1
|
Ma S, Ma Q, Hu S, Mo X, Zhu C, Zhang X, Jia Z, Tang L, Jiang L, Cui Y, Chen Z, Hu W, Zhang X. Deletion of histamine H2 receptor in VTA dopaminergic neurons of mice induces behavior reminiscent of mania. Cell Rep 2024; 43:114717. [PMID: 39264811 DOI: 10.1016/j.celrep.2024.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/08/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Hyperfunction of the dopamine system has been implicated in manic episodes in bipolar disorders. How dopaminergic neuronal function is regulated in the pathogenesis of mania remains unclear. Histaminergic neurons project dense efferents into the midbrain dopaminergic nuclei. Here, we present mice lacking dopaminergic histamine H2 receptor (H2R) in the ventral tegmental area (VTA) that exhibit a behavioral phenotype mirroring some of the symptoms of mania, including increased locomotor activity and reduced anxiety- and depression-like behavior. These behavioral deficits can be reversed by the mood stabilizers lithium and valproate. H2R deletion in dopaminergic neurons significantly enhances neuronal activity, concurrent with a decrease in the γ-aminobutyric acid (GABA) type A receptor (GABAAR) membrane presence and inhibitory transmission. Conversely, either overexpression of H2R in VTA dopaminergic neurons or treatment of H2R agonist amthamine within the VTA counteracts amphetamine-induced hyperactivity. Together, our results demonstrate the engagement of H2R in reducing VTA dopaminergic activity, shedding light on the role of H2R as a potential target for mania therapy.
Collapse
Affiliation(s)
- Shijia Ma
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qianyi Ma
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Songhui Hu
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
| | - Xinlei Mo
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chenze Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xingxian Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zetao Jia
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lingjie Tang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yihui Cui
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Xiangnan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China.
| |
Collapse
|
2
|
Yao Y, Baronio D, Chen YC, Jin C, Panula P. The Roles of Histamine Receptor 1 (hrh1) in Neurotransmitter System Regulation, Behavior, and Neurogenesis in Zebrafish. Mol Neurobiol 2023; 60:6660-6675. [PMID: 37474883 PMCID: PMC10533647 DOI: 10.1007/s12035-023-03447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Histamine receptors mediate important physiological processes and take part in the pathophysiology of different brain disorders. Histamine receptor 1 (HRH1) is involved in the development of neurotransmitter systems, and its role in neurogenesis has been proposed. Altered HRH1 binding and expression have been detected in the brains of patients with schizophrenia, depression, and autism. Our goal was to assess the role of hrh1 in zebrafish development and neurotransmitter system regulation through the characterization of hrh1-/- fish generated by the CRISPR/Cas9 system. Quantitative PCR, in situ hybridization, and immunocytochemistry were used to study neurotransmitter systems and genes essential for brain development. Additionally, we wanted to reveal the role of this histamine receptor in larval and adult fish behavior using several quantitative behavioral methods including locomotion, thigmotaxis, dark flash and startle response, novel tank diving, and shoaling behavior. Hrh1-/- larvae displayed normal behavior in comparison with hrh1+/+ siblings. Interestingly, a transient abnormal expression of important neurodevelopmental markers was evident in these larvae, as well as a reduction in the number of tyrosine hydroxylase 1 (Th1)-positive cells, th1 mRNA, and hypocretin (hcrt)-positive cells. These abnormalities were not detected in adulthood. In summary, we verified that zebrafish lacking hrh1 present deficits in the dopaminergic and hypocretin systems during early development, but those are compensated by the time fish reach adulthood. However, impaired sociability and anxious-like behavior, along with downregulation of choline O-acetyltransferase a and LIM homeodomain transcription factor Islet1, were displayed by adult fish.
Collapse
Affiliation(s)
- Yuxiao Yao
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Diego Baronio
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Yu-Chia Chen
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Congyu Jin
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland.
| |
Collapse
|
3
|
Lang B, Kahnau P, Hohlbaum K, Mieske P, Andresen NP, Boon MN, Thöne-Reineke C, Lewejohann L, Diederich K. Challenges and advanced concepts for the assessment of learning and memory function in mice. Front Behav Neurosci 2023; 17:1230082. [PMID: 37809039 PMCID: PMC10551171 DOI: 10.3389/fnbeh.2023.1230082] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The mechanisms underlying the formation and retrieval of memories are still an active area of research and discussion. Manifold models have been proposed and refined over the years, with most assuming a dichotomy between memory processes involving non-conscious and conscious mechanisms. Despite our incomplete understanding of the underlying mechanisms, tests of memory and learning count among the most performed behavioral experiments. Here, we will discuss available protocols for testing learning and memory using the example of the most prevalent animal species in research, the laboratory mouse. A wide range of protocols has been developed in mice to test, e.g., object recognition, spatial learning, procedural memory, sequential problem solving, operant- and fear conditioning, and social recognition. Those assays are carried out with individual subjects in apparatuses such as arenas and mazes, which allow for a high degree of standardization across laboratories and straightforward data interpretation but are not without caveats and limitations. In animal research, there is growing concern about the translatability of study results and animal welfare, leading to novel approaches beyond established protocols. Here, we present some of the more recent developments and more advanced concepts in learning and memory testing, such as multi-step sequential lockboxes, assays involving groups of animals, as well as home cage-based assays supported by automated tracking solutions; and weight their potential and limitations against those of established paradigms. Shifting the focus of learning tests from the classical experimental chamber to settings which are more natural for rodents comes with a new set of challenges for behavioral researchers, but also offers the opportunity to understand memory formation and retrieval in a more conclusive way than has been attainable with conventional test protocols. We predict and embrace an increase in studies relying on methods involving a higher degree of automatization, more naturalistic- and home cage-based experimental setting as well as more integrated learning tasks in the future. We are confident these trends are suited to alleviate the burden on animal subjects and improve study designs in memory research.
