anaesthetic agent. METHODS Spiking responses were recorded with chronically implanted microwire arrays in response to acoustic stimuli incorporating varied temporal and spectral dynamics. Experiments consisted of four drug conditions: awake (pre-drug), sedation (i.e. intact righting reflex), loss of consciousness (a dose just sufficient to cause loss of righting reflex), and recovery. Measures of firing rate, spike timing, and mutual information were analysed as a function of drug condition. RESULTS All three drugs decreased spontaneous and evoked spiking activity and modulated spike timing. However, changes in mutual information were inconsistent with altered stimulus representation being causal for loss of consciousness. First, direction of change in mutual information was agent-specific, increasing under dexmedetomidine and decreasing under isoflurane and propofol. Second, mutual information did not decrease at the transition between sedation and LOC for any agent. Changes in mutual information under anaesthesia correlated strongly with changes in precision and reliability of spike timing, consistent with the importance of temporal stimulus features in driving auditory cortical activity. CONCLUSIONS The primary sensory cortex is not the locus for changes in representation of information causal for loss of consciousness under anaesthesia.
Collapse
Affiliation(s)
- M I Banks
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA.
| | - N S Moran
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - B M Krause
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - S M Grady
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - D J Uhlrich
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| | - K A Manning
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
22
|
Yao JD, Sanes DH. Developmental deprivation-induced perceptual and cortical processing deficits in awake-behaving animals. eLife 2018; 7:33891. [PMID: 29873632 PMCID: PMC6005681 DOI: 10.7554/elife.33891] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/04/2018] [Indexed: 01/02/2023] Open
Abstract
Sensory deprivation during development induces lifelong changes to central nervous system function that are associated with perceptual impairments. However, the relationship between neural and behavioral deficits is uncertain due to a lack of simultaneous measurements during task performance. Therefore, we telemetrically recorded from auditory cortex neurons in gerbils reared with developmental conductive hearing loss as they performed an auditory task in which rapid fluctuations in amplitude are detected. These data were compared to a measure of auditory brainstem temporal processing from each animal. We found that developmental HL diminished behavioral performance, but did not alter brainstem temporal processing. However, the simultaneous assessment of neural and behavioral processing revealed that perceptual deficits were associated with a degraded cortical population code that could be explained by greater trial-to-trial response variability. Our findings suggest that the perceptual limitations that attend early hearing loss are best explained by an encoding deficit in auditory cortex.
Collapse
Affiliation(s)
- Justin D Yao
- Center for Neural Science, New York University, New York, United States
| | - Dan H Sanes
- Center for Neural Science, New York University, New York, United States.,Department of Psychology, New York University, New York, United States.,Department of Biology, New York University, New York, United States.,Neuroscience Institute, NYU Langone Medical Center, New York, United States
| |
Collapse
|
23
|
Beetz MJ, García-Rosales F, Kössl M, Hechavarría JC. Robustness of cortical and subcortical processing in the presence of natural masking sounds. Sci Rep 2018; 8:6863. [PMID: 29717258 PMCID: PMC5931562 DOI: 10.1038/s41598-018-25241-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022] Open
Abstract
Processing of ethologically relevant stimuli could be interfered by non-relevant stimuli. Animals have behavioral adaptations to reduce signal interference. It is largely unexplored whether the behavioral adaptations facilitate neuronal processing of relevant stimuli. Here, we characterize behavioral adaptations in the presence of biotic noise in the echolocating bat Carollia perspicillata and we show that the behavioral adaptations could facilitate neuronal processing of biosonar information. According to the echolocation behavior, bats need to extract their own signals in the presence of vocalizations from conspecifics. With playback experiments, we demonstrate that C. perspicillata increases the sensory acquisition rate by emitting groups of echolocation calls when flying in noisy environments. Our neurophysiological results from the auditory midbrain and cortex show that the high sensory acquisition rate does not vastly increase neuronal suppression and that the response to an echolocation sequence is partially preserved in the presence of biosonar signals from conspecifics.
Collapse
Affiliation(s)
- M Jerome Beetz
- Institute for Cell Biology and Neuroscience, Goethe-University, 60438, Frankfurt/M., Germany. .,Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, Würzburg, 97074, Germany.
| | | | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, Goethe-University, 60438, Frankfurt/M., Germany
| | - Julio C Hechavarría
- Institute for Cell Biology and Neuroscience, Goethe-University, 60438, Frankfurt/M., Germany
| |
Collapse
|
24
|
Paraouty N, Stasiak A, Lorenzi C, Varnet L, Winter IM. Dual Coding of Frequency Modulation in the Ventral Cochlear Nucleus. J Neurosci 2018; 38:4123-4137. [PMID: 29599389 PMCID: PMC6596033 DOI: 10.1523/jneurosci.2107-17.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 11/21/2022] Open
Abstract
Frequency modulation (FM) is a common acoustic feature of natural sounds and is known to play a role in robust sound source recognition. Auditory neurons show precise stimulus-synchronized discharge patterns that may be used for the representation of low-rate FM. However, it remains unclear whether this representation is based on synchronization to slow temporal envelope (ENV) cues resulting from cochlear filtering or phase locking to faster temporal fine structure (TFS) cues. To investigate the plausibility of those encoding schemes, single units of the ventral cochlear nucleus of guinea pigs of either sex were recorded in response to sine FM tones centered at the unit's best frequency (BF). The results show that, in contrast to high-BF units, for modulation depths within the receptive field, low-BF units (<4 kHz) demonstrate good phase locking to TFS. For modulation depths extending beyond the receptive field, the discharge patterns follow the ENV and fluctuate at the modulation rate. The receptive field proved to be a good predictor of the ENV responses for most primary-like and chopper units. The current in vivo data also reveal a high level of diversity in responses across unit types. TFS cues are mainly conveyed by low-frequency and primary-like units and ENV cues by chopper and onset units. The diversity of responses exhibited by cochlear nucleus neurons provides a neural basis for a dual-coding scheme of FM in the brainstem based on both ENV and TFS cues.SIGNIFICANCE STATEMENT Natural sounds, including speech, convey informative temporal modulations in frequency. Understanding how the auditory system represents those frequency modulations (FM) has important implications as robust sound source recognition depends crucially on the reception of low-rate FM cues. Here, we recorded 115 single-unit responses from the ventral cochlear nucleus in response to FM and provide the first physiological evidence of a dual-coding mechanism of FM via synchronization to temporal envelope cues and phase locking to temporal fine structure cues. We also demonstrate a diversity of neural responses with different coding specializations. These results support the dual-coding scheme proposed by psychophysicists to account for FM sensitivity in humans and provide new insights on how this might be implemented in the early stages of the auditory pathway.
