1
|
Sharew NT, Clark SR, Papiol S, Heilbronner U, Degenhardt F, Fullerton JM, Hou L, Shekhtman T, Adli M, Akula N, Akiyama K, Ardau R, Arias B, Hasler R, Richard-Lepouriel H, Perroud N, Backlund L, Bhattacharjee AK, Bellivier F, Benabarre A, Bengesser S, Biernacka JM, Birner A, Marie-Claire C, Cervantes P, Chen HC, Chillotti C, Cichon S, Cruceanu C, Czerski PM, Dalkner N, Del Zompo M, DePaulo JR, Étain B, Jamain S, Falkai P, Forstner AJ, Frisen L, Frye MA, Gard S, Garnham JS, Goes FS, Grigoroiu-Serbanescu M, Fallgatter AJ, Stegmaier S, Ethofer T, Biere S, Petrova K, Schuster C, Adorjan K, Budde M, Heilbronner M, Kalman JL, Kohshour MO, Reich-Erkelenz D, Schaupp SK, Schulte EC, Senner F, Vogl T, Anghelescu IG, Arolt V, Dannlowski U, Dietrich DE, Figge C, Jäger M, Lang FU, Juckel G, Konrad C, Reimer J, Schmauß M, Schmitt A, Spitzer C, von Hagen M, Wiltfang J, Zimmermann J, Andlauer TFM, Fischer A, Bermpohl F, Ritter P, Matura S, Gryaznova A, Falkenberg I, Yildiz C, Kircher T, Schmidt J, Koch M, Gade K, Trost S, Haussleiter IS, Lambert M, Rohenkohl AC, Kraft V, Grof P, Hashimoto R, Hauser J, Herms S, Hoffmann P, Jiménez E, Kahn JP, Kassem L, et alSharew NT, Clark SR, Papiol S, Heilbronner U, Degenhardt F, Fullerton JM, Hou L, Shekhtman T, Adli M, Akula N, Akiyama K, Ardau R, Arias B, Hasler R, Richard-Lepouriel H, Perroud N, Backlund L, Bhattacharjee AK, Bellivier F, Benabarre A, Bengesser S, Biernacka JM, Birner A, Marie-Claire C, Cervantes P, Chen HC, Chillotti C, Cichon S, Cruceanu C, Czerski PM, Dalkner N, Del Zompo M, DePaulo JR, Étain B, Jamain S, Falkai P, Forstner AJ, Frisen L, Frye MA, Gard S, Garnham JS, Goes FS, Grigoroiu-Serbanescu M, Fallgatter AJ, Stegmaier S, Ethofer T, Biere S, Petrova K, Schuster C, Adorjan K, Budde M, Heilbronner M, Kalman JL, Kohshour MO, Reich-Erkelenz D, Schaupp SK, Schulte EC, Senner F, Vogl T, Anghelescu IG, Arolt V, Dannlowski U, Dietrich DE, Figge C, Jäger M, Lang FU, Juckel G, Konrad C, Reimer J, Schmauß M, Schmitt A, Spitzer C, von Hagen M, Wiltfang J, Zimmermann J, Andlauer TFM, Fischer A, Bermpohl F, Ritter P, Matura S, Gryaznova A, Falkenberg I, Yildiz C, Kircher T, Schmidt J, Koch M, Gade K, Trost S, Haussleiter IS, Lambert M, Rohenkohl AC, Kraft V, Grof P, Hashimoto R, Hauser J, Herms S, Hoffmann P, Jiménez E, Kahn JP, Kassem L, Kuo PH, Kato T, Kelsoe J, Kittel-Schneider S, Ferensztajn-Rochowiak E, König B, Kusumi I, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband SG, Tortorella A, Manchia M, Martinsson L, McCarthy MJ, McElroy S, Colom F, Millischer V, Mitjans M, Mondimore FM, Monteleone P, Nievergelt CM, Nöthen MM, Novák T, O'Donovan C, Ozaki N, Pfennig A, Pisanu C, Potash JB, Reif A, Reininghaus E, Rouleau GA, Rybakowski JK, Schalling M, Schofield PR, Schweizer BW, Severino G, Shilling PD, Shimoda K, Simhandl C, Slaney CM, Squassina A, Stamm T, Stopkova P, Maj M, Turecki G, Vieta E, Veeh J, Viswanath B, Witt SH, Wright A, Zandi PP, Mitchell PB, Bauer M, Alda M, Rietschel M, McMahon FJ, Schulze TG, Baune BT, Schubert KO, Amare AT. Pathway-Specific Polygenic Scores for Lithium Response for Predicting Clinical Lithium Treatment Response in Patients with Bipolar Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.20.25324216. [PMID: 40196273 PMCID: PMC11974776 DOI: 10.1101/2025.03.20.25324216] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Background Polygenic scores (PGSs) hold the potential to identify patients who respond favourably to specific psychiatric treatments. However, their biological interpretations remain unclear. In this study, we developed pathway-specific PGSs (PS PGS ) for lithium response and assessed their association with clinical lithium response in patients with bipolar disorder (BD). Methods Using sets of genes involved in pathways affected by lithium, we developed nine PS PGSs and evaluated their associations with lithium response in the International Consortium on Lithium Genetics cohort (ConLi + Gen: N = 2367), validated in the combined PsyCourse (N = 105) and BipoLife (N = 102) cohorts. Lithium responsiveness was assessed using the Retrospective Assessment of the Lithium Response Phenotype Scale (ALDA scale), for categorical outcome (good vs poor response) and continuous ALDA total score. Logistic and linear regressions, adjusting for age, sex, chip type, and the first four genetic principal components, were used to test associations, after multiple testing corrections ( p <0.05). Results Response to lithium was associated with PS PGS for acetylcholine, GABA, calcium channel signalling, mitochondria, circadian rhythm, and GSK pathways, R² ranging from 0.29% to 1.91%, with R² of 3.71% for the combined PS PGS. Associations for GABA PGS and CIR PGS were replicated. In decile-based stratified analysis, patients with the highest genetic loading (10 th decile) for acetylcholine pathway genetic variants were 3.03 times (95%CI: 1.95 - 4.69) more likely to have a good lithium response than the lowest decile (1 st decile). Conclusion PS PGSs achieved predictive performance comparable with conventional genome-wide PGSs, with more biological interpretability and using a smaller list of genetic variants, facilitating further investigation into the interaction of variants and biological pathways underlying lithium response.
