1
|
Garg PM, Shenberger JS, Ostrander M, Inder TE, Garg PP. Gut-Brain Axis in Preterm Infants with Surgical Necrotizing Enterocolitis. Am J Perinatol 2025. [PMID: 40112874 DOI: 10.1055/a-2563-0878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Necrotizing enterocolitis (NEC) affects 5 to 10% of very low-birth-weight infants and remains a leading cause of mortality and long-term morbidity. Preterm infants with NEC, especially those requiring surgery, have higher inflammatory markers in the blood, severe white matter abnormalities on brain imaging, and adverse neurodevelopmental outcomes. This review presents current evidence regarding the clinical factors associated with brain injury in preterm infants with NEC needing surgical intervention. Studies that evaluate neuroprotective strategies to prevent brain injury are greatly needed to improve neurodevelopmental outcomes in high-risk preterm infants with NEC. · NEC is associated with white matter, grey matter, and cerebellar injury in neonates.. · Clinical and histopathological factors are associated with gut-associated brain injury in NEC.. · Neuroprotective strategies and intervention are greatly needed in infants with surgical NEC..
Collapse
Affiliation(s)
- Parvesh M Garg
- Department of Pediatrics/Neonatology, Wake Forest University, Winston Salem, North Carolina
| | - Jeffrey S Shenberger
- Department of Pediatrics/Neonatology, Connecticut Children's, Hartford, Connecticut
| | - Mckenzie Ostrander
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Terrie E Inder
- Children Hospital of Orange County, University of California, Irvine, Orange, California
| | - Padma P Garg
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
2
|
Van Steenwinckel J, Bokobza C, Laforge M, Shearer IK, Miron VE, Rua R, Matta SM, Hill‐Yardin EL, Fleiss B, Gressens P. Key roles of glial cells in the encephalopathy of prematurity. Glia 2024; 72:475-503. [PMID: 37909340 PMCID: PMC10952406 DOI: 10.1002/glia.24474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023]
Abstract
Across the globe, approximately one in 10 babies are born preterm, that is, before 37 weeks of a typical 40 weeks of gestation. Up to 50% of preterm born infants develop brain injury, encephalopathy of prematurity (EoP), that substantially increases their risk for developing lifelong defects in motor skills and domains of learning, memory, emotional regulation, and cognition. We are still severely limited in our abilities to prevent or predict preterm birth. No longer just the "support cells," we now clearly understand that during development glia are key for building a healthy brain. Glial dysfunction is a hallmark of EoP, notably, microgliosis, astrogliosis, and oligodendrocyte injury. Our knowledge of glial biology during development is exponentially expanding but hasn't developed sufficiently for development of effective neuroregenerative therapies. This review summarizes the current state of knowledge for the roles of glia in infants with EoP and its animal models, and a description of known glial-cell interactions in the context of EoP, such as the roles for border-associated macrophages. The field of perinatal medicine is relatively small but has worked passionately to improve our understanding of the etiology of EoP coupled with detailed mechanistic studies of pre-clinical and human cohorts. A primary finding from this review is that expanding our collaborations with computational biologists, working together to understand the complexity of glial subtypes, glial maturation, and the impacts of EoP in the short and long term will be key to the design of therapies that improve outcomes.
Collapse
Affiliation(s)
| | - Cindy Bokobza
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
| | | | - Isabelle K. Shearer
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Veronique E. Miron
- Barlo Multiple Sclerosis CentreSt. Michael's HospitalTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- College of Medicine and Veterinary MedicineThe Dementia Research Institute at The University of EdinburghEdinburghUK
| | - Rejane Rua
- CNRS, INSERM, Centre d'Immunologie de Marseille‐Luminy (CIML), Turing Centre for Living SystemsAix‐Marseille UniversityMarseilleFrance
| | - Samantha M. Matta
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Elisa L. Hill‐Yardin
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Bobbi Fleiss
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | | |
Collapse
|
3
|
Klein L, Van Steenwinckel J, Fleiss B, Scheuer T, Bührer C, Faivre V, Lemoine S, Blugeon C, Schwendimann L, Csaba Z, Bokobza C, Vousden DA, Lerch JP, Vernon AC, Gressens P, Schmitz T. A unique cerebellar pattern of microglia activation in a mouse model of encephalopathy of prematurity. Glia 2022; 70:1699-1719. [PMID: 35579329 PMCID: PMC9545095 DOI: 10.1002/glia.24190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
Abstract
Preterm infants often show pathologies of the cerebellum, which are associated with impaired motor performance, lower IQ and poor language skills at school ages. Using a mouse model of inflammation-induced encephalopathy of prematurity driven by systemic administration of pro-inflammatory IL-1β, we sought to uncover causes of cerebellar damage. In this model, IL-1β is administered between postnatal day (P) 1 to day 5, a timing equivalent to the last trimester for brain development in humans. Structural MRI analysis revealed that systemic IL-1β treatment induced specific reductions in gray and white matter volumes of the mouse cerebellar lobules I and II (5% false discovery rate [FDR]) from P15 onwards. Preceding these MRI-detectable cerebellar volume changes, we observed damage to oligodendroglia, with reduced proliferation of OLIG2+ cells at P10 and reduced levels of the myelin proteins myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) at P10 and P15. Increased density of IBA1+ cerebellar microglia were observed both at P5 and P45, with evidence for increased microglial proliferation at P5 and P10. Comparison of the transcriptome of microglia isolated from P5 cerebellums and cerebrums revealed significant enrichment of pro-inflammatory markers in microglia from both regions, but cerebellar microglia displayed a unique type I interferon signaling dysregulation. Collectively, these data suggest that perinatal inflammation driven by systemic IL-1β leads to specific cerebellar volume deficits, which likely reflect oligodendrocyte pathology downstream of microglial activation. Further studies are now required to confirm the potential of protective strategies aimed at preventing sustained type I interferon signaling driven by cerebellar microglia as an important therapeutic target.
Collapse
Affiliation(s)
- Luisa Klein
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | | | - Bobbi Fleiss
- NeuroDiderot, InsermUniversité de ParisParisFrance
- School of Health and Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| | - Till Scheuer
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | - Christoph Bührer
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | | | - Sophie Lemoine
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERMUniversité PSLParisFrance
| | - Corinne Blugeon
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERMUniversité PSLParisFrance
| | | | - Zsolt Csaba
- NeuroDiderot, InsermUniversité de ParisParisFrance
| | | | - Dulcie A. Vousden
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Jason P. Lerch
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
- Wellcome Trust Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | | | - Thomas Schmitz
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| |
Collapse
|
4
|
Fetal heart rate variability is a biomarker of rapid but not progressive exacerbation of inflammation in preterm fetal sheep. Sci Rep 2022; 12:1771. [PMID: 35110628 PMCID: PMC8810879 DOI: 10.1038/s41598-022-05799-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Perinatal infection/inflammation can trigger preterm birth and contribute to neurodevelopmental disability. There are currently no sensitive, specific methods to identify perinatal infection. We investigated the utility of time, frequency and non-linear measures of fetal heart rate (FHR) variability (FHRV) to identify either progressive or more rapid inflammation. Chronically instrumented preterm fetal sheep were randomly assigned to one of three different 5d continuous i.v. infusions: 1) control (saline infusions; n = 10), 2) progressive lipopolysaccharide (LPS; 200 ng/kg over 24 h, doubled every 24 h for 5d, n = 8), or 3) acute-on-chronic LPS (100 ng/kg over 24 h then 250 ng/kg/24 h for 4d plus 1 μg boluses at 48, 72, and 96 h, n = 9). Both LPS protocols triggered transient increases in multiple measures of FHRV at the onset of infusions. No FHRV or physiological changes occurred from 12 h after starting progressive LPS infusions. LPS boluses during the acute-on-chronic protocol triggered transient hypotension, tachycardia and an initial increase in multiple time and frequency domain measures of FHRV, with an asymmetric FHR pattern of predominant decelerations. Following resolution of hypotension after the second and third LPS boluses, all frequencies of FHRV became suppressed. These data suggest that FHRV may be a useful biomarker of rapid but not progressive preterm infection/inflammation.
Collapse
|
5
|
Delahaye-Duriez A, Dufour A, Bokobza C, Gressens P, Van Steenwinckel J. Targeting Microglial Disturbances to Protect the Brain From Neurodevelopmental Disorders Associated With Prematurity. J Neuropathol Exp Neurol 2021; 80:634-648. [PMID: 34363661 DOI: 10.1093/jnen/nlab049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microglial activation during critical phases of brain development can result in short- and long-term consequences for neurological and psychiatric health. Several studies in humans and rodents have shown that microglial activation, leading to a transition from the homeostatic state toward a proinflammatory phenotype, has adverse effects on the developing brain and neurodevelopmental disorders. Targeting proinflammatory microglia may be an effective strategy for protecting the brain and attenuating neurodevelopmental disorders induced by inflammation. In this review we focus on the role of inflammation and the activation of immature microglia (pre-microglia) soon after birth in prematurity-associated neurodevelopmental disorders, and the specific features of pre-microglia during development. We also highlight the relevance of immunomodulatory strategies for regulating activated microglia in a rodent model of perinatal brain injury. An original neuroprotective approach involving a nanoparticle-based therapy and targeting microglia, with the aim of improving myelination and protecting the developing brain, is also addressed.