Collapse
Affiliation(s)
- Nihaad Paraouty
- Centre for the Neural Basis of Hearing, The Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom and
- Laboratoire des Systèmes Perceptifs CNRS UMR 8248, École Normale Supérieure, Paris Sciences et Lettres Research University, Paris, France
| | - Arkadiusz Stasiak
- Centre for the Neural Basis of Hearing, The Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom and
| | - Christian Lorenzi
- Laboratoire des Systèmes Perceptifs CNRS UMR 8248, École Normale Supérieure, Paris Sciences et Lettres Research University, Paris, France
| | - Léo Varnet
- Laboratoire des Systèmes Perceptifs CNRS UMR 8248, École Normale Supérieure, Paris Sciences et Lettres Research University, Paris, France
| | - Ian M Winter
- Centre for the Neural Basis of Hearing, The Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom and
| |
Collapse
|
25
|
Chen AN, Meliza CD. Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. J Neurophysiol 2017; 119:1127-1139. [PMID: 29212920 DOI: 10.1152/jn.00694.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The caudal mesopallium (CM) is a cortical-level area in the songbird auditory pathway where selective, invariant responses to familiar songs emerge. To characterize the cell types that perform this computation, we made whole cell recordings from brain slices in juvenile zebra finches ( Taeniopygia guttata) of both sexes. We found three groups of putatively excitatory neurons with distinct firing patterns. Tonic cells produced sustained responses to depolarizing step currents, phasic cells produced only a few spikes at the onset, and an intermediate group was also phasic but responded for up to a few hundred milliseconds. Phasic cells had smaller dendritic fields, higher resting potentials, and strong low-threshold outward rectification. Pharmacological treatment with voltage-gated potassium channel antagonists 4-aminopyridine and α-dendrotoxin converted phasic to tonic firing. When stimulated with broadband currents, phasic cells fired coherently with frequencies up to 20-30 Hz, whereas tonic neurons were more responsive to frequencies around 0-10 Hz. The distribution of peak coherence frequencies was similar to the distribution of temporal modulation rates in zebra finch song. We reproduced these observations in a single-compartment biophysical model by varying cell size and the magnitude of a slowly inactivating, low-threshold potassium current ( ILT). These data suggest that intrinsic dynamics in CM are matched to the temporal statistics of conspecific song. NEW & NOTEWORTHY In songbirds, the caudal mesopallium is a key brain area involved in recognizing the songs of other individuals. This study identifies three cell types in this area with distinct firing patterns (tonic, phasic, and intermediate) that reflect differences in cell size and a low-threshold potassium current. The phasic-firing neurons, which do not have a counterpart in mammalian auditory cortex, are better able to follow rapid modulations at the frequencies found in song.
Collapse
Affiliation(s)
- Andrew N Chen
- Neuroscience Graduate Program, University of Virginia , Charlottesville, Virginia
| | - C Daniel Meliza
- Neuroscience Graduate Program, University of Virginia , Charlottesville, Virginia.,Department of Psychology, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
26
|
Nozaradan S, Keller PE, Rossion B, Mouraux A. EEG Frequency-Tagging and Input-Output Comparison in Rhythm Perception. Brain Topogr 2017; 31:153-160. [PMID: 29127530 DOI: 10.1007/s10548-017-0605-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/27/2017] [Indexed: 01/23/2023]
Abstract
The combination of frequency-tagging with electroencephalography (EEG) has recently proved fruitful for understanding the perception of beat and meter in musical rhythm, a common behavior shared by humans of all cultures. EEG frequency-tagging allows the objective measurement of input-output transforms to investigate beat perception, its modulation by exogenous and endogenous factors, development, and neural basis. Recent doubt has been raised about the validity of comparing frequency-domain representations of auditory rhythmic stimuli and corresponding EEG responses, assuming that it implies a one-to-one mapping between the envelope of the rhythmic input and the neural output, and that it neglects the sensitivity of frequency-domain representations to acoustic features making up the rhythms. Here we argue that these elements actually reinforce the strengths of the approach. The obvious fact that acoustic features influence the frequency spectrum of the sound envelope precisely justifies taking into consideration the sounds used to generate a beat percept for interpreting neural responses to auditory rhythms. Most importantly, the many-to-one relationship between rhythmic input and perceived beat actually validates an approach that objectively measures the input-output transforms underlying the perceptual categorization of rhythmic inputs. Hence, provided that a number of potential pitfalls and fallacies are avoided, EEG frequency-tagging to study input-output relationships appears valuable for understanding rhythm perception.