Collapse
|
2
|
Davis MT, Asch RH, Weiss ER, Wagner A, Fineberg SK, Nabulsi N, Matuskey D, Carson RE, Esterlis I. An In Vivo Examination of the Relationship Between Metabotropic Glutamate 5 Receptor and Suicide Attempts in People With Borderline Personality Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:324-332. [PMID: 39613160 PMCID: PMC12009513 DOI: 10.1016/j.bpsc.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Borderline personality disorder (BPD) is a serious psychiatric condition that is associated with a high risk for suicide attempts (SAs) and death by suicide. However, relatively little is known about the pathophysiology of BPD. The metabotropic glutamate 5 receptor (mGlu5) has been specifically implicated in the pathophysiology of BPD and SAs, with more general roles in emotion regulation, social and cognitive functioning, and pain processing. Here, we examined the relationship between mGlu5 availability, BPD, and SAs in vivo for the first time. METHODS Eighteen individuals with BPD, 18 healthy control participants matched on age, sex, and smoking status, and 18 clinical comparison control participants with major depressive disorder completed comprehensive clinical assessments and participated in an [18F]FPEB positron emission tomography scan to measure mGlu5 availability. The volume of distribution (VT) in the frontolimbic circuit implicated in BPD pathophysiology was the positron emission tomography outcome measure. RESULTS We observed significantly higher frontolimbic mGlu5 availability in the BPD group than in both the healthy control group (p = .009, d = 0.84, 18.43% difference) and the major depressive disorder group (p = .03, d = 0.69, 15.21% difference). In the BPD, but not the major depressive disorder group, higher mGlu5 availability was also associated with a history of SAs (19-25% higher, ps = .02-.005). Furthermore, mGlu5 availability was positively correlated with risk factors for suicide (e.g., sexual victimization, perceived burdensomeness) in individuals with BPD and a history of SA. CONCLUSIONS Results show higher mGlu5 availability in BPD and SA for the first time. Our preliminary findings suggest that mGlu5 may be a critical treatment target for BPD symptoms, including SAs, and warrant additional investigation in larger samples.
Collapse
Affiliation(s)
- Margaret T Davis
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut; Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, Connecticut.
| | - Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Emily R Weiss
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Ashley Wagner
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Sarah K Fineberg
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - David Matuskey
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut; Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
3
|
Saha S, Krishnan H, Raghu P. IMPA1 dependent regulation of phosphatidylinositol 4,5-bisphosphate and calcium signalling by lithium. Life Sci Alliance 2024; 7:e202302425. [PMID: 38056909 PMCID: PMC10700560 DOI: 10.26508/lsa.202302425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Lithium (Li) is widely used as a mood stabilizer to treat bipolar affective disorder. However, the molecular targets of Li that underpin its therapeutic effect remain unresolved. Inositol monophosphatase (IMPA1) is an enzyme involved in phosphatidylinositol 4,5-bisphosphate (PIP2) resynthesis after PLC signaling. In vitro, Li inhibits IMPA1, but the relevance of this inhibition within neural cells remains unknown. Here, we report that treatment with therapeutic concentrations of Li reduces receptor-activated calcium release from intracellular stores and delays PIP2 resynthesis. These effects of Li are abrogated in IMPA1 deleted cells. We also observed that in human forebrain cortical neurons, treatment with Li reduced neuronal excitability and calcium signals. After Li treatment of human cortical neurons, transcriptome analyses revealed down-regulation of signaling by glutamate, a key excitatory neurotransmitter in the human brain. Collectively, our findings suggest that inhibition of IMPA1 by Li reduces receptor-activated PLC signaling and neuronal excitability.
Collapse
Affiliation(s)
- Sankhanil Saha
- National Centre for Biological Sciences-TIFR GKVK Campus, Bangalore, India
| | - Harini Krishnan
- National Centre for Biological Sciences-TIFR GKVK Campus, Bangalore, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR GKVK Campus, Bangalore, India
| |
Collapse
|
4
|
Puglisi-Allegra S, Lazzeri G, Busceti CL, Giorgi FS, Biagioni F, Fornai F. Lithium engages autophagy for neuroprotection and neuroplasticity: translational evidence for therapy. Neurosci Biobehav Rev 2023; 148:105148. [PMID: 36996994 DOI: 10.1016/j.neubiorev.2023.105148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
Here an overview is provided on therapeutic/neuroprotective effects of Lithium (Li+) in neurodegenerative and psychiatric disorders focusing on the conspicuous action of Li+ through autophagy. The effects on the autophagy machinery remain the key molecular mechanisms to explain the protective effects of Li+ for neurodegenerative diseases, offering potential therapeutic strategies for the treatment of neuropsychiatric disorders and emphasizes a crossroad linking autophagy, neurodegenerative disorders, and mood stabilization. Sensitization by psychostimulants points to several mechanisms involved in psychopathology, most also crucial in neurodegenerative disorders. Evidence shows the involvement of autophagy and metabotropic Glutamate receptors-5 (mGluR5) in neurodegeneration due to methamphetamine neurotoxicity as well as in neuroprotection, both in vitro and in vivo models. More recently, Li+ was shown to modulate autophagy through its action on mGluR5, thus pointing to an additional way of autophagy engagement by Li+ and to a substantial role of mGluR5 in neuroprotection related to neural e neuropsychiatry diseases. We propose Li+ engagement of autophagy through the canonical mechanisms of autophagy machinery and through the intermediary of mGluR5.