Collapse
Affiliation(s)
- Andrée Delahaye-Duriez
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France.,UFR SMBH, Université Sorbonne Paris Nord, Bobigny, France.,Assistance Publique des Hôpitaux de Paris, Hôpital Jean Verdier, Service d'Histologie-Embryologie-Cytogénétique, Bondy, France
| | - Adrien Dufour
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | - Cindy Bokobza
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | - Pierre Gressens
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | | |
Collapse
|
6
|
Gussenhoven R, Ophelders DRMG, Dudink J, Pieterman K, Lammens M, Mays RW, Zimmermann LJ, Kramer BW, Wolfs TGAM, Jellema RK. Systemic multipotent adult progenitor cells protect the cerebellum after asphyxia in fetal sheep. Stem Cells Transl Med 2020; 10:57-67. [PMID: 32985793 PMCID: PMC7780812 DOI: 10.1002/sctm.19-0157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/29/2020] [Accepted: 08/09/2020] [Indexed: 12/30/2022] Open
Abstract
Involvement of the cerebellum in the pathophysiology of hypoxic‐ischemic encephalopathy (HIE) in preterm infants is increasingly recognized. We aimed to assess the neuroprotective potential of intravenously administered multipotent adult progenitor cells (MAPCs) in the preterm cerebellum. Instrumented preterm ovine fetuses were subjected to transient global hypoxia‐ischemia (HI) by 25 minutes of umbilical cord occlusion at 0.7 of gestation. After reperfusion, two doses of MAPCs were administered intravenously. MAPCs are a plastic adherent bone‐marrow‐derived population of adult progenitor cells with neuroprotective potency in experimental and clinical studies. Global HI caused marked cortical injury in the cerebellum, histologically indicated by disruption of cortical strata, impeded Purkinje cell development, and decreased dendritic arborization. Furthermore, global HI induced histopathological microgliosis, hypomyelination, and disruption of white matter organization. MAPC treatment significantly prevented cortical injury and region‐specifically attenuated white matter injury in the cerebellum following global HI. Diffusion tensor imaging (DTI) detected HI‐induced injury and MAPC neuroprotection in the preterm cerebellum. This study has demonstrated in a preclinical large animal model that early systemic MAPC therapy improved structural injury of the preterm cerebellum following global HI. Microstructural improvement was detectable with DTI. These findings support the potential of MAPC therapy for the treatment of HIE and the added clinical value of DTI for the detection of cerebellar injury and the evaluation of cell‐based therapy.
Collapse
Affiliation(s)
- Ruth Gussenhoven
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, The Netherlands.,School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Daan R M G Ophelders
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, The Netherlands.,School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital and Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Kay Pieterman
- Biomedical Imaging Group Rotterdam, Department of Radiology and Medical Informatics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Martin Lammens
- Department of Pathology, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Robert W Mays
- Regenerative Medicine, Athersys, Inc., Cleveland, Ohio, USA
| | - Luc J Zimmermann
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, The Netherlands.,School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, The Netherlands.,School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Tim G A M Wolfs
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, The Netherlands.,School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Reint K Jellema
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
7
|
Swier VJ, White KA, Meyerholz DK, Chefdeville A, Khanna R, Sieren JC, Quelle DE, Weimer JM. Validating indicators of CNS disorders in a swine model of neurological disease. PLoS One 2020; 15:e0228222. [PMID: 32074109 PMCID: PMC7029865 DOI: 10.1371/journal.pone.0228222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/09/2020] [Indexed: 11/18/2022] Open
Abstract
Genetically modified swine disease models are becoming increasingly important for studying molecular, physiological and pathological characteristics of human disorders. Given the limited history of these model systems, there remains a great need for proven molecular reagents in swine tissue. Here, to provide a resource for neurological models of disease, we validated antibodies by immunohistochemistry for use in examining central nervous system (CNS) markers in a recently developed miniswine model of neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant tumor predisposition disorder stemming from mutations in NF1, a gene that encodes the Ras-GTPase activating protein neurofibromin. Patients classically present with benign neurofibromas throughout their bodies and can also present with neurological associated symptoms such as chronic pain, cognitive impairment, and behavioral abnormalities. As validated antibodies for immunohistochemistry applications are particularly difficult to find for swine models of neurological disease, we present immunostaining validation of antibodies implicated in glial inflammation (CD68), oligodendrocyte development (NG2, O4 and Olig2), and neuron differentiation and neurotransmission (doublecortin, GAD67, and tyrosine hydroxylase) by examining cellular localization and brain region specificity. Additionally, we confirm the utility of anti-GFAP, anti-Iba1, and anti-MBP antibodies, previously validated in swine, by testing their immunoreactivity across multiple brain regions in mutant NF1 samples. These immunostaining protocols for CNS markers provide a useful resource to the scientific community, furthering the utility of genetically modified miniswine for translational and clinical applications.
Collapse
Affiliation(s)
- Vicki J. Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Katherine A. White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - David K. Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
- Graduate Interdisciplinary Program in Neuroscience; College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Jessica C. Sieren
- Department of Radiology and Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Dawn E. Quelle
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States of America
- * E-mail:
| |
Collapse
|
8
|
Truttmann AC, Ginet V, Puyal J. Current Evidence on Cell Death in Preterm Brain Injury in Human and Preclinical Models. Front Cell Dev Biol 2020; 8:27. [PMID: 32133356 PMCID: PMC7039819 DOI: 10.3389/fcell.2020.00027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Despite tremendous advances in neonatal intensive care over the past 20 years, prematurity carries a high burden of neurological morbidity lasting lifelong. The term encephalopathy of prematurity (EoP) coined by Volpe in 2009 encompasses all aspects of the now known effects of prematurity on the immature brain, including altered and disturbed development as well as specific lesional hallmarks. Understanding the way cells are damaged is crucial to design brain protective strategies, and in this purpose, preclinical models largely contribute to improve the comprehension of the cell death mechanisms. While neuronal cell death has been deeply investigated and characterized in (hypoxic–ischemic) encephalopathy of the newborn at term, little is known about the types of cell death occurring in preterm brain injury. Three main different morphological cell death types are observed in the immature brain, specifically in models of hypoxic–ischemic encephalopathy, namely, necrotic, apoptotic, and autophagic cell death. Features of all three types may be present in the same dying neuron. In preterm brain injury, description of cell death types is sparse, and cell loss primarily concerns immature oligodendrocytes and, infrequently, neurons. In the present review, we first shortly discuss the different main severe preterm brain injury conditions that have been reported to involve cell death, including periventricular leucomalacia (PVL), diffuse white matter injury (dWMI), and intraventricular hemorrhages, as well as potentially harmful iatrogenic conditions linked to premature birth (anesthesia and caffeine therapy). Then, we present an overview of current evidence concerning cell death in both clinical human tissue data and preclinical models by focusing on studies investigating the presence of cell death allowing discriminating between the types of cell death involved. We conclude that, to improve brain protective strategies, not only apoptosis but also other cell death (such as regulated necrotic and autophagic) pathways now need to be investigated together in order to consider all cell death mechanisms involved in the pathogenesis of preterm brain damage.
Collapse
Affiliation(s)
- Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Vanessa Ginet
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
9
|
Stolp HB, Fleiss B, Arai Y, Supramaniam V, Vontell R, Birtles S, Yates AG, Baburamani AA, Thornton C, Rutherford M, Edwards AD, Gressens P. Interneuron Development Is Disrupted in Preterm Brains With Diffuse White Matter Injury: Observations in Mouse and Human. Front Physiol 2019; 10:955. [PMID: 31417418 PMCID: PMC6683859 DOI: 10.3389/fphys.2019.00955] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022] Open
Abstract
Preterm brain injury, occurring in approximately 30% of infants born <32 weeks gestational age, is associated with an increased risk of neurodevelopmental disorders, such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). The mechanism of gray matter injury in preterm born children is unclear and likely to be multifactorial; however, inflammation, a high predictor of poor outcome in preterm infants, has been associated with disrupted interneuron maturation in a number of animal models. Interneurons are important for regulating normal brain development, and disruption in interneuron development, and the downstream effects of this, has been implicated in the etiology of neurodevelopmental disorders. Here, we utilize postmortem tissue from human preterm cases with or without diffuse white matter injury (WMI; PMA range: 23+2 to 28+1 for non-WMI group, 26+6 to 30+0 for WMI group, p = 0.002) and a model of inflammation-induced preterm diffuse white matter injury (i.p. IL-1β, b.d., 10 μg/kg/injection in male CD1 mice from P1–5). Data from human preterm infants show deficits in interneuron numbers in the cortex and delayed growth of neuronal arbors at this early stage of development. In the mouse, significant reduction in the number of parvalbumin-positive interneurons was observed from postnatal day (P) 10. This decrease in parvalbumin neuron number was largely rectified by P40, though there was a significantly smaller number of parvalbumin positive cells associated with perineuronal nets in the upper cortical layers. Together, these data suggest that inflammation in the preterm brain may be a contributor to injury of specific interneuron in the cortical gray matter. This may represent a potential target for postnatal therapy to reduce the incidence and/or severity of neurodevelopmental disorders in preterm infants.