Collapse
Affiliation(s)
- Sylvie Nozaradan
- The MARCS Institute for Brain, Behaviour and Development (WSU), Sydney, NSW, Australia. .,Institute of Neuroscience (Ions), Université catholique de Louvain (UCL), Brussels, Belgium. .,International Laboratory for Brain, Music and Sound Research (Brams), Montreal, QC, Canada. .,MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour and Development (WSU), Sydney, NSW, Australia
| | - Bruno Rossion
- Institute of Neuroscience (Ions), Université catholique de Louvain (UCL), Brussels, Belgium.,Neurology Unit, Centre Hospitalier Régional Universitaire (CHRU) de Nancy, Nancy, France
| | - André Mouraux
- Institute of Neuroscience (Ions), Université catholique de Louvain (UCL), Brussels, Belgium
| |
Collapse
|
27
|
Majka P, Chaplin TA, Yu HH, Tolpygo A, Mitra PP, Wójcik DK, Rosa MGP. Towards a comprehensive atlas of cortical connections in a primate brain: Mapping tracer injection studies of the common marmoset into a reference digital template. J Comp Neurol 2017; 524:2161-81. [PMID: 27099164 PMCID: PMC4892968 DOI: 10.1002/cne.24023] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 02/02/2023]
Abstract
The marmoset is an emerging animal model for large‐scale attempts to understand primate brain connectivity, but achieving this aim requires the development and validation of procedures for normalization and integration of results from many neuroanatomical experiments. Here we describe a computational pipeline for coregistration of retrograde tracing data on connections of cortical areas into a 3D marmoset brain template, generated from Nissl‐stained sections. The procedure results in a series of spatial transformations that are applied to the coordinates of labeled neurons in the different cases, bringing them into common stereotaxic space. We applied this procedure to 17 injections, placed in the frontal lobe of nine marmosets as part of earlier studies. Visualizations of cortical patterns of connections revealed by these injections are supplied as Supplementary Materials. Comparison between the results of the automated and human‐based processing of these cases reveals that the centers of injection sites can be reconstructed, on average, to within 0.6 mm of coordinates estimated by an experienced neuroanatomist. Moreover, cell counts obtained in different areas by the automated approach are highly correlated (r = 0.83) with those obtained by an expert, who examined in detail histological sections for each individual. The present procedure enables comparison and visualization of large datasets, which in turn opens the way for integration and analysis of results from many animals. Its versatility, including applicability to archival materials, may reduce the number of additional experiments required to produce the first detailed cortical connectome of a primate brain. J. Comp. Neurol. 524:2161–2181, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Piotr Majka
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia.,Nencki Institute of Experimental Biology, Warsaw, Poland.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Tristan A Chaplin
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia.,Monash Vision Group, Monash University, Clayton, VIC, Australia
| | - Hsin-Hao Yu
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia.,Monash Vision Group, Monash University, Clayton, VIC, Australia
| | | | - Partha P Mitra
- Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | - Marcello G P Rosa
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia.,Monash Vision Group, Monash University, Clayton, VIC, Australia
| |
Collapse
|
28
|
Responses to Predictable versus Random Temporally Complex Stimuli from Single Units in Auditory Thalamus: Impact of Aging and Anesthesia. J Neurosci 2017; 36:10696-10706. [PMID: 27733619 DOI: 10.1523/jneurosci.1454-16.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/27/2016] [Indexed: 12/12/2022] Open
Abstract
Human aging studies suggest that an increased use of top-down knowledge-based resources would compensate for degraded upstream acoustic information to accurately identify important temporally rich signals. Sinusoidal amplitude-modulated (SAM) stimuli have been used to mimic the fast-changing temporal features in speech and species-specific vocalizations. Single units were recorded from auditory thalamus [medial geniculate body (MGB)] of young awake, aged awake, young anesthetized, and aged anesthetized rats. SAM stimuli were modulated between 2 and 1024 Hz with the modulation frequency (fm) changed randomly (RAN) across trials or sequentially (SEQ) after several repeated trials. Units were found to be RAN-preferring, SEQ-preferring, or nonselective based on total firing rate. Significant anesthesia and age effects were found. The majority (86%) of young anesthetized units preferred RAN SAM stimuli; significantly fewer young awake units (51%, p < 0.0001) preferred RAN SAM signals with 16% preferring SEQ SAM. Compared with young awake units, there was a significant increase of aged awake units preferring SEQ SAM (30%, p < 0.05). We examined RAN versus SEQ differences across fms by measuring selective fm areas under the rate modulation transfer function curve. The largest age-related differences from awake animals were found for mid-to-high fms in MGB units, with young units preferring RAN SAM while aged units showed a greater preference for SEQ-presented SAM. Together, these findings suggest that aged MGB units/animals employ increased top-down mediated stimulus context to enhance processing of "expected" temporally rich stimuli, especially at more challenging higher fms. SIGNIFICANCE STATEMENT Older individuals compensate for impaired ascending acoustic information by increasing use of cortical cognitive and attentional resources. The interplay between ascending and descending influences in the thalamus may serve to enhance the salience of speech signals that are degraded as they ascend to the cortex. The present findings demonstrate that medial geniculate body units from awake rats show an age-related preference for predictable modulated signals relative to randomly presented signals, especially at higher, more challenging modulation frequencies. Conversely, units from anesthetized animals, with little top-down influences, strongly preferred randomly presented modulated sequences. These results suggest a neuronal substrate for an age-related increase in experience/attentional-based influences in processing temporally complex auditory information in the auditory thalamus.
Collapse
|
29
|
A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance. J Neurosci 2017; 36:11097-11106. [PMID: 27798189 DOI: 10.1523/jneurosci.1302-16.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/02/2016] [Indexed: 01/06/2023] Open
Abstract
The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. SIGNIFICANCE STATEMENT The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability of the neural response becomes smaller during task performance, thereby improving neural detection thresholds.
Collapse
|
30
|
Representations of Time-Varying Cochlear Implant Stimulation in Auditory Cortex of Awake Marmosets ( Callithrix jacchus). J Neurosci 2017. [PMID: 28634306 DOI: 10.1523/jneurosci.0093-17.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrical stimulation of the auditory periphery organ by cochlear implant (CI) generates highly synchronized inputs to the auditory system. It has long been thought such inputs would lead to highly synchronized neural firing along the ascending auditory pathway. However, neurophysiological studies with hearing animals have shown that the central auditory system progressively converts temporal representations of time-varying sounds to firing rate-based representations. It is not clear whether this coding principle also applies to highly synchronized CI inputs. Higher-frequency modulations in CI stimulation have been found to evoke largely transient responses with little sustained firing in previous studies of the primary auditory cortex (A1) in anesthetized animals. Here, we show that, in addition to neurons displaying synchronized firing to CI stimuli, a large population of A1 neurons in awake marmosets (Callithrix jacchus) responded to rapid time-varying CI stimulation with discharges that were not synchronized to CI stimuli, yet reflected changing repetition frequency by increased firing rate. Marmosets of both sexes were included in this study. By comparing directly each neuron's responses to time-varying acoustic and CI signals, we found that individual A1 neurons encode both modalities with similar firing patterns (stimulus-synchronized or nonsynchronized). These findings suggest that A1 neurons use the same basic coding schemes to represent time-varying acoustic or CI stimulation and provide new insights into mechanisms underlying how the brain processes natural sounds via a CI device.SIGNIFICANCE STATEMENT In modern cochlear implant (CI) processors, the temporal information in speech or environmental sounds is delivered through modulated electric pulse trains. How the auditory cortex represents temporally modulated CI stimulation across multiple time scales has remained largely unclear. In this study, we compared directly neuronal responses in primary auditory cortex (A1) to time-varying acoustic and CI signals in awake marmoset monkeys (Callithrix jacchus). We found that A1 neurons encode both modalities using similar coding schemes, but some important differences were identified. Our results provide insights into mechanisms underlying how the brain processes sounds via a CI device and suggest a candidate neural code underlying rate-pitch perception limitations often observed in CI users.
