1
|
Wu X, Yan Q, Liu L, Xue X, Yao W, Li X, Li W, Ding S, Xia Y, Zhang D, Zhu F. Domesticated HERV-W env contributes to the activation of the small conductance Ca 2+-activated K + type 2 channels via decreased 5-HT4 receptor in recent-onset schizophrenia. Virol Sin 2023; 38:9-22. [PMID: 36007838 PMCID: PMC10006216 DOI: 10.1016/j.virs.2022.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
The human endogenous retroviruses type W family envelope (HERV-W env) gene is located on chromosome 7q21-22. Our previous studies show that HERV-W env is elevated in schizophrenia and HERV-W env can increase calcium influx. Additionally, the 5-HTergic system and particularly 5-hydroxytryptamine (5-HT) receptors play a prominent role in the pathogenesis and treatment of schizophrenia. 5-hydroxytryptamine receptor 4 (5-HT4R) agonist can block calcium channels. However, the underlying relationship between HERV-W env and 5-HT4R in the etiology of schizophrenia has not been revealed. Here, we used enzyme-linked immunosorbent assay to detect the concentration of HERV-W env and 5-HT4R in the plasma of patients with schizophrenia and we found that there were decreased levels of 5-HT4R and a negative correlation between 5-HT4R and HERV-W env in schizophrenia. Overexpression of HERV-W env decreased the transcription and protein levels of 5-HT4R but increased small conductance Ca2+-activated K+ type 2 channels (SK2) expression levels. Further studies revealed that HERV-W env could interact with 5-HT4R. Additionally, luciferase assay showed that an essential region (-364 to -176 from the transcription start site) in the SK2 promoter was required for HERV-W env-induced SK2 expression. Importantly, 5-HT4R participated in the regulation of SK2 expression and promoter activity. Electrophysiological recordings suggested that HERV-W env could increase SK2 channel currents and the increase of SK2 currents was inhibited by 5-HT4R. In conclusion, HERV-W env could activate SK2 channels via decreased 5-HT4R, which might exhibit a novel mechanism for HERV-W env to influence neuronal activity in schizophrenia.
Collapse
Affiliation(s)
- Xiulin Wu
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qiujin Yan
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | | | - Xing Xue
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wei Yao
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xuhang Li
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuang Ding
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yaru Xia
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Dongyan Zhang
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Rea AC, Vandenberg LN, Ball RE, Snouffer AA, Hudson AG, Zhu Y, McLain DE, Johnston LL, Lauderdale JD, Levin M, Dore TM. Light-activated serotonin for exploring its action in biological systems. ACTA ACUST UNITED AC 2013; 20:1536-46. [PMID: 24333002 DOI: 10.1016/j.chembiol.2013.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 11/17/2022]
Abstract
Serotonin (5-HT) is a neuromodulator involved in regulating mood, appetite, memory, learning, pain, and establishment of left-right (LR) asymmetry in embryonic development. To explore the role of 5-HT in physiology, we have created two forms of "caged" 5-HT, BHQ-O-5HT and BHQ-N-5HT. When exposed to 365 or 740 nm light, BHQ-O-5HT releases 5-HT through one- or two-photon excitation, respectively. BHQ-O-5HT mediated changes in neural activity in cultured mouse primary sensory neurons and the trigeminal ganglion and optic tectum of intact zebrafish larvae in the form of high-amplitude spiking in response to light. In Xenopus laevis embryos, light-activated 5-HT increased the occurrence of LR patterning defects. Maximal rates of LR defects were observed when 5-HT was released at stage 5 compared with stage 8. These experiments show the potential for BHQ-caged serotonins in studying 5-HT-regulated physiological processes.