Collapse
Affiliation(s)
- Helen B Stolp
- Department for Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom.,Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Bobbi Fleiss
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom.,Université de Paris, NeuroDiderot, Inserm, Paris, France.,School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Yoko Arai
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Veena Supramaniam
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Regina Vontell
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom.,Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Sebastian Birtles
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Abi G Yates
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom.,Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Ana A Baburamani
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Claire Thornton
- Department for Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom.,Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Mary Rutherford
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - A David Edwards
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Pierre Gressens
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom.,Université de Paris, NeuroDiderot, Inserm, Paris, France
| |
Collapse
|
10
|
Feng SYS, Hollis JH, Samarasinghe T, Phillips DJ, Rao S, Yu VYH, Walker AM. Endotoxin-induced cerebral pathophysiology: differences between fetus and newborn. Physiol Rep 2019; 7:e13973. [PMID: 30785235 PMCID: PMC6381816 DOI: 10.14814/phy2.13973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023] Open
Abstract
As the comparative pathophysiology of perinatal infection in the fetus and newborn is uncertain, this study contrasted the cerebral effects of endotoxemia in conscious fetal sheep and newborn lambs. Responses to intravenous bacterial endotoxin (lipopolysaccharide, LPS) or normal saline were studied on three consecutive days in fetal sheep (LPS 1 μg/kg, n = 5; normal saline n = 5) and newborn lambs (LPS 2 μg/kg, n = 10; normal saline n = 5). Cerebro-vascular function was assessed by monitoring cerebral blood flow (CBF) and cerebral vascular resistance (CVR) over 12 h each day, and inflammatory responses were assessed by plasma TNF alpha (TNF-α), nitrate and nitrite concentrations. Brain injury was quantified by counting both resting and active macrophages in the caudate nucleus and periventricular white matter (PVWM). An acute cerebral vasoconstriction (within 1 h of LPS injection) occurred in both the fetus (ΔCVR +53%) and newborn (ΔCVR +63%); subsequently prolonged cerebral vasodilatation occurred in the fetus (ΔCVR -33%) in association with double plasma nitrate/nitrite concentrations, but not in the newborn. Abundant infiltration of activated macrophages was observed in both CN and PVWM at each age, with the extent being 2-3 times greater in the fetus (P < 0.001). In conclusion, while the fetus and newborn experience a similar acute disruption of the cerebral circulation after LPS, the fetus suffers a more prolonged circulatory disruption, a greater infiltration of activated macrophages, and an exaggerated susceptibility to brain injury.
Collapse
Affiliation(s)
- Susan Y. S. Feng
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Neonatal DirectorateKing Edward Memorial HospitalPerth Children's HospitalSubiacoWestern AustraliaAustralia
| | - Jacob H. Hollis
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia
| | | | - David J. Phillips
- Academic & Medical PortfolioEpworth HealthCareRichmondVictoriaAustralia
| | - Shripada Rao
- Neonatal DirectorateKing Edward Memorial HospitalPerth Children's HospitalSubiacoWestern AustraliaAustralia
| | - Victor Y. H. Yu
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Monash NewbornMonash Medical CentreClaytonVictoriaAustralia
| | - Adrian M. Walker
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
| |
Collapse
|
11
|
Neuroinflammation in preterm babies and autism spectrum disorders. Pediatr Res 2019; 85:155-165. [PMID: 30446768 DOI: 10.1038/s41390-018-0208-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Genetic anomalies have a role in autism spectrum disorders (ASD). Each genetic factor is responsible for a small fraction of cases. Environment factors, like preterm delivery, have an important role in ASD. Preterm infants have a 10-fold higher risk of developing ASD. Preterm birth is often associated with maternal/fetal inflammation, leading to a fetal/neonatal inflammatory syndrome. There are demonstrated experimental links between fetal inflammation and the later development of behavioral symptoms consistent with ASD. Preterm infants have deficits in connectivity. Most ASD genes encode synaptic proteins, suggesting that ASD are connectivity pathologies. Microglia are essential for normal synaptogenesis. Microglia are diverted from homeostatic functions towards inflammatory phenotypes during perinatal inflammation, impairing synaptogenesis. Preterm infants with ASD have a different phenotype from term born peers. Our original hypothesis is that exposure to inflammation in preterm infants, combined with at risk genetic background, deregulates brain development leading to ASD.
Collapse
|
12
|
Cerebellar injury and impaired function in a rabbit model of maternal inflammation induced neonatal brain injury. Neurobiol Learn Mem 2018; 165:106901. [PMID: 30016703 DOI: 10.1016/j.nlm.2018.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 01/01/2023]
Abstract
Cerebellum is involved in higher cognitive functions and plays important roles in neurological disorders. Cerebellar injury has been detected frequently in patients with preterm birth resulting in cognitive dysfunction later in life. Maternal infection and inflammation is associated with preterm birth and in neonatal brain injury. We have previously shown that intrauterine lipopolysaccharide (LPS) exposure induces white matter injury and microglial activation in the cerebral white matter tracts of neonatal rabbits, resulting in motor deficits consistent with the clinical findings of cerebral palsy (CP). Here we investigated whether intrauterine LPS exposure induced cerebellar inflammation and functional impairment. Timed-pregnant New Zealand white rabbits underwent a laparotomy on gestational day 28 (G28) and LPS (3200 EU, endotoxin group) was injected along the wall of the uterus as previously described. Controls did not receive surgical intervention. Kits born to control and endotoxin treated dams were euthanized on postnatal day (PND)1 (3 days post-injury) or PND5 (7 days post-injury) and cerebellum evaluated for presence of inflammation. The microglial morphology in cerebellar white matter areas was analyzed using Neurolucida and Neurolucida Explorer. mRNA expression of inflammatory cytokines was quantified by real-time-PCR. We found that intrauterine exposure to LPS induced intensive microglial activation in cerebellar white matter areas, as evidenced by increased numbers of activated microglia and morphological changes (amoeboid soma and retracted processes) that was accompanied by significant increases in pro-inflammatory cytokines. The Purkinje cell layer was less developed in endotoxin exposed kits than healthy controls. In kits that survived to PND 60, soma size and cell density of Purkinje cells were significantly decreased in endotoxin exposed kits compared to controls. The findings of altered Purkinje cell morphology were consistent with impaired cerebellar function as tested by eye-blink conditioning at 1 month of age. The results indicate that the cerebellum is vulnerable to perinatal insults and that therapies targeting cerebellar inflammation and injury may help in improving outcomes and function.
Collapse
|
13
|
OH KJ, PARK JY, LEE J, HONG JS, ROMERO R, YOON BH. The combined exposure to intra-amniotic inflammation and neonatal respiratory distress syndrome increases the risk of intraventricular hemorrhage in preterm neonates. J Perinat Med 2018; 46:9-20. [PMID: 28672753 PMCID: PMC5848500 DOI: 10.1515/jpm-2016-0348] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/12/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To evaluate the impact of combined exposure to intra-amniotic inflammation and neonatal respiratory distress syndrome (RDS) on the development of intraventricular hemorrhage (IVH) in preterm neonates. METHODS This retrospective cohort study includes 207 consecutive preterm births (24.0-33.0 weeks of gestation). Intra-amniotic inflammation was defined as an amniotic fluid matrix metalloproteinase-8 concentration >23 ng/mL. According to McMenamin's classification, IVH was defined as grade II or higher when detected by neurosonography within the first weeks of life. RESULTS (1) IVH was diagnosed in 6.8% (14/207) of neonates in the study population; (2) IVH was frequent among newborns exposed to intra-amniotic inflammation when followed by postnatal RDS [33% (6/18)]. The frequency of IVH was 7% (8/115) among neonates exposed to either of these conditions - intra-amniotic inflammation or RDS - and 0% (0/64) among those who were not exposed to these conditions; and (3) Neonates exposed to intra-amniotic inflammation and postnatal RDS had a significantly higher risk of IVH than those with only intra-amniotic inflammation [odds ratio (OR) 4.6, 95% confidence interval (CI) 1.1-19.3] and those with RDS alone (OR 5.6, 95% CI 1.0-30.9), after adjusting for gestational age. CONCLUSION The combined exposure to intra-amniotic inflammation and postnatal RDS markedly increased the risk of IVH in preterm neonates.
Collapse
Affiliation(s)
- Kyung Joon OH
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea,Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Korea
| | - Jee Yoon PARK
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - JoonHo LEE
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Joon-Seok HONG
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea,Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Korea
| | - Roberto ROMERO
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Bo Hyun YOON
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Makinson R, Lloyd K, Rayasam A, McKee S, Brown A, Barila G, Grissom N, George R, Marini M, Fabry Z, Elovitz M, Reyes TM. Intrauterine inflammation induces sex-specific effects on neuroinflammation, white matter, and behavior. Brain Behav Immun 2017; 66:277-288. [PMID: 28739513 PMCID: PMC6916731 DOI: 10.1016/j.bbi.2017.07.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 02/06/2023] Open
Abstract
Exposure to inflammation during pregnancy has been linked to adverse neurodevelopmental consequences for the offspring. One common route through which a developing fetus is exposed to inflammation is with intrauterine inflammation. To that end, we utilized an animal model of intrauterine inflammation (IUI; intrauterine lipopolysaccharide (LPS) administration, 50µg, E15) to assess placental and fetal brain inflammatory responses, white matter integrity, anxiety-related behaviors (elevated zero maze, light dark box, open field), microglial counts, and the CNS cytokine response to an acute injection of LPS in both males and females. These studies revealed that for multiple endpoints (fetal brain cytokine levels, cytokine response to adult LPS challenge) male IUI offspring were uniquely affected by intrauterine inflammation, while for other endpoints (behavior, microglial number) both sexes were similarly affected. These data advance our understanding of sex-specific effects of early life exposure to inflammation in a translationally- relevant model.