Collapse
|
31
|
Saal HP, Wang X, Bensmaia SJ. Importance of spike timing in touch: an analogy with hearing? Curr Opin Neurobiol 2016; 40:142-149. [PMID: 27504741 PMCID: PMC5315566 DOI: 10.1016/j.conb.2016.07.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 11/23/2022]
Abstract
Touch is often conceived as a spatial sense akin to vision. However, touch also involves the transduction and processing of signals that vary rapidly over time, inviting comparisons with hearing. In both sensory systems, first order afferents produce spiking responses that are temporally precise and the timing of their responses carries stimulus information. The precision and informativeness of spike timing in the two systems invites the possibility that both implement similar mechanisms to extract behaviorally relevant information from these precisely timed responses. Here, we explore the putative roles of spike timing in touch and hearing and discuss common mechanisms that may be involved in processing temporal spiking patterns.
Collapse
Affiliation(s)
- Hannes P Saal
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoqin Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
32
|
Chambers AR, Salazar JJ, Polley DB. Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation. Front Neural Circuits 2016; 10:72. [PMID: 27630546 PMCID: PMC5005347 DOI: 10.3389/fncir.2016.00072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2022] Open
Abstract
Neurons at higher stages of sensory processing can partially compensate for a sudden drop in peripheral input through a homeostatic plasticity process that increases the gain on weak afferent inputs. Even after a profound unilateral auditory neuropathy where >95% of afferent synapses between auditory nerve fibers and inner hair cells have been eliminated with ouabain, central gain can restore cortical processing and perceptual detection of basic sounds delivered to the denervated ear. In this model of profound auditory neuropathy, auditory cortex (ACtx) processing and perception recover despite the absence of an auditory brainstem response (ABR) or brainstem acoustic reflexes, and only a partial recovery of sound processing at the level of the inferior colliculus (IC), an auditory midbrain nucleus. In this study, we induced a profound cochlear neuropathy with ouabain and asked whether central gain enabled a compensatory plasticity in the auditory thalamus comparable to the full recovery of function previously observed in the ACtx, the partial recovery observed in the IC, or something different entirely. Unilateral ouabain treatment in adult mice effectively eliminated the ABR, yet robust sound-evoked activity persisted in a minority of units recorded from the contralateral medial geniculate body (MGB) of awake mice. Sound driven MGB units could decode moderate and high-intensity sounds with accuracies comparable to sham-treated control mice, but low-intensity classification was near chance. Pure tone receptive fields and synchronization to broadband pulse trains also persisted, albeit with significantly reduced quality and precision, respectively. MGB decoding of temporally modulated pulse trains and speech tokens were both greatly impaired in ouabain-treated mice. Taken together, the absence of an ABR belied a persistent auditory processing at the level of the MGB that was likely enabled through increased central gain. Compensatory plasticity at the level of the auditory thalamus was less robust overall than previous observations in cortex or midbrain. Hierarchical differences in compensatory plasticity following sensorineural hearing loss may reflect differences in GABA circuit organization within the MGB, as compared to the ACtx or IC.
Collapse
Affiliation(s)
- Anna R Chambers
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary Boston, MA, USA
| | - Juan J Salazar
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBoston, MA, USA; Department of Biology, École Normale Supérieure, PSL Research UniversityParis, France
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBoston, MA, USA; Department of Otolaryngology, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
33
|
Gao L, Kostlan K, Wang Y, Wang X. Distinct Subthreshold Mechanisms Underlying Rate-Coding Principles in Primate Auditory Cortex. Neuron 2016; 91:905-919. [PMID: 27478016 PMCID: PMC5292152 DOI: 10.1016/j.neuron.2016.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/25/2016] [Accepted: 06/28/2016] [Indexed: 12/15/2022]
Abstract
A key computational principle for encoding time-varying signals in auditory and somatosensory cortices of monkeys is the opponent model of rate coding by two distinct populations of neurons. However, the subthreshold mechanisms that give rise to this computation have not been revealed. Because the rate-coding neurons are only observed in awake conditions, it is especially challenging to probe their underlying cellular mechanisms. Using a novel intracellular recording technique that we developed in awake marmosets, we found that the two types of rate-coding neurons in auditory cortex exhibited distinct subthreshold responses. While the positive-monotonic neurons (monotonically increasing firing rate with increasing stimulus repetition frequency) displayed sustained depolarization at high repetition frequency, the negative-monotonic neurons (opposite trend) instead exhibited hyperpolarization at high repetition frequency but sustained depolarization at low repetition frequency. The combination of excitatory and inhibitory subthreshold events allows the cortex to represent time-varying signals through these two opponent neuronal populations.
Collapse
|
34
|
Neural Representation of Concurrent Vowels in Macaque Primary Auditory Cortex. eNeuro 2016; 3:eN-NWR-0071-16. [PMID: 27294198 PMCID: PMC4901243 DOI: 10.1523/eneuro.0071-16.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/15/2016] [Indexed: 11/30/2022] Open
Abstract
Successful speech perception in real-world environments requires that the auditory system segregate competing voices that overlap in frequency and time into separate streams. Vowels are major constituents of speech and are comprised of frequencies (harmonics) that are integer multiples of a common fundamental frequency (F0). The pitch and identity of a vowel are determined by its F0 and spectral envelope (formant structure), respectively. When two spectrally overlapping vowels differing in F0 are presented concurrently, they can be readily perceived as two separate “auditory objects” with pitches at their respective F0s. A difference in pitch between two simultaneous vowels provides a powerful cue for their segregation, which in turn, facilitates their individual identification. The neural mechanisms underlying the segregation of concurrent vowels based on pitch differences are poorly understood. Here, we examine neural population responses in macaque primary auditory cortex (A1) to single and double concurrent vowels (/a/ and /i/) that differ in F0 such that they are heard as two separate auditory objects with distinct pitches. We find that neural population responses in A1 can resolve, via a rate-place code, lower harmonics of both single and double concurrent vowels. Furthermore, we show that the formant structures, and hence the identities, of single vowels can be reliably recovered from the neural representation of double concurrent vowels. We conclude that A1 contains sufficient spectral information to enable concurrent vowel segregation and identification by downstream cortical areas.