Collapse
|
5
|
Yang C, Zhu B, Zhan M, Hua ZC. Lithium in Cancer Therapy: Friend or Foe? Cancers (Basel) 2023; 15:cancers15041095. [PMID: 36831437 PMCID: PMC9954674 DOI: 10.3390/cancers15041095] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Lithium, a trace element important for fetal health and development, is considered a metal drug with a well-established clinical regime, economical production process, and a mature storage system. Several studies have shown that lithium affects tumor development by regulating inositol monophosphate (IMPase) and glycogen synthase kinase-3 (GSK-3). Lithium can also promote proliferation and programmed cell death (PCD) in tumor cells through a number of new targets, such as the nuclear receptor NR4A1 and Hedgehog-Gli. Lithium may increase cancer treatment efficacy while reducing side effects, suggesting that it can be used as an adjunctive therapy. In this review, we summarize the effects of lithium on tumor progression and discuss the underlying mechanisms. Additionally, we discuss lithium's limitations in antitumor clinical applications, including its narrow therapeutic window and potential pro-cancer effects on the tumor immune system.
Collapse
Affiliation(s)
- Chunhao Yang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (B.Z.); (Z.-C.H.)
| | - Mingjie Zhan
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zi-Chun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Correspondence: (B.Z.); (Z.-C.H.)
| |
Collapse
|
6
|
The neuroprotective and neuroplastic potential of glutamatergic therapeutic drugs in bipolar disorder. Neurosci Biobehav Rev 2022; 142:104906. [DOI: 10.1016/j.neubiorev.2022.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
|
7
|
Sánchez Triviño CA, Landinez MP, Duran S, Gomez MDP, Nasi E. Modulation of Gq/PLC-Mediated Signaling by Acute Lithium Exposure. Front Cell Neurosci 2022; 16:838939. [PMID: 35242014 PMCID: PMC8885521 DOI: 10.3389/fncel.2022.838939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although lithium has long been one of the most widely used pharmacological agents in psychiatry, its mechanisms of action at the cellular and molecular levels remain poorly understood. One of the targets of Li+ is the phosphoinositide pathway, but whereas the impact of Li+ on inositol lipid metabolism is well documented, information on physiological effects at the cellular level is lacking. We examined in two mammalian cell lines the effect of acute Li+ exposure on the mobilization of internal Ca2+ and phospholipase C (PLC)-dependent membrane conductances. We first corroborated by Western blots and immunofluorescence in HEK293 cells the presence of key signaling elements of a muscarinic PLC pathway (M1AchR, Gq, PLC-β1, and IP3Rs). Stimulation with carbachol evoked a dose-dependent mobilization of Ca, as determined with fluorescent indicators. This was due to release from internal stores and proved susceptible to the PLC antagonist U73122. Li+ exposure reproducibly potentiated the Ca response in a concentration-dependent manner extending to the low millimolar range. To broaden those observations to a neuronal context and probe potential Li modulation of electrical signaling, we next examined the cell line SHsy5y. We replicated the potentiating effects of Li on the mobilization of internal Ca, and, after characterizing the basic properties of the electrical response to cholinergic stimulation, we also demonstrated an equally robust upregulation of muscarinic membrane currents. Finally, by directly stimulating the signaling pathway at different links downstream of the receptor, the site of action of the observed Li effects could be narrowed down to the G protein and its interaction with PLC-β. These observations document a modulation of Gq/PLC/IP3-mediated signaling by acute exposure to lithium, reflected in distinct physiological changes in cellular responses.
Collapse
Affiliation(s)
- Cesar Adolfo Sánchez Triviño
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
- Centro Internacional de Física, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Maria Paula Landinez
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
- Centro Internacional de Física, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sara Duran
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
- Centro Internacional de Física, Universidad Nacional de Colombia, Bogotá, Colombia
| | - María Del Pilar Gomez
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Enrico Nasi
- Marine Biological Laboratory, Woods Hole, MA, United States
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
8
|
Khayachi A, Ase A, Liao C, Kamesh A, Kuhlmann N, Schorova L, Chaumette B, Dion P, Alda M, Séguéla P, Rouleau G, Milnerwood A. Chronic lithium treatment alters the excitatory/ inhibitory balance of synaptic networks and reduces mGluR5-PKC signalling in mouse cortical neurons. J Psychiatry Neurosci 2021; 46:E402-E414. [PMID: 34077150 PMCID: PMC8327978 DOI: 10.1503/jpn.200185] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 01/30/2021] [Indexed: 12/20/2022] Open
Abstract
Background Bipolar disorder is characterized by cyclical alternation between mania and depression, often comorbid with psychosis and suicide. Compared with other medications, the mood stabilizer lithium is the most effective treatment for the prevention of manic and depressive episodes. However, the pathophysiology of bipolar disorder and lithium’s mode of action are yet to be fully understood. Evidence suggests a change in the balance of excitatory and inhibitory activity, favouring excitation in bipolar disorder. In the present study, we sought to establish a holistic understanding of the neuronal consequences of lithium exposure in mouse cortical neurons, and to identify underlying mechanisms of action. Methods We used a range of technical approaches to determine the effects of acute and chronic lithium treatment on mature mouse cortical neurons. We combined RNA screening and biochemical and electrophysiological approaches with confocal immunofluorescence and live-cell calcium imaging. Results We found that only chronic lithium treatment significantly reduced intracellular calcium flux, specifically by activating metabotropic glutamatergic receptor 5. This was associated with altered phosphorylation of protein kinase C and glycogen synthase kinase 3, reduced neuronal excitability and several alterations to synapse function. Consequently, lithium treatment shifts the excitatory–inhibitory balance toward inhibition. Limitations The mechanisms we identified should be validated in future by similar experiments in whole animals and human neurons. Conclusion Together, the results revealed how lithium dampens neuronal excitability and the activity of the glutamatergic network, both of which are predicted to be overactive in the manic phase of bipolar disorder. Our working model of lithium action enables the development of targeted strategies to restore the balance of overactive networks, mimicking the therapeutic benefits of lithium but with reduced toxicity.