Collapse
Affiliation(s)
- Benjamin Lang
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Pia Kahnau
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katharina Hohlbaum
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Paul Mieske
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Niek P. Andresen
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Computer Vision and Remote Sensing, Technical University Berlin, Berlin, Germany
| | - Marcus N. Boon
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Modeling of Cognitive Processes, Technical University of Berlin, Berlin, Germany
| | - Christa Thöne-Reineke
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Lars Lewejohann
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Kai Diederich
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
4
|
Huston JP, Chao OY. Probing the nature of episodic memory in rodents. Neurosci Biobehav Rev 2023; 144:104930. [PMID: 36544301 DOI: 10.1016/j.neubiorev.2022.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/15/2022]
Abstract
Episodic memory (EM) specifies the experience of retrieving information of an event at the place and time of occurrence. Whether non-human animals are capable of EM remains debated, whereas evidence suggests that they have a memory system akin to EM. We here trace the development of various behavioral paradigms designed to study EM in non-human animals, in particular the rat. We provide an in-depth description of the available behavioral tests which combine three spontaneous object exploration paradigms, namely novel object preference (for measuring memory for "what"), novel location preference (for measuring memory for "where") and temporal order memory (memory for "when"), into a single trial to gauge a memory akin to EM. Most important, we describe a variation of such a test in which each memory component interacts with the others, demonstrating an integration of diverse mnemonic information. We discuss why a behavioral model of EM must be able to assess the ability to integrate "what", "where" and "when" information into a single experience. We attempt an interpretation of the various tests and review the studies that have applied them in areas such as pharmacology, neuroanatomy, circuit analysis, and sleep. Finally, we anticipate future directions in the search for neural mechanisms of EM in the rat and outline model experiments and methodologies in this pursuit.
Collapse
Affiliation(s)
- Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| |
Collapse
|
5
|
Rychlik M, Starowicz G, Starnowska-Sokol J, Mlyniec K. The Zinc-sensing Receptor (GPR39) Modulates Declarative Memory and Age-related Hippocampal Gene Expression in Male Mice. Neuroscience 2022; 503:1-16. [PMID: 36087899 DOI: 10.1016/j.neuroscience.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
As a neuromodulator, zinc regulates synaptic plasticity, learning and memory. Synaptic zinc is also a crucial factor in the development of toxic forms of amyloid beta protein and, subsequently, of Alzheimer's dementia (AD). Therefore, efforts to pinpoint mechanisms underlying zinc-dependent cognitive functions might aid AD research, by providing potential novel targets for drugs. One of the most understudied proteins in this regard is a zinc-sensing metabotropic receptor: GPR39. In this study we investigated the impact of GPR39 knock-out (KO) on age-related memory decline in mice of both sexes, by comparing them to age-matched wild-type (WT) littermates. We also tested the effects of a GPR39 agonist (TC-G 1008) on declarative memory of old animals, and its disruption in adult mice. We observed episodic-like memory (ELM) and spatial memory (SM) deficits in male GPR39 KO mice, as well as intact procedural memory in GPR39 KO mice regardless of age and sex. ELM was also absent in old WT male mice, and all female mice regardless of their genotype. Acute application of TC-G 1008 (10 mg/kg) reversed a deficit in two of three ELM components in old WT male mice, and had no promnesic effect on consolidation interference of ELM in adult WT mice. We discuss the possible neurobiological mechanisms and the translational value of these results for potential add-on pharmacotherapy of AD aimed at the zinc-sensing receptor.
Collapse
Affiliation(s)
- Michal Rychlik
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Gabriela Starowicz
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Joanna Starnowska-Sokol
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| |
Collapse
|
6
|
Alhusaini M, Eissa N, Saad AK, Beiram R, Sadek B. Revisiting Preclinical Observations of Several Histamine H3 Receptor Antagonists/Inverse Agonists in Cognitive Impairment, Anxiety, Depression, and Sleep-Wake Cycle Disorder. Front Pharmacol 2022; 13:861094. [PMID: 35721194 PMCID: PMC9198498 DOI: 10.3389/fphar.2022.861094] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022] Open
Abstract
A relationship appears to exist between dysfunction of brain histamine (HA) and various neuropsychiatric brain disorders. The possible involvement of brain HA in neuropathology has gained attention recently, and its role in many (patho)physiological brain functions including memory, cognition, and sleep-wake cycle paved the way for further research on the etiology of several brain disorders. Histamine H3 receptor (H3R) evidenced in the brains of rodents and humans remains of special interest, given its unique position as a pre- and postsynaptic receptor, controlling the synthesis and release of HA as well as different other neurotransmitters in different brain regions, respectively. Despite several disappointing outcomes for several H3R antagonists/inverse agonists in clinical studies addressing their effectiveness in Alzheimer's disease (AD), Parkinson's disease (PD), and schizophrenia (SCH), numerous H3R antagonists/inverse agonists showed great potentials in modulating memory and cognition, mood, and sleep-wake cycle, thus suggesting its potential role in neurocognitive and neurodegenerative diseases such as AD, PD, SCH, narcolepsy, and major depression in preclinical rodent models. In this review, we present preclinical applications of selected H3R antagonists/inverse agonists and their pharmacological effects on cognitive impairment, anxiety, depression, and sleep-wake cycle disorders. Collectively, the current review highlights the behavioral impact of developments of H3R antagonists/inverse agonists, aiming to further encourage researchers in the preclinical drug development field to profile the potential therapeutic role of novel antagonists/inverse agonists targeting histamine H3Rs.
Collapse
Affiliation(s)
- Mera Alhusaini
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nermin Eissa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ali K Saad
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
7
|
The Histaminergic System in Neuropsychiatric Disorders. Biomolecules 2021; 11:biom11091345. [PMID: 34572558 PMCID: PMC8467868 DOI: 10.3390/biom11091345] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Histamine does not only modulate the immune response and inflammation, but also acts as a neurotransmitter in the mammalian brain. The histaminergic system plays a significant role in the maintenance of wakefulness, appetite regulation, cognition and arousal, which are severely affected in neuropsychiatric disorders. In this review, we first briefly describe the distribution of histaminergic neurons, histamine receptors and their intracellular pathways. Next, we comprehensively summarize recent experimental and clinical findings on the precise role of histaminergic system in neuropsychiatric disorders, including cell-type role and its circuit bases in narcolepsy, schizophrenia, Alzheimer's disease, Tourette's syndrome and Parkinson's disease. Finally, we provide some perspectives on future research to illustrate the curative role of the histaminergic system in neuropsychiatric disorders.