Collapse
Affiliation(s)
- Ryan Makinson
- University of Cincinnati, College of Medicine, Cincinnati, OH
| | - Kelsey Lloyd
- University of Cincinnati, College of Medicine, Cincinnati, OH
| | - Aditya Rayasam
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison
| | - Sarah McKee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Amy Brown
- Maternal and Child Health Research Center, Department of OBGYN, University of Pennsylvania, Philadelphia, PA
| | - Guillermo Barila
- Maternal and Child Health Research Center, Department of OBGYN, University of Pennsylvania, Philadelphia, PA
| | - Nicola Grissom
- University of Cincinnati, College of Medicine, Cincinnati, OH
| | - Robert George
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Matt Marini
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison
| | - Michal Elovitz
- Maternal and Child Health Research Center, Department of OBGYN, University of Pennsylvania, Philadelphia, PA
| | - Teresa M. Reyes
- University of Cincinnati, College of Medicine, Cincinnati, OH
| |
Collapse
|
15
|
McDougall ARA, Hale N, Rees S, Harding R, De Matteo R, Hooper SB, Tolcos M. Erythropoietin Protects Against Lipopolysaccharide-Induced Microgliosis and Abnormal Granule Cell Development in the Ovine Fetal Cerebellum. Front Cell Neurosci 2017; 11:224. [PMID: 28804448 PMCID: PMC5532439 DOI: 10.3389/fncel.2017.00224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 07/13/2017] [Indexed: 11/13/2022] Open
Abstract
Erythropoietin (EPO) ameliorates inflammation-induced injury in cerebral white matter (WM). However, effects of inflammation on the cerebellum and neuroprotective effects of EPO are unknown. Our aims were to determine: (i) whether lipopolysaccharide (LPS)-induced intrauterine inflammation causes injury to, and/or impairs development of the cerebellum; and (ii) whether recombinant human EPO (rhEPO) mitigates these changes. At 107 ± 1 days gestational age (DGA; ~0.7 of term), fetal sheep received LPS (~0.9 μg/kg; i.v.) or an equivalent volume of saline, followed 1 h later with 5000 IU/kg rhEPO (i.v.) or an equivalent volume of saline (i.v.). This generated the following experimental groups: control (saline + saline; n = 6), LPS (LPS + saline, n = 8) and LPS + rhEPO (n = 8). At necropsy (116 ± 1 DGA; ~0.8 of term) the brain was perfusion-fixed and stained histologically (H&E) and immunostained to identify granule cells (Neuronal Nuclei, NeuN), granule cell proliferation (Ki67), Bergmann glia (glial fibrillary acidic protein, GFAP), astrogliosis (GFAP) and microgliosis (Iba-1). In comparison to controls, LPS fetuses had an increased density of Iba-1-positive microglia (p < 0.005) in the lobular WM; rhEPO prevented this increase (p < 0.05). The thickness of both the proliferative (Ki67-positive) and post-mitotic zones (Ki67-negative) of the EGL were increased in LPS-exposed fetuses compared to controls (p < 0.05), but were not different between controls and LPS + rhEPO fetuses. LPS also increased (p < 0.001) the density of granule cells (NeuN-positive) in the internal granule layer (IGL); rhEPO prevented the increase (p < 0.01). There was no difference between groups in the areas of the vermis (total cross-section), molecular layer (ML), IGL or WM, the density of NeuN-positive granule cells in the ML, the linear density of Bergmann glial fibers, the areal density or somal area of the Purkinje cells, the areal coverage of GFAP-positive astrocytes in the lobular and deep WM, the density of Iba-1-positive microglia in the deep WM or the density of apopotic cells in the cerebellum. LPS-induced intrauterine inflammation caused microgliosis and abnormal development of granule cells. rhEPO ameliorated these changes, suggesting that it is neuroprotective against LPS-induced inflammatory effects in the cerebellum.
Collapse
Affiliation(s)
- Annie R A McDougall
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash UniversityClayton, VIC, Australia
| | - Nadia Hale
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia
| | - Sandra Rees
- Department of Anatomy and Neuroscience, University of MelbourneParkville, VIC, Australia
| | - Richard Harding
- Department of Anatomy and Developmental Biology, Monash UniversityClayton, VIC, Australia
| | - Robert De Matteo
- Department of Anatomy and Developmental Biology, Monash UniversityClayton, VIC, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash UniversityClayton, VIC, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT UniversityMelbourne, VIC, Australia
| |
Collapse
|
16
|
Huang L, Zhao F, Qu Y, Zhang L, Wang Y, Mu D. Animal models of hypoxic-ischemic encephalopathy: optimal choices for the best outcomes. Rev Neurosci 2017; 28:31-43. [PMID: 27559689 DOI: 10.1515/revneuro-2016-0022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
AbstractHypoxic-ischemic encephalopathy (HIE), a serious disease leading to neonatal death, is becoming a key area of pediatric neurological research. Despite remarkable advances in the understanding of HIE, the explicit pathogenesis of HIE is unclear, and well-established treatments are absent. Animal models are usually considered as the first step in the exploration of the underlying disease and in evaluating promising therapeutic interventions. Various animal models of HIE have been developed with distinct characteristics, and it is important to choose an appropriate animal model according to the experimental objectives. Generally, small animal models may be more suitable for exploring the mechanisms of HIE, whereas large animal models are better for translational studies. This review focuses on the features of commonly used HIE animal models with respect to their modeling strategies, merits, and shortcomings, and associated neuropathological changes, providing a comprehensive reference for improving existing animal models and developing new animal models.
Collapse
Affiliation(s)
- Lan Huang
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Fengyan Zhao
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Li Zhang
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yan Wang
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
- 3Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
17
|
Dean JM, Shi Z, Fleiss B, Gunn KC, Groenendaal F, van Bel F, Derrick M, Juul SE, Tan S, Gressens P, Mallard C, Bennet L, Gunn AJ. A Critical Review of Models of Perinatal Infection. Dev Neurosci 2015; 37:289-304. [PMID: 25720344 DOI: 10.1159/000370309] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/02/2014] [Indexed: 02/14/2025] Open
Abstract
One of the central, unanswered questions in perinatology is why preterm infants continue to have such poor long-term neurodevelopmental, cognitive and learning outcomes, even though severe brain injury is now rare. There is now strong clinical evidence that one factor underlying disability may be infection, as well as nonspecific inflammation, during fetal and early postnatal life. In this review, we examine the experimental evidence linking both acute and chronic infection/inflammation with perinatal brain injury and consider key experimental determinants, including the microglia response, relative brain and immune maturity and the pattern of exposure to infection. We highlight the importance of the origin and derivation of the bacterial cell wall component lipopolysaccharide. Such experimental paradigms are essential to determine the precise time course of the inflammatory reaction and to design targeted neuroprotective strategies to protect the perinatal brain from infection and inflammation.
Collapse
Affiliation(s)
- Justin M Dean
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Korzeniewski SJ, Romero R, Cortez J, Pappas A, Schwartz AG, Kim CJ, Kim JS, Kim YM, Yoon BH, Chaiworapongsa T, Hassan SS. A "multi-hit" model of neonatal white matter injury: cumulative contributions of chronic placental inflammation, acute fetal inflammation and postnatal inflammatory events. J Perinat Med 2014; 42:731-43. [PMID: 25205706 PMCID: PMC5987202 DOI: 10.1515/jpm-2014-0250] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/11/2014] [Indexed: 11/15/2022]
Abstract
OBJECTIVE We sought to determine whether cumulative evidence of perinatal inflammation was associated with increased risk in a "multi-hit" model of neonatal white matter injury (WMI). METHODS This retrospective cohort study included very preterm (gestational ages at delivery <32 weeks) live-born singleton neonates delivered at Hutzel Women's Hospital, Detroit, MI, from 2006 to 2011. Four pathologists blinded to clinical diagnoses and outcomes performed histological examinations according to standardized protocols. Neurosonography was obtained per routine clinical care. The primary indicator of WMI was ventriculomegaly (VE). Neonatal inflammation-initiating illnesses included bacteremia, surgical necrotizing enterocolitis, other infections, and those requiring mechanical ventilation. RESULTS A total of 425 live-born singleton neonates delivered before the 32nd week of gestation were included. Newborns delivered of pregnancies affected by chronic chorioamnionitis who had histologic evidence of an acute fetal inflammatory response were at increased risk of VE, unlike those without funisitis, relative to referent newborns without either condition, adjusting for gestational age [odds ratio (OR) 4.7; 95% confidence interval (CI) 1.4-15.8 vs. OR 1.3; 95% CI 0.7-2.6]. Similarly, newborns with funisitis who developed neonatal inflammation-initiating illness were at increased risk of VE, unlike those who did not develop such illness, compared to the referent group without either condition [OR 3.6 (95% CI 1.5-8.3) vs. OR 1.7 (95% CI 0.5-5.5)]. The greater the number of these three types of inflammation documented, the higher the risk of VE (P<0.0001). CONCLUSION Chronic placental inflammation, acute fetal inflammation, and neonatal inflammation-initiating illness seem to interact in contributing risk information and/or directly damaging the developing brain of newborns delivered very preterm.