Collapse
Affiliation(s)
- Anouar Khayachi
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Ariel Ase
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Calwing Liao
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Anusha Kamesh
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Naila Kuhlmann
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Lenka Schorova
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Boris Chaumette
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Patrick Dion
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Martin Alda
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Philippe Séguéla
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Guy Rouleau
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Austen Milnerwood
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| |
Collapse
|
9
|
Özakman S, Gören MZ, Nurten A, Tekin N, Kalaycı R, Enginar N. Effects of tamoxifen and glutamate and glutamine levels in brain regions in repeated sleep deprivation-induced mania model in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:619-629. [PMID: 33104849 DOI: 10.1007/s00210-020-02001-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Protein kinase C inhibitor tamoxifen reduces symptoms of acute mania in bipolar patients and mania-like behaviors in animals. Memory impairment and altered levels of glutamate and glutamate/glutamine ratio have been reported in mania. Tamoxifen suppresses glutamate release which plays an important role in memory. The present study evaluated whether tamoxifen's activity participates in its antimanic efficacy in repeated sleep deprivation mania model. Mice were divided into control and 24-h sleep-deprived groups and were treated with vehicle or 1 mg/kg tamoxifen twice daily for 8 days. Sleep deprivation was repeated three times at intervals of 2 days. Square crossing and rearing were recorded as measures of locomotor activity. Memory and risk taking behavior were evaluated using novel object recognition and staircase tests, respectively. Glutamate and glutamine levels were measured in the frontal cortex and hippocampus. Behavioral tests were conducted 24 h after the second or immediately after the third sleep deprivations. Sleep deprivation increased locomotor activity and risk taking. Glutamate and glutamine levels and glutamate/glutamine ratio in the frontal cortex and hippocampus were unaffected. Locomotor hyperactivity was prevented by tamoxifen treatment. No change in the recognition index suggested lack of memory impairment in the model. These findings confirm the relevance of repeated sleep deprivation as a mania model and tamoxifen as an antimanic agent. However, future research is needed to further address lack of memory impairment in the model and lack of glutamatergic influence on the model and antimanic effect of tamoxifen.
Collapse
Affiliation(s)
- Selda Özakman
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - M Zafer Gören
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Asiye Nurten
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Nurdan Tekin
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Rivaze Kalaycı
- Department of Laboratory Animals Science, Istanbul University Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Nurhan Enginar
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
10
|
Juruena MF, Jelen LA, Young AH, Cleare AJ. New Pharmacological Interventions in Bipolar Disorder. Curr Top Behav Neurosci 2021; 48:303-324. [PMID: 33547595 DOI: 10.1007/7854_2020_181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The biological bases of bipolar disorder include aspects related, among others, to neurohormonal pathways, neurotransmission, signal transduction, regulation of gene expression, oxidative stress, neuroplasticity, and changes in the immune system. There is still a gap in understanding its complex neurobiology and, consequently, developing new treatments. Multiple factors probably interact in this complex equation of pathophysiology of bipolar disorder, such as genetic, biochemical, psychosocial, and environmental stress events, correlating with the development and severity of the bipolar disorder. These mechanisms can interact to exacerbate inflammation, impair neurogenesis, and increase oxidative stress damage, cellular mitochondrial dysfunction, changes in neurotrophins and in epigenetic mechanisms, neuroendocrine dysfunction, activation of neuronal death pathways, and dysfunction in neurotransmission systems. In this review, we explore the up-to-date knowledge of the neurobiological underpinnings of bipolar disorders. The difficulty in developing new drugs for bipolar disorder is very much associated with the lack of knowledge about the precise pathophysiology of this disorder. Pharmacological treatment for bipolar patients is vital; to progress to effective medications, it is essential to understand the neurobiology in bipolar patients better and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Mario F Juruena
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Luke A Jelen
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anthony J Cleare
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
11
|
Minoshima W, Masui K, Tani T, Nawa Y, Fujita S, Ishitobi H, Hosokawa C, Inouye Y. Deuterated Glutamate-Mediated Neuronal Activity on Micro-Electrode Arrays. MICROMACHINES 2020; 11:mi11090830. [PMID: 32878218 PMCID: PMC7569784 DOI: 10.3390/mi11090830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022]
Abstract
The excitatory synaptic transmission is mediated by glutamate in neuronal networks of the mammalian brain. In addition to the synaptic glutamate, extra-synaptic glutamate is known to modulate the neuronal activity. In neuronal networks, glutamate uptake is an important role of neurons and glial cells for lowering the concentration of extracellular glutamate and to avoid the excitotoxicity by glutamate. Monitoring the spatial distribution of intracellular glutamate is important to study the uptake of glutamate, but the approach has been hampered by the absence of appropriate glutamate analogs that report the localization of glutamate. Deuterium-labeled glutamate (GLU-D) is a promising tracer for monitoring the intracellular concentration of glutamate, but physiological properties of GLU-D have not been studied. Here we study the effects of extracellular GLU-D for the neuronal activity by using primary cultured rat hippocampal neurons that form neuronal networks on microelectrodes array. The frequency of firing in the spontaneous activity of neurons increased with the increasing concentration of extracellular GLU-D. The frequency of synchronized burst activity in neurons increased similarly as we observed in the spontaneous activity. These changes of the neuronal activity with extracellular GLU-D were suppressed by antagonists of glutamate receptors. These results suggest that GLU-D can be used as an analog of glutamate with equivalent effects for facilitating the neuronal activity. We anticipate GLU-D developing as a promising analog of glutamate for studying the dynamics of glutamate during neuronal activity.
Collapse
Affiliation(s)
- Wataru Minoshima
- AIST–Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, AIST, Osaka 565-0871, Japan; (W.M.); (K.M.); (Y.N.); (S.F.); (H.I.)
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Kyoko Masui
- AIST–Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, AIST, Osaka 565-0871, Japan; (W.M.); (K.M.); (Y.N.); (S.F.); (H.I.)
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Tomomi Tani
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-0026, Japan;
| | - Yasunori Nawa
- AIST–Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, AIST, Osaka 565-0871, Japan; (W.M.); (K.M.); (Y.N.); (S.F.); (H.I.)