Collapse
|
8
|
Li X, Liu H, Li D, Lei H, Wei X, Schlenk D, Mu J, Chen H, Yan B, Xie L. Dietary Seleno-l-Methionine Causes Alterations in Neurotransmitters, Ultrastructure of the Brain, and Behaviors in Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11894-11905. [PMID: 34488355 DOI: 10.1021/acs.est.1c03457] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Elevated concentrations of dietary selenium (Se) cause abnormalities and extirpation of fish inhabiting in Se-contaminated environments. However, its effect on fish behavior and the underlying mechanisms remain largely unknown. In this study, two-month-old zebrafish (Danio rerio) was fed seleno-l-methionine (Se-Met) at environmentally relevant concentrations (i.e., control (2.61), low (5.43), medium (12.16), and high (34.61) μg Se/g dry weight (dw), respectively, corresponding to the C, L, M, and H treatments) for 60 days. Targeted metabolomics, histopathological, and targeted transcriptional endpoints were compared to behavioral metrics to evaluate the effects of dietary exposure to Se-Met . The results showed that the levels of total Se and malondialdehyde in fish brains were increased in a dose-dependent pattern. Meanwhile, mitochondrial damages and decreased activities of the mitochondria respiratory chain complexes were observed in the neurons at the M and H treatments. In addition, dietary Se-Met affected neurotransmitters, metabolites, and transcripts of the genes associated with the dopamine, serotonin, gamma-aminobutyric acid, acetylcholine, and histamine signaling pathways in zebrafish brains at the H treatments. The total swimming distance and duration in the Novel Arm were lowered in fish from the H treatment. This study has demonstrated that dietary Se-Met affects the ultrastructure of the zebrafish brain, neurotransmitters, and associated fish behaviors and may help enhance adverse outcome pathways for neurotransmitter-behavior key events in zebrafish.
Collapse
Affiliation(s)
- Xiao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongsong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Haojun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xinrong Wei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92507, United States
| | - Jingli Mu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
9
|
De Castro V, Girard P. Location and temporal memory of objects declines in aged marmosets (Callithrix jacchus). Sci Rep 2021; 11:9138. [PMID: 33911122 PMCID: PMC8080792 DOI: 10.1038/s41598-021-88357-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Episodic memory decline is an early marker of cognitive aging in human. Although controversial in animals and called “episodic-like memory”, several models have been successfully developed, however they rarely focused on ageing. While marmoset is an emerging primate model in aging science, episodic-like memory has never been tested in this species and importantly in aged marmosets. Here, we examined if the recall of the what-when and what-where building blocks of episodic-like memory declines in ageing marmosets. We developed a naturalistic approach using spontaneous exploration of real objects by young and old marmosets in the home cage. We implemented a three-trial task with 1 week inter-trial interval. Two different sets of identical objects were presented in sample trials 1 and 2, respectively. For the test trial, two objects from each set were presented in a former position and two in a new one. We quantified the exploratory behaviour and calculated discrimination indices in a cohort of 20 marmosets. Young animals presented a preserved memory for combined what-where, and what-when components of the experiment, which declined with aging. These findings lead one to expect episodic-like memory deficits in aged marmosets.
Collapse
Affiliation(s)
- Vanessa De Castro
- Centre de Recherche Cerveau et Cognition (CerCo), Toulouse, France. .,Centre National de la Recherche Scientifique (CNRS) - UMR 5549, Toulouse, France.
| | - Pascal Girard
- Centre de Recherche Cerveau et Cognition (CerCo), Toulouse, France. .,Institut national de la santé et de la recherche médicale (INSERM), Toulouse, France.
| |
Collapse
|
10
|
Guilherme EM, Silva-Marques B, Fernandes CEM, Russo TL, Mattioli R, Gianlorenço AC. Intracerebellar microinjection of histaminergic compounds on locomotor and exploratory behaviors in mice. Neurosci Lett 2018; 687:10-15. [PMID: 30218765 DOI: 10.1016/j.neulet.2018.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/08/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
The neural histaminergic system innervates the cerebellum, with a high density of fibers in the vermis and flocculus. The cerebellum participates in motor functions, but the role of the histaminergic system in this function is unclear. In the present study, we investigated the effects of intracerebellar histamine injections and H1, H2 and H3 receptor antagonist injections (chlorpheniramine, ranitidine, and thioperamide, respectively) and H4 receptor agonist (VUF-8430) on locomotor and exploratory behaviors in mice. The cerebellar vermis of male mice was implanted with guide cannula. After three days of recovery,the animals received microinjections of saline or histamine (experiment1), saline or chlorpheniramine (experiment 2), saline or ranitidine(experiment 3), saline or thioperamide (experiment 4), and saline or VUF-8430 (experiment 5) in different concentrations. Five minutes postinjection,the open field test was performed. The data were analyzed using one-way ANOVA and Duncan's post hoc test. The microinjections of histamine, ranitidine or thioperamide did not lead any behavioral effects at the used doses. In contrast, animals that received chlorpheniramine at the highest dose (0.16 nmol) and VUF-8430 at the highest dose (1.48 nmol)were more active in the open field apparatus, with an increase in the number of crossed quadrants, number of rearings and time spent in the central area of the arena, suggesting that chlorpheniramine and VUF-8430 modulates locomotor and exploratory behaviors in mice.