Collapse
|
35
|
Abstract
UNLABELLED Stream segregation enables a listener to disentangle multiple competing sequences of sounds. A recent study from our laboratory demonstrated that cortical neurons in anesthetized cats exhibit spatial stream segregation (SSS) by synchronizing preferentially to one of two sequences of noise bursts that alternate between two source locations. Here, we examine the emergence of SSS along the ascending auditory pathway. Extracellular recordings were made in anesthetized rats from the inferior colliculus (IC), the nucleus of the brachium of the IC (BIN), the medial geniculate body (MGB), and the primary auditory cortex (A1). Stimuli consisted of interleaved sequences of broadband noise bursts that alternated between two source locations. At stimulus presentation rates of 5 and 10 bursts per second, at which human listeners report robust SSS, neural SSS is weak in the central nucleus of the IC (ICC), it appears in the nucleus of the brachium of the IC (BIN) and in approximately two-thirds of neurons in the ventral MGB (MGBv), and is prominent throughout A1. The enhancement of SSS at the cortical level reflects both increased spatial sensitivity and increased forward suppression. We demonstrate that forward suppression in A1 does not result from synaptic inhibition at the cortical level. Instead, forward suppression might reflect synaptic depression in the thalamocortical projection. Together, our findings indicate that auditory streams are increasingly segregated along the ascending auditory pathway as distinct mutually synchronized neural populations. SIGNIFICANCE STATEMENT Listeners are capable of disentangling multiple competing sequences of sounds that originate from distinct sources. This stream segregation is aided by differences in spatial location between the sources. A possible substrate of spatial stream segregation (SSS) has been described in the auditory cortex, but the mechanisms leading to those cortical responses are unknown. Here, we investigated SSS in three levels of the ascending auditory pathway with extracellular unit recordings in anesthetized rats. We found that neural SSS emerges within the ascending auditory pathway as a consequence of sharpening of spatial sensitivity and increasing forward suppression. Our results highlight brainstem mechanisms that culminate in SSS at the level of the auditory cortex.
Collapse
|
36
|
Krishnan A, Gandour JT, Suresh CH. Language-experience plasticity in neural representation of changes in pitch salience. Brain Res 2016; 1637:102-117. [PMID: 26903418 DOI: 10.1016/j.brainres.2016.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/05/2016] [Accepted: 02/10/2016] [Indexed: 11/28/2022]
Abstract
Neural representation of pitch-relevant information at the brainstem and cortical levels of processing is influenced by language experience. A well-known attribute of pitch is its salience. Brainstem frequency following responses and cortical pitch specific responses, recorded concurrently, were elicited by a pitch salience continuum spanning weak to strong pitch of a dynamic, iterated rippled noise pitch contour-homolog of a Mandarin tone. Our aims were to assess how language experience (Chinese, English) affects i) enhancement of neural activity associated with pitch salience at brainstem and cortical levels, ii) the presence of asymmetry in cortical pitch representation, and iii) patterns of relative changes in magnitude along the pitch salience continuum. Peak latency (Fz: Na, Pb, and Nb) was shorter in the Chinese than the English group across the continuum. Peak-to-peak amplitude (Fz: Na-Pb, Pb-Nb) of the Chinese group grew larger with increasing pitch salience, but an experience-dependent advantage was limited to the Na-Pb component. At temporal sites (T7/T8), the larger amplitude of the Chinese group across the continuum was both limited to the Na-Pb component and the right temporal site. At the brainstem level, F0 magnitude gets larger as you increase pitch salience, and it too reveals Chinese superiority. A direct comparison of cortical and brainstem responses for the Chinese group reveals different patterns of relative changes in magnitude along the pitch salience continuum. Such differences may point to a transformation in pitch processing at the cortical level presumably mediated by local sensory and/or extrasensory influence overlaid on the brainstem output.
Collapse
Affiliation(s)
- Ananthanarayan Krishnan
- Department of Speech Language Hearing Sciences, Purdue University, Lyles Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907-2122, USA.
| | - Jackson T Gandour
- Department of Speech Language Hearing Sciences, Purdue University, Lyles Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907-2122, USA.
| | - Chandan H Suresh
- Department of Speech Language Hearing Sciences, Purdue University, Lyles Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907-2122, USA.
| |
Collapse
|
37
|
Central Gain Restores Auditory Processing following Near-Complete Cochlear Denervation. Neuron 2016; 89:867-79. [PMID: 26833137 DOI: 10.1016/j.neuron.2015.12.041] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/05/2015] [Accepted: 12/16/2015] [Indexed: 11/23/2022]
Abstract
Sensory organ damage induces a host of cellular and physiological changes in the periphery and the brain. Here, we show that some aspects of auditory processing recover after profound cochlear denervation due to a progressive, compensatory plasticity at higher stages of the central auditory pathway. Lesioning >95% of cochlear nerve afferent synapses, while sparing hair cells, in adult mice virtually eliminated the auditory brainstem response and acoustic startle reflex, yet tone detection behavior was nearly normal. As sound-evoked responses from the auditory nerve grew progressively weaker following denervation, sound-evoked activity in the cortex-and, to a lesser extent, the midbrain-rebounded or surpassed control levels. Increased central gain supported the recovery of rudimentary sound features encoded by firing rate, but not features encoded by precise spike timing such as modulated noise or speech. These findings underscore the importance of central plasticity in the perceptual sequelae of cochlear hearing impairment.
Collapse
|
38
|
Gadziola MA, Shanbhag SJ, Wenstrup JJ. Two distinct representations of social vocalizations in the basolateral amygdala. J Neurophysiol 2015; 115:868-86. [PMID: 26538612 DOI: 10.1152/jn.00953.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/04/2015] [Indexed: 11/22/2022] Open
Abstract
Acoustic communication signals carry information related to the types of social interactions by means of their "acoustic context," the sequencing and temporal emission pattern of vocalizations. Here we describe responses to natural vocal sequences in adult big brown bats (Eptesicus fuscus). We first assessed how vocal sequences modify the internal affective state of a listener (via heart rate). The heart rate of listening bats was differentially modulated by vocal sequences, showing significantly greater elevation in response to moderately aggressive sequences than appeasement or neutral sequences. Next, we characterized single-neuron responses in the basolateral amygdala (BLA) of awake, restrained bats to isolated syllables and vocal sequences. Two populations of neurons distinguished by background firing rates also differed in acoustic stimulus selectivity. Low-background neurons (<1 spike/s) were highly selective, responding on average to one tested stimulus. These may participate in a sparse code of vocal stimuli, in which each neuron responds to one or a few stimuli and the population responds to the range of vocalizations across behavioral contexts. Neurons with higher background rates (≥1 spike/s) responded broadly to tested stimuli and better represented the timing of syllables within sequences. We found that spike timing information improved the ability of these neurons to discriminate among vocal sequences and among the behavioral contexts associated with sequences compared with a rate code alone. These findings demonstrate that the BLA contains multiple robust representations of vocal stimuli that can provide the basis for emotional/physiological responses to these stimuli.