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Satoshi Fujita
- AIST–Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, AIST, Osaka 565-0871, Japan; (W.M.); (K.M.); (Y.N.); (S.F.); (H.I.)
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-0026, Japan;
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Hidekazu Ishitobi
- AIST–Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, AIST, Osaka 565-0871, Japan; (W.M.); (K.M.); (Y.N.); (S.F.); (H.I.)
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Chie Hosokawa
- AIST–Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, AIST, Osaka 565-0871, Japan; (W.M.); (K.M.); (Y.N.); (S.F.); (H.I.)
- Department of Chemistry, Division of Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
- Correspondence: (C.H.); (Y.I.); Tel.: +81-6-6605-3700 (C.H.); +81-6-6879-4615 (Y.I.)
| | - Yasushi Inouye
- AIST–Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, AIST, Osaka 565-0871, Japan; (W.M.); (K.M.); (Y.N.); (S.F.); (H.I.)
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
- Correspondence: (C.H.); (Y.I.); Tel.: +81-6-6605-3700 (C.H.); +81-6-6879-4615 (Y.I.)
| |
Collapse
|
12
|
Lithium chloride enhances serotonin induced calcium activity in EGFP-GnIH neurons. Sci Rep 2020; 10:13876. [PMID: 32807874 PMCID: PMC7431857 DOI: 10.1038/s41598-020-70710-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/20/2020] [Indexed: 11/10/2022] Open
Abstract
Neurons synthesizing gonadotropin-inhibitory hormone (GnIH) have been implicated in the control of reproduction, food intake and stress. Serotonin (5-HT) receptors have been shown in GnIH neurons; however, their functional role in the regulation of GnIH neurons remains to be elucidated. In this study, we measured intracellular calcium ion levels following 5-HT treatment to hypothalamic primary cultures of enhanced fluorescent green protein-tagged GnIH (EGFP-GnIH) neurons from Wistar rat pups of mixed sex. Three days after initial seeding of the primary cultures, the test groups were pre-treated with lithium chloride to selectively inhibit glycogen synthase kinase 3 beta to promote intracellular calcium levels, whereas the control groups received culture medium with no lithium chloride treatment. 24 h later, the cultures were incubated with rhodamine-2AM (rhod-2AM) calcium indicator dye for one hour prior to imaging. 5-HT was added to the culture dishes 5 min after commencement of imaging. Analysis of intracellular calcium levels in EGFP-GnIH neurons showed that pre-treatment with lithium chloride before 5-HT treatment resulted in significant increase in intracellular calcium levels, two times higher than the baseline. This suggests that lithium chloride enhances the responsiveness of GnIH neurons to 5-HT.
Collapse
|
13
|
Wu H, Gao S, Terakawa S. Inhibitory effects of fucoidan on NMDA receptors and l-type Ca 2+ channels regulating the Ca 2+ responses in rat neurons. PHARMACEUTICAL BIOLOGY 2019; 57:1-7. [PMID: 30734636 PMCID: PMC6374951 DOI: 10.1080/13880209.2018.1548626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/19/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
CONTEXT Fucoidan, a sulphated polysaccharide extracted from brown algae [Fucus vesiculosus Linn. (Fucaceae)], has multiple biological activities. OBJECTIVE The effects of fucoidan on Ca2+ responses of rat neurons and its probable mechanisms with focus on glutamate receptors were examined. MATERIALS AND METHODS The neurons isolated from the cortex and hippocampi of Wistar rats in postnatal day 1 were employed. The intracellular Ca2+ responses triggered by various stimuli were measured in vitro by Fura-2/AM. Fucoidan at 0.5 mg/mL or 1.5 mg/mL was applied for 3 min to determine its effects on Ca2+ responses. RT-PCR was used to determine the mRNA expression of neuron receptors treated with fucoidan at 0.5 mg/mL for 3 h. RESULTS The Ca2+ responses induced by NMDA were 100% suppressed by fucoidan, and those induced by Bay K8644 90% in the cortical neurons. However, fucoidan has no significant effect on the Ca2+ responses of cortical neurons induced by AMPA or quisqualate. Meanwhile, the Ca2+ responses of hippocampal neurons induced by glutamate, ACPD or adrenaline, showed only a slight decrease following fucoidan treatment. RT-PCR assays of cortical and hippocampal neurons showed that fucoidan treatment significantly decreased the mRNA expression of NMDA-NR1 receptor and the primer pair for l-type Ca2+ channels, PR1/PR2. DISCUSSION AND CONCLUSIONS Our data indicate that fucoidan suppresses the intracellular Ca2+ responses by selectively inhibiting NMDA receptors in cortical neurons and l-type Ca2+ channels in hippocampal neurons. A wide spectrum of fucoidan binding to cell membrane may be useful for designing a general purpose drug in future.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Calcium/metabolism
- Calcium Channels, L-Type/metabolism
- Cells, Cultured
- Cerebellar Cortex/cytology
- Cerebellar Cortex/drug effects
- Excitatory Amino Acid Agonists/pharmacology
- Glutamic Acid/pharmacology
- Hippocampus/cytology
- Hippocampus/drug effects
- N-Methylaspartate/pharmacology
- Neurons/drug effects
- Neurons/metabolism
- Polysaccharides/pharmacology
- Rats
- Rats, Wistar
- Receptors, AMPA/metabolism
- Receptors, Glutamate/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/biosynthesis
- Receptors, N-Methyl-D-Aspartate/metabolism
Collapse
Affiliation(s)
- Hong Wu
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, China;
- Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shuibo Gao
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, China;
| | - Susumu Terakawa
- Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
14
|
Vaseghi S, Babapour V, Nasehi M, Zarrindast MR. Synergistic but not additive effect between ACPA and lithium in the dorsal hippocampal region on spatial learning and memory in rats: Isobolographic analyses. Chem Biol Interact 2019; 315:108895. [PMID: 31715133 DOI: 10.1016/j.cbi.2019.108895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
Lithium and cannabinoids can disrupt learning and memory performance. The goal of the present study is to investigate the additive or synergistic effect of lithium and cannabinoid combination doses on spatial learning and memory in rats by isobolographic analyses. Although several studies have suggested synergistic effects of cannabinoids or lithium in response to other compounds, in most of them isobolographic analyses were not used; Thus, there is a need for more detailed studies using isobolographic analyses. In this study, spatial memory was evaluated in the Morris Water Maze (MWM) apparatus by eight trials in the training day and one trial in the test day. Lithium was injected intraperitoneal and ACPA (cannabinoid type 1 receptor agonist) was injected into the dorsal hippocampal region (intra-CA1). For the isobolographic analyses, the ED50 of lithium (2.5 mg/kg) and ACPA (0.5 μg/rat) was measured by linear regression analysis, considering the doses were tested in our previous research. The results showed that, combinations of low, medium and high doses of lithium (0.312 mg/kg, 0.625 mg/kg and 1.25 mg/kg, respectively) and ACPA (0.0625 μg/rat, 0.125 μg/rat and 0.25 μg/rat, respectively) had synergistic but not additive effect on spatial learning and spatial memory. In conclusion, we suggest that combination doses of lithium and ACPA have synergistic but not additive effect on spatial learning and memory in the rat's dorsal hippocampal region.