Collapse
Affiliation(s)
- Evelyn M Guilherme
- Federal University of Sao Carlos, Rod Washington Luiz Km 235, Sao Carlos, 13565090, Brazil
| | - Bruna Silva-Marques
- Federal University of Sao Carlos, Rod Washington Luiz Km 235, Sao Carlos, 13565090, Brazil
| | | | - Thiago L Russo
- Federal University of Sao Carlos, Rod Washington Luiz Km 235, Sao Carlos, 13565090, Brazil
| | - Rosana Mattioli
- Federal University of Sao Carlos, Rod Washington Luiz Km 235, Sao Carlos, 13565090, Brazil
| | - Anna C Gianlorenço
- Federal University of Sao Carlos, Rod Washington Luiz Km 235, Sao Carlos, 13565090, Brazil.
| |
Collapse
|
11
|
Dere E, Dere D, de Souza Silva MA, Huston JP, Zlomuzica A. Fellow travellers: Working memory and mental time travel in rodents. Behav Brain Res 2018; 352:2-7. [DOI: 10.1016/j.bbr.2017.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 10/24/2022]
|
12
|
Provensi G, Costa A, Izquierdo I, Blandina P, Passani MB. Brain histamine modulates recognition memory: possible implications in major cognitive disorders. Br J Pharmacol 2018; 177:539-556. [PMID: 30129226 DOI: 10.1111/bph.14478] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/27/2018] [Accepted: 08/05/2018] [Indexed: 12/24/2022] Open
Abstract
Several behavioural tests have been developed to study and measure emotionally charged or emotionally neutral memories and how these may be affected by pharmacological, dietary or environmental manipulations. In this review, we describe the experimental paradigms used in preclinical studies to unravel the brain circuits involved in the recognition and memorization of environmentally salient stimuli devoid of strong emotional value. In particular, we focus on the modulatory role of the brain histaminergic system in the elaboration of recognition memory that is based on the judgement of the prior occurrence of an event, and it is believed to be a critical component of human declarative memory. The review also addresses questions that may help improve the treatment of impaired declarative memory described in several affective and neuropsychiatric disorders such as ADHD, Alzheimer's disease and major neurocognitive disorder. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Gustavo Provensi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessia Costa
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Patrizio Blandina
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Maria Beatrice Passani
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Cilz NI, Lei S. Histamine facilitates GABAergic transmission in the rat entorhinal cortex: Roles of H 1 and H 2 receptors, Na + -permeable cation channels, and inward rectifier K + channels. Hippocampus 2017; 27:613-631. [PMID: 28188663 PMCID: PMC5793915 DOI: 10.1002/hipo.22718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2017] [Indexed: 12/11/2022]
Abstract
In the brain, histamine (HA) serves as a neuromodulator and a neurotransmitter released from the tuberomammillary nucleus (TMN). HA is involved in wakefulness, thermoregulation, energy homeostasis, nociception, and learning and memory. The medial entorhinal cortex (MEC) receives inputs from the TMN and expresses HA receptors (H1 , H2 , and H3 ). We investigated the effects of HA on GABAergic transmission in the MEC and found that HA significantly increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) with an EC50 of 1.3 µM, but failed to significantly alter sIPSC amplitude. HA-induced increases in sIPSC frequency were sensitive to tetrodotoxin (TTX), required extracellular Ca2+ , and persisted when GDP-β-S, a G-protein inactivator, was applied postsynaptically via the recording pipettes, indicating that HA increased GABA release by facilitating the excitability of GABAergic interneurons in the MEC. Recordings from local MEC interneurons revealed that HA significantly increased their excitability as determined by membrane depolarization, generation of an inward current at -65 mV, and augmentation of action potential firing frequency. Both H1 and H2 receptors were involved in HA-induced increases in sIPSCs and interneuron excitability. Immunohistochemical staining showed that both H1 and H2 receptors are expressed on GABAergic interneurons in the MEC. HA-induced depolarization of interneurons involved a mixed ionic mechanism including activation of a Na+ -permeable cation channel and inhibition of a cesium-sensitive inward rectifier K+ channel, although HA also inhibited the delayed rectifier K+ channels. Our results may provide a cellular mechanism, at least partially, to explain the roles of HA in the brain. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas I Cilz
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| |
Collapse
|
14
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by the loss of memory, multiple cognitive impairments and changes in the personality and behavior. Several decades of intense research have revealed that multiple cellular changes are involved in disease process, including synaptic damage, mitochondrial abnormalities and inflammatory responses, in addition to formation and accumulation of amyloid-β (Aβ) and phosphorylated tau. Although tremendous progress has been made in understanding the impact of neurotransmitters in the progression and pathogenesis of AD, we still do not have a drug molecule associated with neurotransmitter(s) that can delay disease process in elderly individuals and/or restore cognitive functions in AD patients. The purpose of our article is to assess the latest developments in neurotransmitters research using cell and mouse models of AD. We also updated the current status of clinical trials using neurotransmitters' agonists/antagonists in AD.
Collapse
Affiliation(s)
- Ramesh Kandimalla
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P. Hemachandra Reddy
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
15
|
Young MJ, Geiszler PC, Pardon MC. A novel role for the immunophilin FKBP52 in motor coordination. Behav Brain Res 2016; 313:97-110. [PMID: 27418439 DOI: 10.1016/j.bbr.2016.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/09/2016] [Accepted: 07/10/2016] [Indexed: 02/01/2023]
Abstract
FKBP52 is a ubiquitously distributed immunophilin that has been associated with wide-ranging functions in cell signalling as well as hormonal and stress responses. Amongst other pathways, it acts via complex-formation with corticosteroid receptors and has consequently been associated with stress- and age- related neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Reduced levels of FKBP52 have been linked to tau dysfunction and amyloid beta toxicity in AD. However, FKBP52's role in cognition and neurodegenerative disorder-like phenotypes remain to be elucidated. The present study aimed therefore at investigating the cognitive and behavioural effects of reduced FKBP52 levels of genetically modified mice during ageing. Female and male FKBP52(+/+), FKBP52(+/-) and FKBP52(-/-) mice were compared at two-, ten-, twelve-, fifteen- and eighteen-months-of-age in a series of behavioural tests covering specie-specific behaviour, motor activity and coordination, fear-, spatial and recognition memory as well as curiosity and emotionality. Whilst cognitively unimpaired, FKBP52(+/-) mice performed worse on an accelerating rotating rod than FKBP52(+/+) littermates across all age-groups suggesting that FKBP52 is involved in processes controlling motor coordination. This deficit did not exacerbate with age but did worsen with repeated testing; pointing towards a role for FKBP52 in learning of tasks requiring motor coordination abilities. This study contributes to the knowledge base of FKBP52's implication in neurodegenerative diseases by demonstrating that FKBP52 by itself does not directly affect cognition and may therefore rather play an indirect, modulatory role in the functional pathology of AD, whereas it directly affects motor coordination, an early sign of neurodegenerative damages to the brain.