Collapse
Affiliation(s)
- Adam C Rea
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Laura N Vandenberg
- Biology Department and Tufts Center for Regenerative and Developmental Biology, Tufts University, Suite 4600, 200 Boston Avenue, Medford, MA 02155-4243, USA
| | - Rebecca E Ball
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Ashley A Snouffer
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Alicia G Hudson
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Yue Zhu
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Duncan E McLain
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA; New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | | | - James D Lauderdale
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Michael Levin
- Biology Department and Tufts Center for Regenerative and Developmental Biology, Tufts University, Suite 4600, 200 Boston Avenue, Medford, MA 02155-4243, USA
| | - Timothy M Dore
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA; New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Karasik D, Cheung CL, Zhou Y, Cupples LA, Kiel DP, Demissie S. Genome-wide association of an integrated osteoporosis-related phenotype: is there evidence for pleiotropic genes? J Bone Miner Res 2012; 27:319-30. [PMID: 22072498 PMCID: PMC3290743 DOI: 10.1002/jbmr.563] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple musculoskeletal traits assessed by various methods at different skeletal sites serve as surrogates for osteoporosis risk. However, it is a challenge to select the most relevant phenotypes for genetic study of fractures. Principal component analyses (PCA) were conducted in participants of the Framingham Osteoporosis Study on 17 measures including bond mineral density (BMD) (hip and spine), heel ultrasound, leg lean mass (LLM), and hip geometric indices, adjusting for covariates (age, height, body mass index [BMI]), in a combined sample of 1180 men and 1758 women, as well as in each sex. Four principal components (PCs) jointly explained ~69% of the total variability of musculoskeletal traits. PC1, explaining ~33% of the total variance, was referred to as the component of "Bone strength," because it included the hip and spine BMD as well as several hip cross-sectional properties. PC2 (20.5% variance) was labeled as "Femoral cross-sectional geometry;" PC3 (~8% variance) captured only ultrasound measures; PC4, explaining ~7% variance, was correlated with LLM and hip geometry. We then evaluated ~2.5 mil SNPs for association with PCs 1, 2, and 4. There were genome-wide significant associations (p < 5 × 10⁻⁸) between PC2 and HTR1E (that codes for one of the serotonin receptors) and PC4 with COL4A2 in women. In the sexes-combined sample, AKAP6 was associated with PC2 (p = 1.40 × 10⁻⁷). A single nucleotide polymorphism (SNP) in HTR1E was also associated with the risk of nonvertebral fractures in women (p = 0.005). Functions of top associated genes were enriched for the skeletal and muscular system development (p < 0.05). In conclusion, multivariate combination provides genetic associations not identified in the analysis of primary phenotypes. Genome-wide screening for the linear combinations of multiple osteoporosis-related phenotypes suggests that there are variants with potentially pleiotropic effects in established and novel pathways to be followed up to provide further evidence of their functions.
Collapse
Affiliation(s)
- David Karasik
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, MA 02131, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Jin NG, Crow T. Serotonin regulates voltage-dependent currents in type I(e(A)) and I(i) interneurons of Hermissenda. J Neurophysiol 2011; 106:2557-69. [PMID: 21813747 DOI: 10.1152/jn.00550.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Serotonin (5-HT) has both direct and modulatory actions on central neurons contributing to behavioral arousal and cellular-synaptic plasticity in diverse species. In Hermissenda, 5-HT produces changes in intrinsic excitability of different types of identified interneurons in the circumesophageal nervous system. Using whole cell patch-clamp techniques we have examined membrane conductance changes produced by 5-HT that contribute to intrinsic excitability in two identified classes of interneurons, types I(i) and I(eA). Whole cell currents were examined before and after 5-HT application to the isolated nervous system. A 4-aminopyridine-sensitive transient outward K(+) current [I(K(A))], a tetraethylammonium-sensitive delayed rectifier K(+) current [I(K(V))], an inward rectifier K(+) current [I(K(IR))], and a hyperpolarization-activated current (I(h)) were characterized. 5-HT decreased the amplitude of I(K(A)) and I(K(V)) in both type I(i) and I(eA) interneurons. However, differences in 5-HT's effects on the activation-inactivation kinetics were observed in different types of interneurons. 5-HT produced a depolarizing shift in the activation curve of I(K(V)) and a hyperpolarizing shift in the inactivation curve of I(K(A)) in type I(i) interneurons. In contrast, 5-HT produced a depolarizing shift in the activation curve and a hyperpolarizing shift in the inactivation curve of both I(K(V)) and I(K(A)) in type I(eA) interneurons. In addition, 5-HT decreased the amplitude of I(K(IR)) in type I(i) interneurons and increased the amplitude of I(h) in type I(eA) interneurons. These results indicate that 5-HT-dependent changes in I(K(A)), I(K(V)), I(K(IR)), and I(h) contribute to multiple mechanisms that synergistically support modulation of increased intrinsic excitability associated with different functional classes of identified type I interneurons.