Collapse
Affiliation(s)
- Marie A Gadziola
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio; and School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Sharad J Shanbhag
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio; and
| | - Jeffrey J Wenstrup
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio; and School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
39
|
Hyafil A, Fontolan L, Kabdebon C, Gutkin B, Giraud AL. Speech encoding by coupled cortical theta and gamma oscillations. eLife 2015; 4:e06213. [PMID: 26023831 PMCID: PMC4480273 DOI: 10.7554/elife.06213] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
Many environmental stimuli present a quasi-rhythmic structure at different timescales that the brain needs to decompose and integrate. Cortical oscillations have been proposed as instruments of sensory de-multiplexing, i.e., the parallel processing of different frequency streams in sensory signals. Yet their causal role in such a process has never been demonstrated. Here, we used a neural microcircuit model to address whether coupled theta–gamma oscillations, as observed in human auditory cortex, could underpin the multiscale sensory analysis of speech. We show that, in continuous speech, theta oscillations can flexibly track the syllabic rhythm and temporally organize the phoneme-level response of gamma neurons into a code that enables syllable identification. The tracking of slow speech fluctuations by theta oscillations, and its coupling to gamma-spiking activity both appeared as critical features for accurate speech encoding. These results demonstrate that cortical oscillations can be a key instrument of speech de-multiplexing, parsing, and encoding. DOI:http://dx.doi.org/10.7554/eLife.06213.001 Some people speak twice as fast as others, while people with different accents pronounce the same words in different ways. However, despite these differences between speakers, humans can usually follow spoken language with remarkable ease. The different elements of speech have different frequencies: the typical frequency for syllables, for example, is about four syllables per second in speech. Phonemes, which are the smallest elements of speech, appear at a higher frequency. However, these elements are all transmitted at the same time, so the brain needs to be able to process them simultaneously. The auditory cortex, the part of the brain that processes sound, produces various ‘waves’ of electrical activity, and these waves also have a characteristic frequency (which is the number of bursts of neural activity per second). One type of brain wave, called the theta rhythm, has a frequency of three to eight bursts per second, which is similar to the typical frequency of syllables in speech, and the frequency of another brain wave, the gamma rhythm, is similar to the frequency of phonemes. It has been suggested that these two brain waves may have a central role in our ability to follow speech, but to date there has been no direct evidence to support this theory. Hyafil et al. have now used computer models of neural oscillations to explore this theory. Their simulations show that, as predicted, the theta rhythm tracks the syllables in spoken language, while the gamma rhythm encodes the specific features of each phoneme. Moreover, the two rhythms work together to establish the sequence of phonemes that makes up each syllable. These findings will support the development of improved speech recognition technologies. DOI:http://dx.doi.org/10.7554/eLife.06213.002
Collapse
Affiliation(s)
- Alexandre Hyafil
- INSERM U960, Group for Neural Theory, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
| | - Lorenzo Fontolan
- INSERM U960, Group for Neural Theory, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
| | - Claire Kabdebon
- INSERM U960, Group for Neural Theory, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
| | - Boris Gutkin
- INSERM U960, Group for Neural Theory, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
| | - Anne-Lise Giraud
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
40
|
|
41
|
Humphries C, Sabri M, Lewis K, Liebenthal E. Hierarchical organization of speech perception in human auditory cortex. Front Neurosci 2014; 8:406. [PMID: 25565939 PMCID: PMC4263085 DOI: 10.3389/fnins.2014.00406] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/22/2014] [Indexed: 11/22/2022] Open
Abstract
Human speech consists of a variety of articulated sounds that vary dynamically in spectral composition. We investigated the neural activity associated with the perception of two types of speech segments: (a) the period of rapid spectral transition occurring at the beginning of a stop-consonant vowel (CV) syllable and (b) the subsequent spectral steady-state period occurring during the vowel segment of the syllable. Functional magnetic resonance imaging (fMRI) was recorded while subjects listened to series of synthesized CV syllables and non-phonemic control sounds. Adaptation to specific sound features was measured by varying either the transition or steady-state periods of the synthesized sounds. Two spatially distinct brain areas in the superior temporal cortex were found that were sensitive to either the type of adaptation or the type of stimulus. In a relatively large section of the bilateral dorsal superior temporal gyrus (STG), activity varied as a function of adaptation type regardless of whether the stimuli were phonemic or non-phonemic. Immediately adjacent to this region in a more limited area of the ventral STG, increased activity was observed for phonemic trials compared to non-phonemic trials, however, no adaptation effects were found. In addition, a third area in the bilateral medial superior temporal plane showed increased activity to non-phonemic compared to phonemic sounds. The results suggest a multi-stage hierarchical stream for speech sound processing extending ventrolaterally from the superior temporal plane to the superior temporal sulcus. At successive stages in this hierarchy, neurons code for increasingly more complex spectrotemporal features. At the same time, these representations become more abstracted from the original acoustic form of the sound.