Collapse
Affiliation(s)
- Matthew J Young
- University of Nottingham Medical School, School of Life Sciences, Neuroscience group, Queen's Medical Centre, Nottingham NG7 2UH United Kingdom
| | - Philippine C Geiszler
- University of Nottingham Medical School, School of Life Sciences, Neuroscience group, Queen's Medical Centre, Nottingham NG7 2UH United Kingdom
| | - Marie-Christine Pardon
- University of Nottingham Medical School, School of Life Sciences, Neuroscience group, Queen's Medical Centre, Nottingham NG7 2UH United Kingdom.
| |
Collapse
|
16
|
Sadek B, Saad A, Sadeq A, Jalal F, Stark H. Histamine H3 receptor as a potential target for cognitive symptoms in neuropsychiatric diseases. Behav Brain Res 2016; 312:415-30. [PMID: 27363923 DOI: 10.1016/j.bbr.2016.06.051] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/22/2016] [Accepted: 06/26/2016] [Indexed: 01/27/2023]
Abstract
The potential contributions of the brain histaminergic system in neurodegenerative diseases, and the possiblity of histamine-targeting treatments is attracting considerable interests. The histamine H3 receptor (H3R) is expressed mainly in the central nervous system, and is, consequently, an attractive pharmacological target. Although recently described clinical trials have been disappointing in attention deficit hyperactivity disorder (ADHD) and schizophrenia (SCH), numerous H3R antagonists, including pitolisant, demonstrate potential in the treatment of narcolepsy, excessive daytime sleepiness associated with cognitive impairment, epilepsy, and Alzheimer's disease (AD). This review focuses on the recent preclinical as well as clinical results that support the relevance of H3R antagonists for the treatment of cognitive symptoms in neuropsychiatric diseases, namely AD, epilepsy and SCH. The review summarizes the role of histaminergic neurotransmission with focus on these brain disorders, as well as the effects of numerous H3R antagonists on animal models and humans.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Ali Saad
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Adel Sadeq
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
| | - Fakhreya Jalal
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
17
|
Breeden P, Dere D, Zlomuzica A, Dere E. The mental time travel continuum: on the architecture, capacity, versatility and extension of the mental bridge into the past and future. Rev Neurosci 2016; 27:421-34. [DOI: 10.1515/revneuro-2015-0053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022]
Abstract
AbstractMental time travel (MTT) is the ability to remember past events and to anticipate or imagine events in the future. MTT globally serves to optimize decision-making processes, improve problem-solving capabilities and prepare for future needs. MTT is also essential in providing our concept of self, which includes knowledge of our personality, our strengths and weaknesses, as well as our preferences and aversions. We will give an overview in which ways the capacity of animals to perform MTT is different from humans. Based on the existing literature, we conclude that MTT might represent a quantitative rather than qualitative entity with a continuum of MTT capacities in both humans and nonhuman animals. Given its high complexity, MTT requires a large processing capacity in order to integrate multimodal stimuli during the reconstruction of past and/or future events. We suggest that these operations depend on a highly specialized working memory subsystem, ‘the MTT platform’, which might represent a necessary additional component in the multi-component working memory model by Alan Baddeley.
Collapse
Affiliation(s)
- Prescott Breeden
- 1Canine Science Collaboratory, ASU, Office SCOB 366, Society for the Promotion of Applied Research in Canine Science (SPARCS), Education & Research in Canine Science, 2400 Elliott Ave, Apt 411, Seattle, WA 98121, USA
| | - Dorothea Dere
- 2Georg Elias Müller Institute for Psychology, Department of Clinical Psychology and Psychotherapy, Georg August University of Göttingen, Goßlerstr. 14, D-37073, Göttingen, Germany
| | | | | |
Collapse
|
18
|
Ladrón de Guevara-Miranda D, Pavón FJ, Serrano A, Rivera P, Estivill-Torrús G, Suárez J, Rodríguez de Fonseca F, Santín LJ, Castilla-Ortega E. Cocaine-conditioned place preference is predicted by previous anxiety-like behavior and is related to an increased number of neurons in the basolateral amygdala. Behav Brain Res 2016; 298:35-43. [DOI: 10.1016/j.bbr.2015.10.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/23/2015] [Accepted: 10/25/2015] [Indexed: 12/15/2022]
|
19
|
Schlicker E, Kathmann M. Role of the Histamine H 3 Receptor in the Central Nervous System. Handb Exp Pharmacol 2016; 241:277-299. [PMID: 27787717 DOI: 10.1007/164_2016_12] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The Gi/o protein-coupled histamine H3 receptor is distributed throughout the central nervous system including areas like cerebral cortex, hippocampus and striatum with the density being highest in the posterior hypothalamus, i.e. the area in which the histaminergic cell bodies are located. In contrast to the other histamine receptor subtypes (H1, H2 and H4), the H3 receptor is located presynaptically and shows a constitutive activity. In detail, H3 receptors are involved in the inhibition of histamine release (presynaptic autoreceptor), impulse flow along the histaminergic neurones (somadendritic autoreceptor) and histamine synthesis. Moreover, they occur as inhibitory presynaptic heteroreceptors on serotoninergic, noradrenergic, dopaminergic, glutamatergic, GABAergic and perhaps cholinergic neurones. This review shows for four functions of the brain that the H3 receptor represents a brake against the wake-promoting, anticonvulsant and anorectic effect of histamine (via postsynaptic H1 receptors) and its procognitive activity (via postsynaptic H1 and H2 receptors). Indeed, H1 agonists and H3 inverse agonists elicit essentially the same effects, at least in rodents; these effects are opposite in direction to those elicited by brain-penetrating H1 receptor antagonists in humans. Although the benefit for H3 inverse agonists for the symptomatic treatment of dementias is inconclusive, several members of this group have shown a marked potential for the treatment of disorders associated with excessive daytime sleepiness. In March 2016, the European Commission granted a marketing authorisation for pitolisant (WakixR) (as the first representative of the H3 inverse agonists) for the treatment of narcolepsy.