Collapse
|
19
|
Microglia toxicity in preterm brain injury. Reprod Toxicol 2014; 48:106-12. [PMID: 24768662 PMCID: PMC4155935 DOI: 10.1016/j.reprotox.2014.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/01/2014] [Accepted: 04/14/2014] [Indexed: 01/07/2023]
Abstract
Microglia responses in the preterm human brain in association with injury. Microglia responses in animal models of preterm brain injury. Mechanisms of microglia toxicity from in vitro primary microglia cell culture experiments.
Microglia are the resident phagocytic cells of the central nervous system. During brain development they are also imperative for apoptosis of excessive neurons, synaptic pruning, phagocytosis of debris and maintaining brain homeostasis. Brain damage results in a fast and dynamic microglia reaction, which can influence the extent and distribution of subsequent neuronal dysfunction. As a consequence, microglia responses can promote tissue protection and repair following brain injury, or become detrimental for the tissue integrity and functionality. In this review, we will describe microglia responses in the human developing brain in association with injury, with particular focus on the preterm infant. We also explore microglia responses and mechanisms of microglia toxicity in animal models of preterm white matter injury and in vitro primary microglia cell culture experiments.
Collapse
|
20
|
Kadar H, Pham H, Touboul D, Brunelle A, Baud O. Impact of inhaled nitric oxide on the sulfatide profile of neonatal rat brain studied by TOF-SIMS imaging. Int J Mol Sci 2014; 15:5233-45. [PMID: 24670476 PMCID: PMC4013560 DOI: 10.3390/ijms15045233] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/12/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022] Open
Abstract
Despite advances in neonatal intensive care leading to an increased survival rate in preterm infants, brain lesions and subsequent neurological handicaps following preterm birth remain a critical issue. To prevent brain injury and/or enhance repair, one of the most promising therapies investigated in preclinical models is inhaled nitric oxide (iNO). We have assessed the effect of this therapy on brain lipid content in air- and iNO-exposed rat pups by mass spectrometry imaging using a time-of-flight secondary ion mass spectrometry (TOF-SIMS) method. This technique was used to map the variations in lipid composition of the rat brain and, particularly, of the white matter. Triplicate analysis showed a significant increase of sulfatides (25%–50%) in the white matter on Day 10 of life in iNO-exposed animals from Day 0–7 of life. These robust, repeatable and semi-quantitative data demonstrate a potent effect of iNO at the molecular level.
Collapse
Affiliation(s)
- Hanane Kadar
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France.
| | - Hoa Pham
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1141, Université Paris Diderot, PRES Sorbonne Paris-cité, Hôpital Robert Debré, 48 Boulevard Sérurier, Paris 75019, France.
| | - David Touboul
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France.
| | - Alain Brunelle
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France.
| | - Olivier Baud
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1141, Université Paris Diderot, PRES Sorbonne Paris-cité, Hôpital Robert Debré, 48 Boulevard Sérurier, Paris 75019, France.
| |
Collapse
|
21
|
The fetal inflammatory response syndrome is a risk factor for morbidity in preterm neonates. Am J Obstet Gynecol 2013; 209:542.e1-542.e11. [PMID: 23994220 DOI: 10.1016/j.ajog.2013.08.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/02/2013] [Accepted: 08/26/2013] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to show and discuss an association between fetal inflammatory response syndrome (FIRS) and an adverse neonatal outcome defined as combined severe neonatal morbidity and mortality in preterm neonates hospitalized in our neonatal intensive care unit. STUDY DESIGN This was an observational study including all preterm neonates hospitalized in our neonatal intensive care unit over a 21 month period. FIRS was defined as cord blood interleukin (IL)-6 greater than 11 pg/mL. Main outcome parameter was an adverse neonatal outcome defined as hospital mortality and/or the presence of any of 5 prespecified morbidities (bronchopulmonary dysplasia, periventricular leukomalacia, intraventricular hemorrhage, and early- or late-onset sepsis). RESULTS Fifty-seven of 176 preterm infants hospitalized during the study period (32%) had an adverse neonatal outcome and 62 of these 176 infants (35%) had FIRS with median IL-6 values of 51.8 pg/mL (range, 11.2 to >1000 pg/mL). In a regression analysis, FIRS was significantly associated with adverse neonatal outcome (P < .001) and with the single outcome parameters, intraventricular hemorrhage and early-onset sepsis (P = .006 and P = .018, respectively). In the bivariate analysis, FIRS was associated with death and bronchopulmonary dysplasia (P = .004 and P < .001, respectively). IL-6 correlated with adverse neonatal outcome (r = 0.411, P < .001). When comparing the correlation in neonates less than 32 weeks' gestational age (r = 0.481, P < .001) with neonates 32 weeks or longer (r = 0.233, P = .019), the difference was nearly significant (P = .065). CONCLUSION FIRS is a risk factor for adverse neonatal outcome in preterm infants. In particular, the combination of IL-6 greater than 11 pg/mL and low gestational age increased the risk for severe neonatal morbidity or death.
Collapse
|
22
|
Developmental neuroinflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:20-34. [PMID: 22122877 DOI: 10.1016/j.pnpbp.2011.11.003] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/18/2011] [Accepted: 11/09/2011] [Indexed: 12/27/2022]
Abstract
There is increasing interest in and evidence for altered immune factors in the etiology and pathophysiology of schizophrenia. Stimulated by various epidemiological findings reporting elevated risk of schizophrenia following prenatal exposure to infection, one line of current research aims to explore the potential contribution of immune-mediated disruption of early brain development in the precipitation of long-term psychotic disease. Since the initial formulation of the "prenatal cytokine hypothesis" more than a decade ago, extensive epidemiological research and remarkable advances in modeling prenatal immune activation effects in animal models have provided strong support for this hypothesis by underscoring the critical role of cytokine-associated inflammatory events, together with downstream pathophysiological processes such as oxidative stress, hypoferremia and zinc deficiency, in mediating the short- and long-term neurodevelopmental effects of prenatal infection. Longitudinal studies in animal models further indicate that infection-induced developmental neuroinflammation may be pathologically relevant beyond the antenatal and neonatal periods, and may contribute to disease progression associated with the gradual development of full-blown schizophrenic disease. According to this scenario, exposure to prenatal immune challenge primes early pre- and postnatal alterations in peripheral and central inflammatory response systems, which in turn may disrupt the normal development and maturation of neuronal systems from juvenile to adult stages of life. Such developmental neuroinflammation may adversely affect processes that are pivotal for normal brain maturation, including myelination, synaptic pruning, and neuronal remodeling, all of which occur to a great extent during postnatal brain maturation. Undoubtedly, our understanding of the role of developmental neuroinflammation in progressive brain changes relevant to schizophrenia is still in infancy. Identification of these mechanisms would be highly warranted because they may represent a valuable target to attenuate or even prevent the emergence of full-blown brain and behavioral pathology, especially in individuals with a history of prenatal complications such as in-utero exposure to infection and/or inflammation.
Collapse
|
23
|
Jellema RK, Lima Passos V, Zwanenburg A, Ophelders DRMG, De Munter S, Vanderlocht J, Germeraad WTV, Kuypers E, Collins JJP, Cleutjens JPM, Jennekens W, Gavilanes AWD, Seehase M, Vles HJ, Steinbusch H, Andriessen P, Wolfs TGAM, Kramer BW. Cerebral inflammation and mobilization of the peripheral immune system following global hypoxia-ischemia in preterm sheep. J Neuroinflammation 2013; 10:13. [PMID: 23347579 PMCID: PMC3614445 DOI: 10.1186/1742-2094-10-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/07/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is one of the most important causes of brain injury in preterm infants. Preterm HIE is predominantly caused by global hypoxia-ischemia (HI). In contrast, focal ischemia is most common in the adult brain and known to result in cerebral inflammation and activation of the peripheral immune system. These inflammatory responses are considered to play an important role in the adverse outcomes following brain ischemia. In this study, we hypothesize that cerebral and peripheral immune activation is also involved in preterm brain injury after global HI. METHODS Preterm instrumented fetal sheep were exposed to 25 minutes of umbilical cord occlusion (UCO) (n = 8) at 0.7 gestation. Sham-treated animals (n = 8) were used as a control group. Brain sections were stained for ionized calcium binding adaptor molecule 1 (IBA-1) to investigate microglial proliferation and activation. The peripheral immune system was studied by assessment of circulating white blood cell counts, cellular changes of the spleen and influx of peripheral immune cells (MPO-positive neutrophils) into the brain. Pre-oligodendrocytes (preOLs) and myelin basic protein (MBP) were detected to determine white matter injury. Electro-encephalography (EEG) was recorded to assess functional impairment by interburst interval (IBI) length analysis. RESULTS Global HI resulted in profound activation and proliferation of microglia in the hippocampus, periventricular and subcortical white matter. In addition, non-preferential mobilization of white blood cells into the circulation was observed within 1 day after global HI and a significant influx of neutrophils into the brain was detected 7 days after the global HI insult. Furthermore, global HI resulted in marked involution of the spleen, which could not be explained by increased splenic apoptosis. In concordance with cerebral inflammation, global HI induced severe brain atrophy, region-specific preOL vulnerability, hypomyelination and persistent suppressed brain function. CONCLUSIONS Our data provided evidence that global HI in preterm ovine fetuses resulted in profound cerebral inflammation and mobilization of the peripheral innate immune system. These inflammatory responses were paralleled by marked injury and functional loss of the preterm brain. Further understanding of the interplay between preterm brain inflammation and activation of the peripheral immune system following global HI will contribute to the development of future therapeutic interventions in preterm HIE.