Collapse
Affiliation(s)
- Colin Humphries
- Department of Neurology, Medical College of Wisconsin Milwaukee, WI, USA
| | - Merav Sabri
- Department of Neurology, Medical College of Wisconsin Milwaukee, WI, USA
| | - Kimberly Lewis
- Department of Neurology, Medical College of Wisconsin Milwaukee, WI, USA
| | - Einat Liebenthal
- Department of Neurology, Medical College of Wisconsin Milwaukee, WI, USA ; Department of Psychiatry, Brigham and Women's Hospital Boston, MA, USA
| |
Collapse
|
42
|
Fishman YI, Steinschneider M, Micheyl C. Neural representation of concurrent harmonic sounds in monkey primary auditory cortex: implications for models of auditory scene analysis. J Neurosci 2014; 34:12425-43. [PMID: 25209282 PMCID: PMC4160777 DOI: 10.1523/jneurosci.0025-14.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 07/14/2014] [Accepted: 07/28/2014] [Indexed: 11/21/2022] Open
Abstract
The ability to attend to a particular sound in a noisy environment is an essential aspect of hearing. To accomplish this feat, the auditory system must segregate sounds that overlap in frequency and time. Many natural sounds, such as human voices, consist of harmonics of a common fundamental frequency (F0). Such harmonic complex tones (HCTs) evoke a pitch corresponding to their F0. A difference in pitch between simultaneous HCTs provides a powerful cue for their segregation. The neural mechanisms underlying concurrent sound segregation based on pitch differences are poorly understood. Here, we examined neural responses in monkey primary auditory cortex (A1) to two concurrent HCTs that differed in F0 such that they are heard as two separate "auditory objects" with distinct pitches. We found that A1 can resolve, via a rate-place code, the lower harmonics of both HCTs, a prerequisite for deriving their pitches and for their perceptual segregation. Onset asynchrony between the HCTs enhanced the neural representation of their harmonics, paralleling their improved perceptual segregation in humans. Pitches of the concurrent HCTs could also be temporally represented by neuronal phase-locking at their respective F0s. Furthermore, a model of A1 responses using harmonic templates could qualitatively reproduce psychophysical data on concurrent sound segregation in humans. Finally, we identified a possible intracortical homolog of the "object-related negativity" recorded noninvasively in humans, which correlates with the perceptual segregation of concurrent sounds. Findings indicate that A1 contains sufficient spectral and temporal information for segregating concurrent sounds based on differences in pitch.
Collapse
Affiliation(s)
- Yonatan I Fishman
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461,
| | - Mitchell Steinschneider
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Christophe Micheyl
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455, and Starkey Hearing Research Center, Berkeley, California 94704
| |
Collapse
|
43
|
Nourski KV, Steinschneider M, McMurray B, Kovach CK, Oya H, Kawasaki H, Howard MA. Functional organization of human auditory cortex: investigation of response latencies through direct recordings. Neuroimage 2014; 101:598-609. [PMID: 25019680 DOI: 10.1016/j.neuroimage.2014.07.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/01/2014] [Accepted: 07/05/2014] [Indexed: 12/28/2022] Open
Abstract
The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas belt regions are a major source of direct input for auditory parabelt. In humans, the posteromedial portion of Heschl's gyrus (HG) represents core auditory cortex, whereas the anterolateral portion of HG and the posterolateral superior temporal gyrus (PLST) are generally interpreted as belt and parabelt, respectively. In this scheme, response latencies can be hypothesized to progress in serial fashion from posteromedial to anterolateral HG to PLST. We examined this hypothesis by comparing response latencies to multiple stimuli, measured across these regions using simultaneous intracranial recordings in neurosurgical patients. Stimuli were 100 Hz click trains and the speech syllable /da/. Response latencies were determined by examining event-related band power in the high gamma frequency range. The earliest responses in auditory cortex occurred in posteromedial HG. Responses elicited from sites in anterolateral HG were neither earlier in latency from sites on PLST, nor more robust. Anterolateral HG and PLST exhibited some preference for speech syllable stimuli compared to click trains. These findings are not supportive of a strict serial model envisioning principal flow of information along HG to PLST. In contrast, data suggest that a portion of PLST may represent a relatively early stage in the auditory cortical hierarchy.
Collapse
Affiliation(s)
- Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242 USA
| | - Mitchell Steinschneider
- Department of Neurology, Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Bob McMurray
- Department of Psychology, Department of Communication Sciences and Disorders, Department of Linguistics, The University of Iowa, Iowa City, IA, 52242 USA
| | | | - Hiroyuki Oya
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242 USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242 USA
| | - Matthew A Howard
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242 USA
| |
Collapse
|
44
|
Abstract
The encoding of sensory information by populations of cortical neurons forms the basis for perception but remains poorly understood. To understand the constraints of cortical population coding we analyzed neural responses to natural sounds recorded in auditory cortex of primates (Macaca mulatta). We estimated stimulus information while varying the composition and size of the considered population. Consistent with previous reports we found that when choosing subpopulations randomly from the recorded ensemble, the average population information increases steadily with population size. This scaling was explained by a model assuming that each neuron carried equal amounts of information, and that any overlap between the information carried by each neuron arises purely from random sampling within the stimulus space. However, when studying subpopulations selected to optimize information for each given population size, the scaling of information was strikingly different: a small fraction of temporally precise cells carried the vast majority of information. This scaling could be explained by an extended model, assuming that the amount of information carried by individual neurons was highly nonuniform, with few neurons carrying large amounts of information. Importantly, these optimal populations can be determined by a single biophysical marker-the neuron's encoding time scale-allowing their detection and readout within biologically realistic circuits. These results show that extrapolations of population information based on random ensembles may overestimate the population size required for stimulus encoding, and that sensory cortical circuits may process information using small but highly informative ensembles.
Collapse
|
45
|
Micheyl C, Schrater PR, Oxenham AJ. Auditory frequency and intensity discrimination explained using a cortical population rate code. PLoS Comput Biol 2013; 9:e1003336. [PMID: 24244142 PMCID: PMC3828126 DOI: 10.1371/journal.pcbi.1003336] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022] Open
Abstract
The nature of the neural codes for pitch and loudness, two basic auditory attributes, has been a key question in neuroscience for over century. A currently widespread view is that sound intensity (subjectively, loudness) is encoded in spike rates, whereas sound frequency (subjectively, pitch) is encoded in precise spike timing. Here, using information-theoretic analyses, we show that the spike rates of a population of virtual neural units with frequency-tuning and spike-count correlation characteristics similar to those measured in the primary auditory cortex of primates, contain sufficient statistical information to account for the smallest frequency-discrimination thresholds measured in human listeners. The same population, and the same spike-rate code, can also account for the intensity-discrimination thresholds of humans. These results demonstrate the viability of a unified rate-based cortical population code for both sound frequency (pitch) and sound intensity (loudness), and thus suggest a resolution to a long-standing puzzle in auditory neuroscience.
Collapse
Affiliation(s)
- Christophe Micheyl
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - Paul R. Schrater
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Computer Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Andrew J. Oxenham
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
46
|
Ng CW, Plakke B, Poremba A. Neural correlates of auditory recognition memory in the primate dorsal temporal pole. J Neurophysiol 2013; 111:455-69. [PMID: 24198324 DOI: 10.1152/jn.00401.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects.