Collapse
Affiliation(s)
- Eberhard Schlicker
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany.
| | - Markus Kathmann
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| |
Collapse
|
20
|
Thomas SA. Neuromodulatory signaling in hippocampus-dependent memory retrieval. Hippocampus 2015; 25:415-31. [PMID: 25475876 DOI: 10.1002/hipo.22394] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 12/15/2022]
Abstract
Considerable advances have been made toward understanding the molecular signaling events that underlie memory acquisition and consolidation. In contrast, less is known about memory retrieval, despite its necessity for utilizing learned information. This review focuses on neuromodulatory and intracellular signaling events that underlie memory retrieval mediated by the hippocampus, for which the most information is currently available. Among neuromodulators, adrenergic signaling is required for the retrieval of various types of hippocampus-dependent memory. Although they contribute to acquisition and/or consolidation, cholinergic and dopaminergic signaling are generally not required for retrieval. Interestingly, while not required for retrieval, serotonergic and opioid signaling may actually constrain memory retrieval. Roles for histamine and non-opioid neuropeptides are currently unclear but possible. A critical effector of adrenergic signaling in retrieval is reduction of the slow afterhyperpolarization mediated by β1 receptors, cyclic AMP, protein kinase A, Epac, and possibly ERK. In contrast, stress and glucocorticoids impair retrieval by decreasing cyclic AMP, mediated in part by the activation of β2 -adrenergic receptors. Clinically, alterations in neuromodulatory signaling and in memory retrieval occur in Alzheimer's disease, Down syndrome, depression, and post-traumatic stress disorder, and recent evidence has begun to link changes in neuromodulatory signaling with effects on memory retrieval.
Collapse
Affiliation(s)
- Steven A Thomas
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
A critical appraisal of the what-where-when episodic-like memory test in rodents: Achievements, caveats and future directions. Prog Neurobiol 2015; 130:71-85. [DOI: 10.1016/j.pneurobio.2015.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 04/07/2015] [Accepted: 04/20/2015] [Indexed: 01/16/2023]
|
22
|
Zlomuzica A, Dere D, Binder S, De Souza Silva MA, Huston JP, Dere E. Neuronal histamine and cognitive symptoms in Alzheimer's disease. Neuropharmacology 2015; 106:135-45. [PMID: 26025658 DOI: 10.1016/j.neuropharm.2015.05.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/11/2015] [Accepted: 05/03/2015] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by extracellular amyloid plaque deposits, mainly composed of amyloid-beta peptide and intracellular neurofibrillary tangles consisting of aggregated hyperphosphorylated tau protein. Amyloid-beta represents a neurotoxic proteolytic cleavage product of amyloid precursor protein. The progressive cognitive decline that is associated with Alzheimer's disease has been mainly attributed to a deficit in cholinergic neurotransmission due to the continuous degeneration of cholinergic neurons e.g. in the basal forebrain. There is evidence suggesting that other neurotransmitter systems including neuronal histamine also contribute to the development and maintenance of Alzheimer's disease-related cognitive deficits. Pathological changes in the neuronal histaminergic system of such patients are highly predictive of ensuing cognitive deficits. Furthermore, histamine-related drugs, including histamine 3 receptor antagonists, have been demonstrated to alleviate cognitive symptoms in Alzheimer's disease. This review summarizes findings from animal and clinical research on the relationship between the neuronal histaminergic system and cognitive deterioration in Alzheimer's disease. The significance of the neuronal histaminergic system as a promising target for the development of more effective drugs for the treatment of cognitive symptoms is discussed. Furthermore, the option to use histamine-related agents as neurogenesis-stimulating therapy that counteracts progressive brain atrophy in Alzheimer's disease is considered. This article is part of a Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Mental Health Research and Treatment Center, Ruhr University Bochum, Germany
| | - Dorothea Dere
- Center for Psychological Consultation and Psychotherapy, Georg-August University Göttingen, Germany
| | - Sonja Binder
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Germany
| | - Maria Angelica De Souza Silva
- Institute of Experimental Psychology, Center for Behavioral Neuroscience, Heinrich-Heine University of Düsseldorf, Germany
| | - Joseph P Huston
- Institute of Experimental Psychology, Center for Behavioral Neuroscience, Heinrich-Heine University of Düsseldorf, Germany
| | - Ekrem Dere
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany; UFR des Sciences de la Vie (927), Université Pierre et Marie Curie Paris 6, France.
| |
Collapse
|
23
|
Belblidia H, Abdelouadoud A, Jozet-Alves C, Dumas H, Freret T, Leger M, Schumann-Bard P. Time decay of object, place and temporal order memory in a paradigm assessing simultaneously episodic-like memory components in mice. Behav Brain Res 2015; 286:80-4. [PMID: 25732955 DOI: 10.1016/j.bbr.2015.02.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/15/2015] [Accepted: 02/20/2015] [Indexed: 01/07/2023]
Abstract
A common trait of numerous memory disorders is the impairment of episodic memory. Episodic memory is a delay-dependant memory, especially associating three components, the "what", "where" and "when" of a unique event. To investigate underlying mechanisms of such memory, several tests, mainly based on object exploration behaviour, have been set up in rodents. Recently, a three-trial object recognition task has been proposed to evaluate simultaneously the different components of episodic-like memory in rodents. However, to date, the time course of each memory component in this paradigm is not known. We characterised here the time course of memory decay in adult mice during the three-trial object recognition task, with inter-trial interval (ITI) ranging from 1h to 4h. We found that, with 1h and 2h, but not 4h ITI, mice spent more time to explore the displaced "old object" relative to the displaced "recent object", reflecting memory for "what and when". Concomitantly, animals exhibited more exploration time for the displaced "old object" relative to the stationary "old object", reflecting memory for "what and where". These results provide strong evidence that mice establish an integrated memory for unique experience consisting of the "what", "where" and "when" that can persist until 2h ITI.