Collapse
Affiliation(s)
- Nan Ge Jin
- Dept. of Neurobiology and Anatomy, Univ. of Texas Medical School, 6431 Fannin St., Houston, TX 77030, USA
| | | |
Collapse
|
5
|
Matsumoto S, Yoshida S, Ikeda M, Kadoi J, Takahashi M, Tanimoto T, Kitagawa J, Saiki C, Takeda M, Shima Y. Effects of acetazolamide on transient K+ currents and action potentials in nodose ganglion neurons of adult rats. CNS Neurosci Ther 2011; 17:66-79. [PMID: 20370806 PMCID: PMC3047007 DOI: 10.1111/j.1755-5949.2010.00133.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to determine whether acetazolamide (AZ) contributes to the inhibition of the fast inactivating transient K(+) current (I(A) ) in adult rat nodose ganglion (NG) neurons. We have previously shown that pretreatment with either AZ or 4-AP attenuated or blocked the CO(2) -induced inhibition of slowly adapting pulmonary stretch receptors in in vivo experiments. The patch-clamp experiments were performed by using the isolated NG neurons. In addition to this, the RT-PCR of mRNA and the expression of voltage-gated K(+) (Kv) 1.4, Kv 4.1, Kv 4.2, and Kv 4.3 channel proteins from nodose ganglia were examined. We used NG neurons sensitive to the 1 mM AZ application. The application of 1 mM AZ inhibited the I(A) by approximately 27% and the additional application of 4-AP (1 mM) further inhibited I(A) by 48%. The application of 0.1 μM α-dendrotoxin (α-DTX), a slow inactivating transient K(+) current (I(D) ) blocker, inhibited the baseline I(A) by approximately 27%, and the additional application of 1 mM AZ further decreased the I(A) by 51%. In current clamp experiments, AZ application (1 mM) increased the number of action potentials due to the decreased duration of the depolarizing phase of action potentials and/or due to a reduction in the resting membrane potential. Four voltage-gated K(+) channel proteins were present, and most (80-90%) of the four Kv channels immunoreactive neurons showed the co-expression of carbonic anhydrase-II (CA-II) immunoreactivity. These results indicate that the application of AZ causes the reduction in I(A) via the inhibition of four voltage-gated K(+) channel (Kv) proteins without affecting I(D).
Collapse
Affiliation(s)
- Shigeji Matsumoto
- Department of Physiology, Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Takeda M, Matsumoto S, Sessle BJ, Shinoda M, Iwata K. Peripheral and Central Mechanisms of Trigeminal Neuropathic and Inflammatory Pain. J Oral Biosci 2011. [DOI: 10.1016/s1349-0079(11)80025-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Xu S, Ono K, Inenaga K. Electrophysiological and chemical properties in subclassified acutely dissociated cells of rat trigeminal ganglion by current signatures. J Neurophysiol 2010; 104:3451-61. [PMID: 20573966 DOI: 10.1152/jn.00336.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the present study, we subclassified acutely dissociated trigeminal ganglion (TRG) cells of rats using a current signature method in whole cell patch-clamp recordings. Using modified criteria for cell classification for the dorsal root ganglion (DRG), TRG cells were subclassified into nine cell types: 1-5, 7-9, and 13. Types 1, 3, and 7 were in the small cell groups (15-24 μm); types 4, 5, and 8-13 were in the medium cell groups (25-38 μm); and type 2 was a mixed group of both cell sizes. Types 1-3, 5, and 7 showed high-input resistance and types 1, 2, and 7 showed more depolarized resting membrane potentials. Types 1, 2, and 5-13 expressed long-duration action potentials (APs), but types 3 and 4 expressed short-duration APs. Sensitivities to capsaicin, protons, and adenosine 5'-triphosphate (ATP) in TRG cell types largely corresponded to DRG cell types. However, different from the matched DRG types, half of TRG type 1 cells were capsaicin insensitive, showing desensitizing proton-induced currents, and types 5, 7, and 9 exhibited slow-desensitizing ATP-induced currents. Types 4, 5, and 8-13 had nicotine sensitivity, but the other cell types were insensitive. These results indicate that the "current signatures" classification is a useful means to separate TRG cells into internally homogeneous subpopulations that were distinct from other cell types. Furthermore, the data suggest some specific differences in the chemical responsiveness of some cell types between the TRG and DRG.
Collapse
Affiliation(s)
- Shenghong Xu
- Kyushu Dental College, Department of Biosciences, 2-6-1, Manazuru, Kokurakitaku, Kitakyushu, 803-8580, Japan
| | | | | |
Collapse
|