Collapse
Affiliation(s)
- Reint K Jellema
- School of Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
| | - Valéria Lima Passos
- Department of Methodology and Statistics, Maastricht University, P. Debyeplein 1, Maastricht, 6229 HA, The Netherlands
| | - Alex Zwanenburg
- Department of Biomedical Technology, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
- Department of Clinical Physics, Maxima Medical Centre, De Run 4600, Veldhoven, 5504 DB, The Netherlands
| | - Daan RMG Ophelders
- School of Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
| | - Stephanie De Munter
- School of Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
| | - Joris Vanderlocht
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
- School of Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | - Wilfred TV Germeraad
- Department of Internal Medicine, Division of Haematology, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
- School of Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | - Elke Kuypers
- School of Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
| | - Jennifer JP Collins
- Department of Pediatrics, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
- School of Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | - Jack PM Cleutjens
- Department of Pathology, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
| | - Ward Jennekens
- Neonatal Intensive Care Unit, Maxima Medical Centre, De Run 4600, Veldhoven, 5504 DB, The Netherlands
- Department of Clinical Physics, Maxima Medical Centre, De Run 4600, Veldhoven, 5504 DB, The Netherlands
| | - Antonio WD Gavilanes
- School of Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
| | - Matthias Seehase
- School of Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
| | - Hans J Vles
- Department of Child Neurology, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
| | - Harry Steinbusch
- School of Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Peter Andriessen
- Neonatal Intensive Care Unit, Maxima Medical Centre, De Run 4600, Veldhoven, 5504 DB, The Netherlands
- Department of Clinical Physics, Maxima Medical Centre, De Run 4600, Veldhoven, 5504 DB, The Netherlands
| | - Tim GAM Wolfs
- Department of Pediatrics, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
- School of Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | - Boris W Kramer
- School of Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, PO box 5800, Maastricht, 6202 AZ, The Netherlands
- School of Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
24
|
Mathai S, Booth LC, Davidson JO, Drury PP, Fraser M, Jensen EC, George S, Naylor A, Gunn AJ, Bennet L. Acute on chronic exposure to endotoxin in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2012; 304:R189-97. [PMID: 23235324 DOI: 10.1152/ajpregu.00388.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acute, high-dose exposure to endotoxin lipopolysaccharide (LPS) in preterm fetal sheep can trigger periventricular white matter lesions (PVL), in association with severe hypotension/hypoxemia and significant mortality. Intriguingly, however, chronic or repeated exposure to LPS can induce tachyphylaxis. We therefore tested the hypothesis that progressive, acute on chronic fetal infection would be associated with white matter injury with little fetal mortality. Chronically instrumented preterm (0.7 gestational age) fetal sheep were exposed to a continuous low-dose LPS infusion (100 ng over 24 h, followed by 250 ng/24 h for 96 h) or saline. Boluses of 1 μg LPS or saline were given at 48, 72, and 96 h; sheep were killed at day 10. Six of 11 fetal sheep exposed to saline infusion + LPS boluses died 4-7 h after the first bolus. In contrast, there was no fetal mortality after saline infusions alone (n = 9), low-dose LPS infusion + saline boluses (n = 5), or low-dose LPS + LPS boluses (n = 9). Low-dose LPS infusion + LPS boluses was associated with greater microglial induction than low-dose LPS + saline boluses but a similar area of periventricular white matter inflammation. One fetus developed severe focal white matter necrosis after LPS infusion + boluses. The acute cardiovascular compromise associated with high-dose, acute exposure to LPS is markedly attenuated by previous low-dose infusions, with limited apparent exacerbation of periventricular white matter injury compared with low-dose infusion alone.
Collapse
Affiliation(s)
- Sam Mathai
- Department of Physiology, the University of Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Strackx E, Gantert M, Moers V, van Kooten IAJ, Rieke R, Hürter H, Lemmens MAM, Steinbusch HWM, Zimmermann LJI, Vles JSH, Garnier Y, Gavilanes AWD, Kramer BW. Increased number of cerebellar granule cells and astrocytes in the internal granule layer in sheep following prenatal intra-amniotic injection of lipopolysaccharide. THE CEREBELLUM 2012; 11:132-44. [PMID: 21773814 PMCID: PMC3311858 DOI: 10.1007/s12311-011-0297-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chorioamnionitis is an important problem in perinatology today, leading to brain injury and neurological handicaps. However, there are almost no data available regarding chorioamnionitis and a specific damage of the cerebellum. Therefore, this study aimed at determining if chorioamnionitis causes cerebellar morphological alterations. Chorioamnionitis was induced in sheep by the intra-amniotic injection of lipopolysaccharide (LPS) at a gestational age (GA) of 110 days. At a GA of 140 days, we assessed the mean total and layer-specific volume and the mean total granule cell (GCs) and Purkinje cell (PC) number in the cerebelli of LPS-exposed and control animals using high-precision design-based stereology. Astrogliosis was assessed in the gray and white matter (WM) using a glial fibrillary acidic protein staining combined with gray value image analysis. The present study showed an unchanged volume of the total cerebellum as well as the molecular layer, outer and inner granular cell layers (OGL and IGL, respectively), and WM. Interestingly, compared with controls, the LPS-exposed brains showed a statistically significant increase (+20.4%) in the mean total number of GCs, whereas the number of PCs did not show any difference between the two groups. In addition, LPS-exposed animals showed signs of astrogliosis specifically affecting the IGL. Intra-amniotic injection of LPS causes morphological changes in the cerebellum of fetal sheep still detectable at full-term birth. In this study, changes were restricted to the inner granule layer. These cerebellar changes might correspond to some of the motor or non-motor deficits seen in neonates from compromised pregnancies.
Collapse
Affiliation(s)
- Eveline Strackx
- Department of Neuroscience and European Graduate School of Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kuypers E, Ophelders D, Jellema RK, Kunzmann S, Gavilanes AW, Kramer BW. White matter injury following fetal inflammatory response syndrome induced by chorioamnionitis and fetal sepsis: lessons from experimental ovine models. Early Hum Dev 2012; 88:931-6. [PMID: 23078831 DOI: 10.1016/j.earlhumdev.2012.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chorioamnionitis and fetal sepsis can induce a fetal inflammatory response syndrome (FIRS) which is closely related to the development of white matter injury in the fetal brain. Large epidemiological studies support the link between FIRS and fetal brain injury with a clear association between the presence of in utero inflammation and neurodevelopmental complications such as cerebral palsy, autism and cognitive impairments later in life. Translational animal models of chorioamnionitis and fetal sepsis are essential in understanding the underlying pathophysiological mechanisms of fetal brain injury after exposure to intra-uterine inflammation. Concerning this aspect, ovine models have high translational value since neurodevelopment in sheep closely resembles the human situation. In this article, we will review clinical and experimental evidence for the link between FIRS and white matter injury in the fetal brain. With respect to experimental findings, we will particularly focus on the lessons learned from ovine models of chorioamnionitis and fetal sepsis. We also highlight two key players implied in the pathophysiology of white matter injury after in utero exposure to inflammation.
Collapse
Affiliation(s)
- Elke Kuypers
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Mathai S, Gunn AJ, Backhaus RA, Guan J. Window of opportunity for neuroprotection with an antioxidant, allene oxide synthase, after hypoxia-ischemia in adult male rats. CNS Neurosci Ther 2012; 18:887-94. [PMID: 22998294 PMCID: PMC6493396 DOI: 10.1111/cns.12004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/18/2012] [Accepted: 08/14/2012] [Indexed: 01/20/2023] Open
Abstract
AIMS Oxidative stress is an early event in the cascade leading in neuronal damage after hypoxic-ischemic (HI) brain injury. In the present study, we examined the dose response and window of opportunity for neuroprotection after HI injury with Allene Oxide Synthase (AOS), an anti-oxidative enzyme of the member of cytochrome P450 family. METHODS Adult male rats received intra-cerebro-ventricular infusions of either saline (vehicle) or AOS (1 μg or 10 μg or 100 μg per rat, intracerebroventricular n = 16 all groups) either 45 min or 3 h after unilateral HI brain injury. Brains were collected 5 days later. The extent of brain damage, neuronal survival, apoptosis, and glial reactions were assessed in the striatum, hippocampus, and cortex. RESULTS Allene Oxide Synthase was associated with reduced neuronal damage scores when given 45 min, but not 3 h, after HI injury (P < 0.0001) in all brain regions. AOS treatment (10 μg) improved neuronal survival in the striatum, cortex, and hippocampus (P < 0.05, P < 0.001) and reduced the microglia reaction (P < 0.05) and numbers of caspase-3-positive cells in the hippocampus (P < 0.01). CONCLUSIONS Early blockade of oxidative stress after HI injury reduces inflammatory response, neuronal necrosis, and apoptosis. The neuroprotective effects of AOS were time of administration-dependent suggesting a relatively restricted window of opportunity for acute brain injury.