Collapse
Affiliation(s)
- Hassina Belblidia
- Normandie Universités, Université de Caen Basse-Normandie, Groupe Mémoire et Plasticité comportementale (GMPc), EA 4259, F-14032 Caen, France; Université des Sciences et de la Technologie Houari Boumediene, Laboratoire de Neurosciences Comportementales et Cognitives, 16111 Alger, Algeria
| | - Abdelmalek Abdelouadoud
- Université des Sciences et de la Technologie Houari Boumediene, Laboratoire de Neurosciences Comportementales et Cognitives, 16111 Alger, Algeria
| | - Christelle Jozet-Alves
- Normandie Universités, Université de Caen Basse-Normandie, Groupe Mémoire et Plasticité comportementale (GMPc), EA 4259, F-14032 Caen, France
| | - Hélène Dumas
- Normandie Universités, Université de Caen Basse-Normandie, Groupe Mémoire et Plasticité comportementale (GMPc), EA 4259, F-14032 Caen, France
| | - Thomas Freret
- Normandie Universités, Université de Caen Basse-Normandie, Groupe Mémoire et Plasticité comportementale (GMPc), EA 4259, F-14032 Caen, France
| | - Marianne Leger
- Normandie Universités, Université de Caen Basse-Normandie, Groupe Mémoire et Plasticité comportementale (GMPc), EA 4259, F-14032 Caen, France
| | - Pascale Schumann-Bard
- Normandie Universités, Université de Caen Basse-Normandie, Groupe Mémoire et Plasticité comportementale (GMPc), EA 4259, F-14032 Caen, France.
| |
Collapse
|
24
|
Ambrée O, Buschert J, Zhang W, Arolt V, Dere E, Zlomuzica A. Impaired spatial learning and reduced adult hippocampal neurogenesis in histamine H1-receptor knockout mice. Eur Neuropsychopharmacol 2014; 24:1394-404. [PMID: 24862254 DOI: 10.1016/j.euroneuro.2014.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/03/2014] [Accepted: 04/27/2014] [Indexed: 01/23/2023]
Abstract
The histamine H1-receptor (H1R) is expressed in wide parts of the brain including the hippocampus, which is involved in spatial learning and memory. Previous studies in H1R knockout (H1R-KO) mice revealed deficits in a variety of learning and memory tasks. It was also proposed that H1R activation is crucial for neuronal differentiation of neural progenitors. Therefore, the aim of this study was to investigate negatively reinforced spatial learning in the water-maze and to assess survival and neuronal differentiation of newborn cells in the adult hippocampus of H1R-KO mice. H1R-KO and wild-type (WT) mice were subjected to the following sequence of tests: (a) cued version, (b) place learning, (c) spatial probe, (d) long-term retention and (e) reversal learning. Furthermore hippocampal neurogenesis in terms of survival and differentiation was assessed in H1R-KO and WT mice. H1R-KO mice showed normal cued learning, but impaired place and reversal learning as well as impaired long-term retention performance. In addition, a marked reduction of newborn neurons in the hippocampus but no changes in differentiation of neural progenitors into neuronal and glial lineage was found in H1R-KO mice. Our data suggest that H1R deficiency in mice is associated with pronounced deficits in hippocampus-dependent spatial learning and memory. Furthermore, we herein provide first evidence that H1R deficiency in the mouse leads to a reduced neurogenesis. However, the exact mechanisms for the reduced number of cells in H1R-KO mice remain elusive and might be due to a reduced survival of newborn hippocampal neurons and/or a reduction in cell proliferation.
Collapse
Affiliation(s)
- Oliver Ambrée
- Department of Psychiatry, University of Münster, Germany
| | - Jens Buschert
- Department of Psychiatry, University of Münster, Germany
| | - Weiqi Zhang
- Department of Psychiatry, University of Münster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Germany
| | - Ekrem Dere
- Institute of Physiological Psychology, Heinrich-Heine University, Düsseldorf, Germany; UMR 7102, Neurobiologie des Processus Adaptatifs, Université Pierre et Marie Curie, Paris 6, France; Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Armin Zlomuzica
- Institute of Physiological Psychology, Heinrich-Heine University, Düsseldorf, Germany; Mental Health Research and Treatment Center, University of Bochum, Germany.
| |
Collapse
|
25
|
Modulation of behavior by the histaminergic system: Lessons from H1R-and H2R-deficient mice. Neurosci Biobehav Rev 2014; 42:252-66. [DOI: 10.1016/j.neubiorev.2014.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/17/2014] [Accepted: 03/13/2014] [Indexed: 11/18/2022]
|
26
|
Zlomuzica A, Dere D, Dere E. The histamine H1 receptor and recollection-based discrimination in a temporal order memory task in the mouse. Pharmacol Biochem Behav 2013; 111:58-63. [DOI: 10.1016/j.pbb.2013.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/23/2013] [Accepted: 08/16/2013] [Indexed: 11/26/2022]
|
27
|
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by beta-amyloid plaques accumulation and cognitive impairment. Both environmental factors and heritable predisposition have a role in AD. Histamine is a biogenic monoamine that plays a role in several physiological functions, including induction of inflammatory reactions, wound healing, and regeneration. The Histamine mediates its functions via its 4 G-protein-coupled Histamine H1 receptor (H1R) to histamine H1 receptor (H4R). The histaminergic system has a role in the treatment of brain disorders by the development of histamine receptor agonists, antagonists. The H1R and H4R are responsible for allergic inflammation. But recent studies show that histamine antagonists against H3R and regulation of H2R can be more efficient in AD therapy. In this review, we focus on the role of histamine and its receptors in the treatment of AD, and we hope that histamine could be an effective therapeutic factor in the treatment of AD.