Collapse
Affiliation(s)
- Salar Vaseghi
- Department of Physiology, Faculty of Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahab Babapour
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
González-Castro TB, Tovilla-Zárate CA, Genis-Mendoza AD, Juárez-Rojop IE, Nicolini H, López-Narváez ML, Martínez-Magaña JJ. Identification of gene ontology and pathways implicated in suicide behavior: Systematic review and enrichment analysis of GWAS studies. Am J Med Genet B Neuropsychiatr Genet 2019; 180:320-329. [PMID: 31045331 DOI: 10.1002/ajmg.b.32731] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 04/03/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Multiple large-scale studies such as genome-wide association studies (GWAS) have been performed to identify genetic contributors to suicidal behaviors (SB). We aimed to summarize and analyze the information obtained in SB GWAS, to explore the biological process gene ontology (GO) of genes associated with SB from GWAS, and to determine the possible implications of the genes associated with SB in Kyoto encyclopedias of genes and genomes (KEGG) biological pathways. The articles included in the analysis were obtained from PubMed and Scopus databases. Enrichment analyses were performed in Enrichr to evaluate the KEGG pathways and GO of the genes associated with SB of GWAS. The findings of biological process GO analysis showed 924 GO involved in genes related with SB; of those, the regulation of glucose import in response to insulin stimulus, regulation of protein localization to plasma membrane, positive regulation of endopeptidase activity, heterotypic cell-cell adhesion, regulation of cardiac muscle cell contraction, positive regulation of protein localization to plasma membrane, and positive regulation of protein localization to cell periphery biological process GO showed significant statistical association. Furthermore, we obtained 130 KEGG pathways involved in genes related with SB, which Aldosterone synthesis and secretion, Rap1 signaling pathway and arrhythmogenic right ventricular cardiomyopathy pathways showed a significant statistical association. These findings give a better perspective of the biological participation of genes associated with SB, which will be important to perform adequate strategies to prevent and treat SB.
Collapse
Affiliation(s)
- Thelma B González-Castro
- Multidisciplinary Academic Division of Jalpa de Méndez, Juárez Autonomous University of Tabasco, Jalpa de Méndez, Tabasco, Mexico.,Multidisciplinary Academic Division of Health Sciences, Juárez Autonomous University of Tabasco, Villahermosa, Tabasco, Mexico
| | - Carlos A Tovilla-Zárate
- Multidisciplinary Academic Division of Comalcalco, Juárez Autonomous University of Tabasco, Comalcalco, Tabasco, Mexico
| | - Alma D Genis-Mendoza
- Secretary of Health, National Institute of Genomic Medicine (INMEGEN), City of Mexico, Mexico.,Secretary of Health, Children's Psychiatric Hospital "Dr. Juan N. Navarro", City of Mexico, Mexico
| | - Isela E Juárez-Rojop
- Multidisciplinary Academic Division of Comalcalco, Juárez Autonomous University of Tabasco, Comalcalco, Tabasco, Mexico
| | - Humberto Nicolini
- Secretary of Health, National Institute of Genomic Medicine (INMEGEN), City of Mexico, Mexico.,Secretary of Health, Children's Psychiatric Hospital "Dr. Juan N. Navarro", City of Mexico, Mexico
| | | | - José J Martínez-Magaña
- Secretary of Health, National Institute of Genomic Medicine (INMEGEN), City of Mexico, Mexico
| |
Collapse
|
16
|
Sánchez-Blázquez P, Cortés-Montero E, Rodríguez-Muñoz M, Garzón J. Sigma 1 Receptor Antagonists Inhibit Manic-Like Behaviors in Two Congenital Strains of Mice. Int J Neuropsychopharmacol 2018; 21:938-948. [PMID: 29860313 PMCID: PMC6165958 DOI: 10.1093/ijnp/pyy049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/04/2018] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
Background Several currently available animal models reproduce select behavioral facets of human mania as well as the abnormal glutamatergic neurotransmission and dysregulation of glycogen synthase kinase 3β that accompanies this disease. Methods In this study, we addressed the therapeutic potential of ligands of sigma receptor type 1 (σ1R) in 2 putative models of mania: the "manic" Black Swiss outbred mice from Taconic farms (BStac) and mice with the 129 genetic background and histidine triad nucleotide-binding protein 1 (HINT1) deletion (HINT1-/- mice) that exhibit bipolar-like behaviors. Results The activity of control mice, which do not exhibit manic-like behaviors in the forced swim test, was significantly enhanced by MK801, an inhibitor of glutamate N-methyl-D-aspartate receptor activity, an effect that was not or barely observed in manic-like mice. Typical mood stabilizers, such as glycogen synthase kinase 3β inhibitors, but not σ1R ligands, reduced the N-methyl-D-aspartate receptor-mediated behaviors in control mice. Notably, σ1R antagonists S1RA, PD144418, BD1047, and BD1063, but not σ1R agonists PRE084 and PPCC, attenuated the manic-like behaviors of BStac and HINT1-/- mice by increasing antiactivity behaviors. The antimanic effects of a single administration of σ1R antagonists persisted for at least 24 hours, and these drugs did not alter the behavior of the "bipolar" HINT1-/- mice during pro-depressive episodes. Conclusions σ1R antagonists exhibit a selective normalizing effect on specific behavioral domains of mania without altering control (normal) or depressive-like behaviors.