Collapse
Affiliation(s)
- Sam Mathai
- The Liggins InstituteThe University of AucklandAucklandNew Zealand
- Department of PhysiologyFaculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Alistair J. Gunn
- Department of PhysiologyFaculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | | | - Jian Guan
- The Liggins InstituteThe University of AucklandAucklandNew Zealand
| |
Collapse
|
28
|
Mallard C. Innate immune regulation by toll-like receptors in the brain. ISRN NEUROLOGY 2012; 2012:701950. [PMID: 23097717 PMCID: PMC3477747 DOI: 10.5402/2012/701950] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/04/2012] [Indexed: 01/29/2023]
Abstract
The innate immune system plays an important role in cerebral health and disease. In recent years the role of innate immune regulation by toll-like receptors in the brain has been highlighted. In this paper the expression of toll-like receptors and endogenous toll-like receptor ligands in the brain and their role in cerebral ischemia will be discussed. Further, the ability of systemic toll-like receptor ligands to induce cerebral inflammation will be reviewed. Finally, the capacity of toll-like receptors to both increase (sensitization) and decrease (preconditioning/tolerance) the vulnerability of the brain to damage will be disclosed. Studies investigating the role of toll-like receptors in the developing brain will be emphasized.
Collapse
Affiliation(s)
- Carina Mallard
- Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530 Gothenburg, Sweden
| |
Collapse
|
29
|
Keogh MJ, Bennet L, Drury PP, Booth LC, Mathai S, Naylor AS, Fraser M, Gunn AJ. Subclinical exposure to low-dose endotoxin impairs EEG maturation in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2012; 303:R270-8. [PMID: 22696578 DOI: 10.1152/ajpregu.00216.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to chorioamnionitis is strongly associated with neurodevelopmental disability after premature birth; however, it remains unclear whether subclinical infection affects functional EEG maturation. Chronically instrumented 103-104-day-old (0.7 gestational age: term 147 days) fetal sheep in utero were randomized to receive either gram-negative LPS by continuous low-dose infusion (100 ng iv over 24 h, followed by 250 ng/24 h for 4 days; n = 6) or the same volume of normal saline (n = 9). Arterial plasma cortisol, ACTH, and IL-6 were measured. The delta (0-3.9 Hz), theta (4-7.9 Hz), alpha (8-12.9 Hz), and beta (13-22 Hz) components of the EEG were determined by power spectral analysis. Brains were taken after 10 days for histopathology. There were no changes in blood gases, cardiovascular variables, or EEG power during LPS infusion, but a transient rise in plasma cortisol and IL-6 (P < 0.05). LPS infusion was associated with loss of the maturational increase to higher frequency activity, with reduced alpha and beta power, and greater delta power than saline controls from 6 to 10 days (P < 0.05). Histologically, LPS was associated with increased numbers of microglia and TNF-α-positive cells in the periventricular white matter and frontoparietal cortex, increased caspase-3-positive cells in white matter, but no loss of CNPase-positive oligodendrocytes, Nurr-1 subplate cells, or gyral complexity. These data suggest that low-dose endotoxin exposure can impair EEG maturation in preterm fetal sheep in association with neural inflammation but without hemodynamic disturbances or cortical injury.
Collapse
Affiliation(s)
- Michael J Keogh
- Department of Physiology, University of Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Premature birth often is associated with neurodevelopmental disabilities. In this issue of Science Translational Medicine, a pair of papers investigate--in patients and in a reliable animal model--the effects of glucocorticoids on cerebellar development after premature birth.
Collapse
Affiliation(s)
- Olivier Baud
- Inserm, U676, Hôpital Robert Debré, Paris 75019, France
| | | |
Collapse
|
31
|
Perinatal cerebellar injury in human and animal models. Neurol Res Int 2012; 2012:858929. [PMID: 22530126 PMCID: PMC3317029 DOI: 10.1155/2012/858929] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/29/2011] [Indexed: 12/20/2022] Open
Abstract
Cerebellar injury is increasingly recognized through advanced neonatal brain imaging as a complication of premature birth. Survivors of preterm birth demonstrate a constellation of long-term neurodevelopmental deficits, many of which are potentially referable to cerebellar injury, including impaired motor functions such as fine motor incoordination, impaired motor sequencing and also cognitive, behavioral dysfunction among older patients. This paper reviews the morphogenesis and histogenesis of the human and rodent developing cerebellum, and its more frequent injuries in preterm. Most cerebellar lesions are cerebellar hemorrhage and infarction usually leading to cerebellar abnormalities and/or atrophy, but the exact pathogenesis of lesions of the cerebellum is unknown. The different mechanisms involved have been investigated with animal models and are primarily hypoxia, ischemia, infection, and inflammation Exposure to drugs and undernutrition can also induce cerebellar abnormalities. Different models are detailed to analyze these various disturbances of cerebellar development around birth.
Collapse
|
32
|
Dean JM, van de Looij Y, Sizonenko SV, Lodygensky GA, Lazeyras F, Bolouri H, Kjellmer I, Huppi PS, Hagberg H, Mallard C. Delayed cortical impairment following lipopolysaccharide exposure in preterm fetal sheep. Ann Neurol 2011; 70:846-56. [PMID: 22002627 DOI: 10.1002/ana.22480] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 04/28/2011] [Accepted: 05/06/2011] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Preterm infants exhibit chronic deficits in white matter (WM) and cortical maturation. Although fetal infection/inflammation may contribute to WM pathology, the factors contributing to cortical changes are largely unknown. We examined the effect of fetal lipopolysaccharide (LPS) exposure on WM and cortical development as assessed by magnetic resonance imaging (MRI), electroencephalography (EEG), and histopathology in fetal sheep at preterm human equivalent age. METHODS LPS was administered to fetal sheep at 102.5 ± 0.5 days of gestation. Continuous biophysical recordings were analyzed for 10 days after LPS. At postmortem, measurement of cerebral WM and cortical tissue volumes was achieved by stereological techniques. Specific effects of LPS on MRI-assessed T(1)-weighted and T(2)-weighted images, and immunohistochemical expression of oligodendrocytes, proliferating cells, cortical NeuN-positive and Nurr1-positive neurons (subplate marker), and cell death mechanisms were examined. RESULTS We observed reductions in WM (~21%; LPS, 1.19 ± 0.04 vs control, 1.51 ± 0.07 cm(3); p < 0.001) and cortical (~18%; LPS, 2.34 ± 0.10 vs control, 2.85 ± 0.07 cm(3); p < 0.001) volumes, associated with overt and diffuse WM injury, T(1)-/T(2) -weighted signal alterations, and reduced numbers of WM oligodendrocytes (LPS, 485 ± 31 vs control, 699 ± 69 cells/mm(2); p = 0.0189) and NeuN-positive (LPS, 421 ± 71 vs control 718 ± 92 cells/mm(2); p = 0.04) and Nurr1-positive (control, 2.5 ± 0.6 vs LPS, 0.6 ± 0.1 cells/mm(2); p = 0.007) cortical neurons after LPS. Moreover, there was loss of the normal maturational increase in cortical EEG amplitude, which correlated with reduced cortical volumes. INTERPRETATION Fetal exposure to LPS prior to myelination onset can impair both white matter and cortical development in a preclinical large animal model, supporting a role for maternal/fetal infection in the pathogenesis of preterm brain injury.
Collapse
Affiliation(s)
- Justin M Dean
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shen Y, Liu XB, Pleasure DE, Deng W. Axon-glia synapses are highly vulnerable to white matter injury in the developing brain. J Neurosci Res 2011; 90:105-21. [PMID: 21812016 DOI: 10.1002/jnr.22722] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/06/2011] [Accepted: 05/23/2011] [Indexed: 12/21/2022]
Abstract
The biology of cerebral white matter injury has been woefully understudied, in part because of the difficulty of reliably modeling this type of injury in rodents. Periventricular leukomalacia (PVL) is the predominant form of brain injury and the most common cause of cerebral palsy in premature infants. PVL is characterized by predominant white matter injury. No specific therapy for PVL is presently available, because the pathogenesis is not well understood. Here we report that two types of mouse PVL models have been created by hypoxia-ischemia with or without systemic coadministration of lipopolysaccharide (LPS). LPS coadministration exacerbated hypoxic-ischemic white matter injury and led to enhanced microglial activation and astrogliosis. Drug trials with the antiinflammatory agent minocycline, the antiexcitotoxic agent NBQX, and the antioxidant agent edaravone showed various degrees of protection in the two models, indicating that excitotoxic, oxidative, and inflammatory forms of injury are involved in the pathogenesis of injury to immature white matter. We then applied immunoelectron microscopy to reveal fine structural changes in the injured white matter and found that synapses between axons and oligodendroglial precursor cells (OPCs) are quickly and profoundly damaged. Hypoxia-ischemia caused a drastic decrease in the number of postsynaptic densities associated with the glutamatergic axon-OPC synapses defined by the expression of vesicular glutamate transporters, vGluT1 and vGluT2, on axon terminals that formed contacts with OPCs in the periventricular white matter, resulted in selective shrinkage of the postsynaptic OPCs contacted by vGluT2 labeled synapses, and led to excitotoxicity mediated by GluR2-lacking, Ca(2+) -permeable AMPA receptors. Overall, the present study provides novel mechanistic insights into the pathogenesis of PVL and reveals that axon-glia synapses are highly vulnerable to white matter injury in the developing brain. More broadly, the study of white matter development and injury has general implications for a variety of neurological diseases, including PVL, stroke, spinal cord injury, and multiple sclerosis.