Collapse
Affiliation(s)
- Chi-Wing Ng
- Center for Neuroscience, University of California, Davis, California
| | | | | |
Collapse
|
47
|
Edwards E, Chang EF. Syllabic (∼2-5 Hz) and fluctuation (∼1-10 Hz) ranges in speech and auditory processing. Hear Res 2013; 305:113-34. [PMID: 24035819 DOI: 10.1016/j.heares.2013.08.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 08/22/2013] [Accepted: 08/28/2013] [Indexed: 11/26/2022]
Abstract
Given recent interest in syllabic rates (∼2-5 Hz) for speech processing, we review the perception of "fluctuation" range (∼1-10 Hz) modulations during listening to speech and technical auditory stimuli (AM and FM tones and noises, and ripple sounds). We find evidence that the temporal modulation transfer function (TMTF) of human auditory perception is not simply low-pass in nature, but rather exhibits a peak in sensitivity in the syllabic range (∼2-5 Hz). We also address human and animal neurophysiological evidence, and argue that this bandpass tuning arises at the thalamocortical level and is more associated with non-primary regions than primary regions of cortex. The bandpass rather than low-pass TMTF has implications for modeling auditory central physiology and speech processing: this implicates temporal contrast rather than simple temporal integration, with contrast enhancement for dynamic stimuli in the fluctuation range. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".
Collapse
Affiliation(s)
- Erik Edwards
- Department of Neurological Surgery, UC San Francisco, USA.
| | | |
Collapse
|
48
|
Neural representation of harmonic complex tones in primary auditory cortex of the awake monkey. J Neurosci 2013; 33:10312-23. [PMID: 23785145 DOI: 10.1523/jneurosci.0020-13.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many natural sounds are periodic and consist of frequencies (harmonics) that are integer multiples of a common fundamental frequency (F0). Such harmonic complex tones (HCTs) evoke a pitch corresponding to their F0, which plays a key role in the perception of speech and music. "Pitch-selective" neurons have been identified in non-primary auditory cortex of marmoset monkeys. Noninvasive studies point to a putative "pitch center" located in a homologous cortical region in humans. It remains unclear whether there is sufficient spectral and temporal information available at the level of primary auditory cortex (A1) to enable reliable pitch extraction in non-primary auditory cortex. Here we evaluated multiunit responses to HCTs in A1 of awake macaques using a stimulus design employed in auditory nerve studies of pitch encoding. The F0 of the HCTs was varied in small increments, such that harmonics of the HCTs fell either on the peak or on the sides of the neuronal pure tone tuning functions. Resultant response-amplitude-versus-harmonic-number functions ("rate-place profiles") displayed a periodic pattern reflecting the neuronal representation of individual HCT harmonics. Consistent with psychoacoustic findings in humans, lower harmonics were better resolved in rate-place profiles than higher harmonics. Lower F0s were also temporally represented by neuronal phase-locking to the periodic waveform of the HCTs. Findings indicate that population responses in A1 contain sufficient spectral and temporal information for extracting the pitch of HCTs by neurons in downstream cortical areas that receive their input from A1.
Collapse
|
49
|
Transformation of the neural code for tactile detection from thalamus to cortex. Proc Natl Acad Sci U S A 2013; 110:E2635-44. [PMID: 23798408 DOI: 10.1073/pnas.1309728110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To understand how sensory-driven neural activity gives rise to perception, it is essential to characterize how various relay stations in the brain encode stimulus presence. Neurons in the ventral posterior lateral (VPL) nucleus of the somatosensory thalamus and in primary somatosensory cortex (S1) respond to vibrotactile stimulation with relatively slow modulations (∼100 ms) of their firing rate. In addition, faster modulations (∼10 ms) time-locked to the stimulus waveform are observed in both areas, but their contribution to stimulus detection is unknown. Furthermore, it is unclear whether VPL and S1 neurons encode stimulus presence with similar accuracy and via the same response features. To address these questions, we recorded single neurons while trained monkeys judged the presence or absence of a vibrotactile stimulus of variable amplitude, and their activity was analyzed with a unique decoding method that is sensitive to the time scale of the firing rate fluctuations. We found that the maximum detection accuracy of single neurons is similar in VPL and S1. However, VPL relies more heavily on fast rate modulations than S1, and as a consequence, the neural code in S1 is more tolerant: its performance degrades less when the readout method or the time scale of integration is suboptimal. Therefore, S1 neurons implement a more robust code, one less sensitive to the temporal integration window used to infer stimulus presence downstream. The differences between VPL and S1 responses signaling the appearance of a stimulus suggest a transformation of the neural code from thalamus to cortex.
Collapse
|
50
|
Carlin MA, Elhilali M. Sustained firing of model central auditory neurons yields a discriminative spectro-temporal representation for natural sounds. PLoS Comput Biol 2013; 9:e1002982. [PMID: 23555217 PMCID: PMC3610626 DOI: 10.1371/journal.pcbi.1002982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 01/25/2013] [Indexed: 11/19/2022] Open
Abstract
The processing characteristics of neurons in the central auditory system are directly shaped by and reflect the statistics of natural acoustic environments, but the principles that govern the relationship between natural sound ensembles and observed responses in neurophysiological studies remain unclear. In particular, accumulating evidence suggests the presence of a code based on sustained neural firing rates, where central auditory neurons exhibit strong, persistent responses to their preferred stimuli. Such a strategy can indicate the presence of ongoing sounds, is involved in parsing complex auditory scenes, and may play a role in matching neural dynamics to varying time scales in acoustic signals. In this paper, we describe a computational framework for exploring the influence of a code based on sustained firing rates on the shape of the spectro-temporal receptive field (STRF), a linear kernel that maps a spectro-temporal acoustic stimulus to the instantaneous firing rate of a central auditory neuron. We demonstrate the emergence of richly structured STRFs that capture the structure of natural sounds over a wide range of timescales, and show how the emergent ensembles resemble those commonly reported in physiological studies. Furthermore, we compare ensembles that optimize a sustained firing code with one that optimizes a sparse code, another widely considered coding strategy, and suggest how the resulting population responses are not mutually exclusive. Finally, we demonstrate how the emergent ensembles contour the high-energy spectro-temporal modulations of natural sounds, forming a discriminative representation that captures the full range of modulation statistics that characterize natural sound ensembles. These findings have direct implications for our understanding of how sensory systems encode the informative components of natural stimuli and potentially facilitate multi-sensory integration.
Collapse
Affiliation(s)
| | - Mounya Elhilali
- Department of Electrical and Computer Engineering, The Center for Language and Speech Processing, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|