Collapse
Affiliation(s)
- Pilar Sánchez-Blázquez
- Neuropharmacology, Department of Translational Neurosciences, Instituto Cajal, CSIC, Madrid, Spain
| | - Elsa Cortés-Montero
- Neuropharmacology, Department of Translational Neurosciences, Instituto Cajal, CSIC, Madrid, Spain
| | - María Rodríguez-Muñoz
- Neuropharmacology, Department of Translational Neurosciences, Instituto Cajal, CSIC, Madrid, Spain
| | - Javier Garzón
- Neuropharmacology, Department of Translational Neurosciences, Instituto Cajal, CSIC, Madrid, Spain
| |
Collapse
|
17
|
Bränn E, Fransson E, White RA, Papadopoulos FC, Edvinsson Å, Kamali-Moghaddam M, Cunningham JL, Sundström-Poromaa I, Skalkidou A. Inflammatory markers in women with postpartum depressive symptoms. J Neurosci Res 2018; 98:1309-1321. [PMID: 30252150 DOI: 10.1002/jnr.24312] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/30/2022]
Abstract
Postpartum depression (PPD) is a devastating disorder affecting not only more than 10% of all women giving birth, but also the baby, the family, and the society. Compiling evidence suggests the involvement of the immune system in the pathophysiology of major depression; yet, the immune response in perinatal depression is not as well studied. The aim of this study was to investigate the alterations in peripheral levels of inflammatory biomarkers in 169 Swedish women with and without depressive symptoms according to the Edinburgh postnatal depression scale or the M.I.N.I neuropsychiatric interview at eight weeks postpartum. Among the 70 markers analyzed with multiplex proximity extension assay, five were significantly elevated in women with postpartum depressive symptoms in the adjusted LASSO logistic regression analysis: Tumor necrosis factor ligand superfamily member (TRANCE) (OR-per 1 SD increase = 1.20), Hepatocyte growth factor (HGF) (OR = 1.17) Interleukin (IL)-18 (OR = 1.06), Fibroblast growth factor 23 (FGF-23) (OR = 1.25), and C-X-C motif chemokine 1 (CXCL1) (OR 1.11). These results indicate that women with PPD have elevated levels of some inflammatory biomarkers. It is, therefore, plausible that PPD is associated with a compromised adaptability of the immune system.
Collapse
Affiliation(s)
- Emma Bränn
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Emma Fransson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Åsa Edvinsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Janet L Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | | | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Kerr F, Bjedov I, Sofola-Adesakin O. Molecular Mechanisms of Lithium Action: Switching the Light on Multiple Targets for Dementia Using Animal Models. Front Mol Neurosci 2018; 11:297. [PMID: 30210290 PMCID: PMC6121012 DOI: 10.3389/fnmol.2018.00297] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
Lithium has long been used for the treatment of psychiatric disorders, due to its robust beneficial effect as a mood stabilizing drug. Lithium’s effectiveness for improving neurological function is therefore well-described, stimulating the investigation of its potential use in several neurodegenerative conditions including Alzheimer’s (AD), Parkinson’s (PD) and Huntington’s (HD) diseases. A narrow therapeutic window for these effects, however, has led to concerted efforts to understand the molecular mechanisms of lithium action in the brain, in order to develop more selective treatments that harness its neuroprotective potential whilst limiting contraindications. Animal models have proven pivotal in these studies, with lithium displaying advantageous effects on behavior across species, including worms (C. elegans), zebrafish (Danio rerio), fruit flies (Drosophila melanogaster) and rodents. Due to their susceptibility to genetic manipulation, functional genomic analyses in these model organisms have provided evidence for the main molecular determinants of lithium action, including inhibition of inositol monophosphatase (IMPA) and glycogen synthase kinase-3 (GSK-3). Accumulating pre-clinical evidence has indeed provided a basis for research into the therapeutic use of lithium for the treatment of dementia, an area of medical priority due to its increasing global impact and lack of disease-modifying drugs. Although lithium has been extensively described to prevent AD-associated amyloid and tau pathologies, this review article will focus on generic mechanisms by which lithium preserves neuronal function and improves memory in animal models of dementia. Of these, evidence from worms, flies and mice points to GSK-3 as the most robust mediator of lithium’s neuro-protective effect, but it’s interaction with downstream pathways, including Wnt/β-catenin, CREB/brain-derived neurotrophic factor (BDNF), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and toll-like receptor 4 (TLR4)/nuclear factor-κB (NFκB), have identified multiple targets for development of drugs which harness lithium’s neurogenic, cytoprotective, synaptic maintenance, anti-oxidant, anti-inflammatory and protein homeostasis properties, in addition to more potent and selective GSK-3 inhibitors. Lithium, therefore, has advantages as a multi-functional therapy to combat the complex molecular pathology of dementia. Animal studies will be vital, however, for comparative analyses to determine which of these defense mechanisms are most required to slow-down cognitive decline in dementia, and whether combination therapies can synergize systems to exploit lithium’s neuro-protective power while avoiding deleterious toxicity.