Collapse
Affiliation(s)
- Yan Shen
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Sacramento, California 95817, USA
| | | | | | | |
Collapse
|
34
|
Systemic stimulation of TLR2 impairs neonatal mouse brain development. PLoS One 2011; 6:e19583. [PMID: 21573120 PMCID: PMC3089625 DOI: 10.1371/journal.pone.0019583] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 04/12/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Inflammation is associated with perinatal brain injury but the underlying mechanisms are not completely characterized. Stimulation of Toll-like receptors (TLRs) through specific agonists induces inflammatory responses that trigger both innate and adaptive immune responses. The impact of engagement of TLR2 signaling pathways on the neonatal brain is still unclear. The aim of this study was to investigate the potential effect of a TLR2 agonist on neonatal brain development. METHODOLOGY/PRINCIPAL FINDINGS Mice were injected intraperitoneally (i.p.) once a day from postnatal day (PND) 3 to PND11 with endotoxin-free saline, a TLR2 agonist Pam(3)CSK(4) (5 mg/kg) or Lipopolysaccharide (LPS, 0.3 mg/kg). Pups were sacrificed at PND12 or PND53 and brain, spleen and liver were collected and weighed. Brain sections were stained for brain injury markers. Long-term effects on memory function were assessed using the Trace Fear Conditioning test at PND50. After 9 days of Pam(3)CSK(4) administration, we found a decreased volume of cerebral gray matter, white matter in the forebrain and cerebellar molecular layer that was accompanied by an increase in spleen and liver weight at PND12. Such effects were not observed in Pam3CSK4-treated TLR 2-deficient mice. Pam3CSK4-treated mice also displayed decreased hippocampus neuronal density, and increased cerebral microglia density, while there was no effect on caspase-3 or general cell proliferation at PND12. Significantly elevated levels of IL-1β, IL-6, KC, and MCP-1 were detected after the first Pam3CSK4 injection in brain homogenates of PND3 mice. Pam(3)CSK(4) administration did not affect long-term memory function nor the volume of gray or white matter. CONCLUSIONS/SIGNIFICANCE Repeated systemic exposure to the TLR2 agonist Pam(3)CSK(4) can have a short-term negative impact on the neonatal mouse brain.
Collapse
|
35
|
Loron G, Olivier P, See H, Le Saché N, Angulo L, Biran V, Brunelle N, Besson-Lescure B, Kitzis MD, Pansiot J, Bingen E, Gressens P, Bonacorsi S, Baud O. Ciprofloxacin prevents myelination delay in neonatal rats subjected to E. coli sepsis. Ann Neurol 2010; 69:341-51. [PMID: 21387379 DOI: 10.1002/ana.22190] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 07/17/2010] [Accepted: 07/30/2010] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Perinatal infections and the systemic inflammatory response to them are critical contributors to white matter disease (WMD) in the developing brain despite the use of highly active antibiotics. Fluoroquinolones including ciprofloxacin (CIP) have intrinsic anti-inflammatory effects. We hypothesized that CIP, in addition to its antibacterial activity, could exert a neuroprotective effect by modulating white matter inflammation in response to sepsis. METHODS We adapted an Escherichia coli sepsis model to 5-day-old rat pups (P5), to induce white matter inflammation without bacterial meningitis. We then compared the ability of CIP to modulate inflammatory-induced brain damage compared with cefotaxime (CTX) (treatment of reference). RESULTS Compared with CTX, CIP was associated with reduced microglial activation and inducible nitric oxide synthase (iNOS) expression in the developing white matter in rat pups subjected to E. coli sepsis. In addition to reducing microglial activation, CIP was able to prevent myelination delay induced by E. coli sepsis and to promote oligodendroglial survival and maturation. We found that E. coli sepsis altered the transcription of the guidance molecules semaphorin 3A and 3F; CIP treatment was capable of reducing semaphorin 3A and 3F transcription levels to those seen in uninfected controls. Finally, in a noninfectious white matter inflammation model, CIP was associated with significantly reduced microglial activation and prevented WMD when compared to CTX. INTERPRETATION These data strongly suggest that CIP exerts a beneficial effect in a model of E. coli sepsis-induced WMD in rat pups that is independent of its antibacterial activity but likely related to iNOS expression modulation.
Collapse
Affiliation(s)
- Gauthier Loron
- Institut National de la Santé et de la Recherche Médicale AVENIR, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wallace K, Veerisetty S, Paul I, May W, Miguel-Hidalgo JJ, Bennett W. Prenatal infection decreases calbindin, decreases Purkinje cell volume and density and produces long-term motor deficits in Sprague-Dawley rats. Dev Neurosci 2010; 32:302-12. [PMID: 20948182 DOI: 10.1159/000319506] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 07/19/2010] [Indexed: 11/19/2022] Open
Abstract
The cerebellum is involved in the control of motor functions with Purkinje cells serving as the only output from the cerebellum. Purkinje cells are important targets for toxic substances and are vulnerable to prenatal insults. Intrauterine infection (IUI) has been shown to selectively target the developing cerebral white matter through lesioning, necrosis and inflammatory cytokine activation. Developmental and cognitive delays have been associated with animal models of IUI. The aim of this study was to determine if IUI leads to damage to Purkinje cells in the developing cerebellum and if any damage is associated with decreases in calbindin and motor behaviors in surviving pups. Pregnant rats were injected with Escherichia coli (1 × 10⁵ colony-forming units) or sterile saline at gestational day 17. Beginning at postnatal day (PND) 2, the pups were subjected to a series of developmental tests to examine developmental milestones. At PND 16, some pups were sacrificed and their brains extracted and processed for histology or protein studies. Hematoxylin and eosin (HE) staining was done to examine the general morphology of the Purkinje cells and to examine Purkinje cell density, area and volume. Calbindin expression was examined in the cerebellum via immunohistochemistry and Western blot techniques. The remaining rat pups were used to examine motor coordination and balance on a rotating rotarod at the prepubertal and adult ages. Prenatal E. coli injection did not significantly change birth weight or delivery time, but did delay surface righting and negative geotaxis in pups. Pups in the E. coli group also had a decrease in the number of Purkinje cells, as well as a decrease in Purkinje cell density and volume. HE staining demonstrated a change in Purkinje cell morphology. Calbindin expression was decreased in rats from the E. coli group as well. Locomotor tests indicated that while there were no significant changes in gross motor activity, motor coordination and balance was impaired in both prepubertal and adult rats from the E. coli group. In this model of IUI, we observed changes in Purkinje cell development which were associated with alterations in cerebellum-dependent motor behaviors. The decreases in calbindin and Purkinje cells were associated with developmental delays. These data further support the importance of IUI in brain development.
Collapse
Affiliation(s)
- K Wallace
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS 39216, USA. kwallace2 @ umc.edu
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Inhaled nitric oxide (iNO) is one of the most promising therapies used in neonates, but there is little information available about its effect on the developing brain. We explored the effects of both iNO and endogenous NO on developing white matter in rodents. Rat or mouse pups and their mothers were placed in a chamber containing 5 to 20 ppm of NO for 7 days after birth. Neonatal exposure to iNO was associated with a transient increase in central nervous system myelination in rats and C57BL/6 mice without any deleterious effects at low doses (5 ppm) or behavioral consequences in adulthood. Exposure to iNO was associated with a proliferative effect on immature oligodendrocytes and a subsequent promaturational effect. The role of endogenous NO in myelination was investigated in animals treated with the nitric oxides synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME) in the neonatal period; this led to protracted myelination defects and subsequent behavioral deficits in adulthood. These effects were reversed by rescuing L-NAME-treated animals with iNO. Thus, we demonstrate considerable effect of both exogenous and endogenous NO on myelination in rodents. These data point to potential new avenues for neuroprotection in human perinatal brain damage.
Collapse
|
38
|
|
39
|
Mallard C, Wang X, Hagberg H. The role of Toll-like receptors in perinatal brain injury. Clin Perinatol 2009; 36:763-72, v-vi. [PMID: 19944834 DOI: 10.1016/j.clp.2009.07.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The toll-like receptors (TLRs) are a family of microbe-sensing receptors on peripheral immune cells. TLRs have also been discovered to be present in the brain, particularly in circumventricular organs, microglia, and astrocytes. Some TLRs are strongly expressed in the embryonic brain and TLR3 and TLR8 have been implicated in neurogenesis and neurite outgrowth in the developing brain, whereas TLR2 and TLR4 have been shown to regulate adult neurogenesis. TLR2 and TLR4 also play a role in acute ischemic brain injury in the adult, although no neuroprotection was observed following perinatal hypoxic-ischemic injury. These findings suggest that different TLRs have specific roles in the immature and adult brain following brain damage.
Collapse
Affiliation(s)
- Carina Mallard
- Department of Neuroscience and Physiology, Perinatal Center, Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, 41390 Gothenburg, Sweden
| | | | | |
Collapse
|