Collapse
Affiliation(s)
- Fatemeh Naddafi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Castilla-Ortega E, Pedraza C, Chun J, Fonseca FRD, Estivill-Torrús G, Santín LJ. Hippocampal c-Fos activation in normal and LPA1-null mice after two object recognition tasks with different memory demands. Behav Brain Res 2012; 232:400-5. [DOI: 10.1016/j.bbr.2012.04.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/03/2012] [Accepted: 04/10/2012] [Indexed: 12/13/2022]
|
29
|
Histaminergic mechanisms for modulation of memory systems. Neural Plast 2011; 2011:328602. [PMID: 21876818 PMCID: PMC3160014 DOI: 10.1155/2011/328602] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/29/2011] [Indexed: 12/31/2022] Open
Abstract
Encoding for several memory types requires neural changes and the activity of distinct regions across the brain. These areas receive broad projections originating in nuclei located in the brainstem which are capable of modulating the activity of a particular area. The histaminergic system is one of the major modulatory systems, and it regulates basic homeostatic and higher functions including arousal, circadian, and feeding rhythms, and cognition. There is now evidence that histamine can modulate learning in different types of behavioral tasks, but the exact course of modulation and its mechanisms are controversial. In the present paper we review the involvement of the histaminergic system and the effects histaminergic receptor agonists/antagonists have on the performance of tasks associated with the main memory types as well as evidence provided by studies with knockout models. Thus, we aim to summarize the possible effects histamine has on modulation of circuits involved in memory formation.
Collapse
|
30
|
Uitdehaag K, Rodenburg T, Van Reenen C, Koopmanschap R, De Vries Reilingh G, Engel B, Buist W, Komen H, Bolhuis J. Effects of genetic origin and social environment on behavioral response to manual restraint and monoamine functioning in laying hens. Poult Sci 2011; 90:1629-36. [DOI: 10.3382/ps.2010-01292] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Dere E, Zlomuzica A, De Souza Silva M, Ruocco L, Sadile A, Huston J. Neuronal histamine and the interplay of memory, reinforcement and emotions. Behav Brain Res 2010; 215:209-20. [DOI: 10.1016/j.bbr.2009.12.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 12/26/2009] [Indexed: 10/20/2022]
|
32
|
One-trial object recognition in rats and mice: Methodological and theoretical issues. Behav Brain Res 2010; 215:244-54. [DOI: 10.1016/j.bbr.2009.12.036] [Citation(s) in RCA: 436] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/12/2009] [Accepted: 12/26/2009] [Indexed: 12/11/2022]
|
33
|
Eacott MJ, Easton A. Episodic memory in animals: Remembering which occasion. Neuropsychologia 2010; 48:2273-80. [DOI: 10.1016/j.neuropsychologia.2009.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/22/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
|
34
|
Induction and measurement of episodic memories in healthy adults. J Neurosci Methods 2010; 189:88-96. [DOI: 10.1016/j.jneumeth.2010.03.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/26/2010] [Accepted: 03/16/2010] [Indexed: 11/19/2022]
|
35
|
Xu LS, Fan YY, He P, Zhang WP, Hu WW, Chen Z. AMELIORATIVE EFFECTS OF HISTAMINE ON SPATIAL MEMORY DEFICITS INDUCED BY SCOPOLAMINE INFUSION INTO BILATERAL DORSAL OR VENTRAL HIPPOCAMPUS AS EVALUATED BY THE RADIAL ARM MAZE TASK. Clin Exp Pharmacol Physiol 2009; 36:816-21. [DOI: 10.1111/j.1440-1681.2009.05157.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Zlomuzica A, Ruocco LA, Sadile AG, Huston JP, Dere E. Histamine H1 receptor knockout mice exhibit impaired spatial memory in the eight-arm radial maze. Br J Pharmacol 2009; 157:86-91. [PMID: 19413573 DOI: 10.1111/j.1476-5381.2009.00225.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE In the mammalian brain, histaminergic neurotransmission is mediated by the postsynaptic histamine H1 and H2 receptors and the presynaptic H3 autoreceptor, which also acts as a heteroreceptor. The H1 receptor has been implicated in spatial learning and memory formation. However, pharmacological and lesion studies have revealed conflicting results. To examine the involvement of histamine H1 receptor in spatial reference and working memory formation, H1 receptor knockout mice (KO) were tested in the eight-arm radial maze. Previously, we found that the H1 receptor-KO mice showed reduced emotionality when confronted with spatial novelty. As it is known that emotions can have an impact on spatial learning and memory performance, we also evaluated H1 receptor-KO mice in terms of emotional behaviour in the light-dark box. EXPERIMENTAL APPROACH Mice lacking the H1 receptor and wild-type mice (WT) were tested for spatial reference and working memory in an eight-arm radial maze with three arms baited and one trial per day. Emotional behaviour was measured using the light-dark test. KEY RESULTS The H1 receptor-KO mice showed impaired spatial reference and working memory in the radial maze task. No significant differences between H1 receptor-KO and WT mice were observed in the light-dark test. CONCLUSIONS AND IMPLICATIONS The spatial memory deficits of the H1 receptor-KO mice might be due to the reported changes in cholinergic neurochemical parameters in the frontal cortex and the CA1 subregion of the hippocampus, to impaired synaptic plasticity in the hippocampus, and/or to a dysfunctional brain reward/reinforcement system.
Collapse
Affiliation(s)
- A Zlomuzica
- Institute of Physiological Psychology, Center for Biological and Medical Research, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
37
|
JNJ-10181457, a selective non-imidazole histamine H3 receptor antagonist, normalizes acetylcholine neurotransmission and has efficacy in translational rat models of cognition. Neuropharmacology 2009; 56:1131-7. [DOI: 10.1016/j.neuropharm.2009.03.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 01/31/2009] [Accepted: 03/24/2009] [Indexed: 11/20/2022]
|
38
|
Dere E, Zlomuzica A, Huston JP, De Souza Silva MA. Chapter 2.2 Animal episodic memory. HANDBOOK OF EPISODIC MEMORY 2008. [DOI: 10.1016/s1569-7339(08)00210-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|