Collapse
Affiliation(s)
- Fiona Kerr
- Department of Life Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Ivana Bjedov
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Oyinkan Sofola-Adesakin
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
19
|
Mao LM, Wang JQ. Alterations in mGlu5 receptor expression and function in the striatum in a rat depression model. J Neurochem 2018; 145:287-298. [PMID: 29337350 DOI: 10.1111/jnc.14307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/27/2017] [Accepted: 01/03/2018] [Indexed: 12/24/2022]
Abstract
Major depressive disorder is a common form of mental illness. Many brain regions are implicated in the pathophysiology and symptomatology of depression. Among key brain areas is the striatum that controls reward and mood and is involved in the development of core depression-like behavior in animal models of depression. While molecular mechanisms in this region underlying depression-related behavior are poorly understood, the glutamatergic input to the striatum is believed to play a role. In this study, we investigated changes in metabotropic glutamate (mGlu) receptor expression and signaling in the striatum of adult rats in response to prolonged (10-12 weeks) social isolation, a pre-validated animal paradigm modeling depression in adulthood. We found that mGlu5 receptor protein levels in the striatum were increased in rats that showed typical depression- and anxiety-like behavior after chronic social isolation. This increase in mGlu5 receptor expression was seen in both subdivisions of the striatum, the nucleus accumbens and caudate putamen. At subcellular and subsynaptic levels, mGlu5 receptor expression was elevated in surface membranes at synaptic sites. In striatal neurons, the mGlu5-associated phosphoinositide signaling pathway was augmented in its efficacy after prolonged social isolation. These data indicate that the mGlu5 receptor is a sensitive substrate of depression. Adulthood social isolation leads to the up-regulation of mGlu5 receptor expression and function in striatal neurons.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA.,Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
20
|
Blacker CJ, Lewis CP, Frye MA, Veldic M. Metabotropic glutamate receptors as emerging research targets in bipolar disorder. Psychiatry Res 2017; 257:327-337. [PMID: 28800512 DOI: 10.1016/j.psychres.2017.07.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/02/2017] [Accepted: 07/29/2017] [Indexed: 01/03/2023]
Abstract
Glutamatergic dysregulation is implicated in the neuropathology of bipolar disorder (BD). There is increasing interest in investigating the role of metabotropic glutamate receptors (mGluRs) in BD and as a target for treatment intervention. Bipolar mGluR studies (published January 1992-April 2016) were identified via PubMed, Embase, Web of Science, and Scopus. Full-text screening, data extraction, and quality appraisal were conducted in duplicate, with strict inclusion and exclusion criteria. The initial literature search for mGluRs in BD, including non-bipolar mood disorders and primary psychotic disorders, identified 1544 articles. 61 abstracts were selected for relevance, 16 articles met full inclusion criteria, and three additional articles were found via citations. Despite limited literature, studies demonstrated: single nucleotide polymorphisms (SNPs) associated with BD, including a GRM3 SNP associated with greater likelihood of psychosis (rs6465084), mRNA binding protein Fragile X Mental Retardation Protein associated with altered mGluR1/5 activity in BD populations, and lithium decreasing mGluR5 expression and mGluR-mediated intracellular calcium signaling. Limited research has been performed on the role of mGluRs in BD, but results highlight the importance of ongoing study. Future directions for research of mGluRs in BD include GRM polymorphisms, epigenetic regulation, intracellular proteins, and pharmacologic interactions.
Collapse
Affiliation(s)
- Caren J Blacker
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Charles P Lewis
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
21
|
Du T, Rong Y, Feng R, Verkhratsky A, Peng L. Chronic Treatment with Anti-bipolar Drugs Down-Regulates Gene Expression of TRPC1 in Neurones. Front Cell Neurosci 2017; 10:305. [PMID: 28119572 PMCID: PMC5223735 DOI: 10.3389/fncel.2016.00305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/22/2016] [Indexed: 11/24/2022] Open
Abstract
In the brain, TRPC1 channels are abundantly expressed in neurones virtually in all regions; these proteins function as receptor-activated ion channels and are implicated in numerous processes, being specifically important for neurogenesis. Primary cultures of mouse cerebellar granule cell, cerebral cortical neurones, and freshly isolated neurones from in vivo brains were used to study effects of chronic treatment with anti-bipolar drugs [carbamazepine (CBZ), lithium salts and valproic acid] on gene expression of TRPC1. Expression of TRPC1 mRNA was identified with reverse transcription-polymerase chain reaction, whereas protein content was determined by Western blotting. Store-operated plasmalemmal Ca2+ entry (SOCE) was measured with fura-2 based microfluorimetry. Chronic treatment with each of the three drugs down-regulated mRNA and protein expression in cultured cerebellar granule cells in a time- and concentration-dependent manner. Similar effect was also observed in cultured cerebral cortical neurones treated with CBZ, lithium salts and valproic acid and in freshly isolated neurones from the brains of CBZ-treated animals. The amplitude of SOCE was substantially decreased in cerebellar granule cells chronically treated with each of the three drugs. Our findings indicate that down-regulation of TRPC1 gene expression and function in neurones may be one of the mechanisms of anti-bipolar drugs action.
Collapse
Affiliation(s)
- Ting Du
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Yan Rong
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Rui Feng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of ManchesterManchester, UK; Achucarro Center for Neuroscience, Basque Foundation for ScienceBilbao, Spain
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| |
Collapse
|
22
|
Data-Franco J, Singh A, Popovic D, Ashton M, Berk M, Vieta E, Figueira ML, Dean OM. Beyond the therapeutic shackles of the monoamines: New mechanisms in bipolar disorder biology. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:73-86. [PMID: 27616052 DOI: 10.1016/j.pnpbp.2016.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 02/08/2023]
Abstract
Multiple novel biological mechanisms putatively involved in the etiology of bipolar disorders are being explored. These include oxidative stress, altered glutamatergic neurotransmission, mitochondrial dysfunction, inflammation, cell signaling, apoptosis and impaired neurogenesis. Important clinical translational potential exists for such mechanisms to help underpin development of novel therapeutics - much needed given limitations of current therapies. These new mechanisms also help improve our understanding of how current therapeutics might exert their effects. Lithium, for example, appears to have antioxidant, immunomodulatory, signaling, anti-apoptotic and neuroprotective properties. Similar properties have been attributed to other mood stabilizers such as valproate, lamotrigine, and quetiapine. Perhaps of greatest translational value has been the recognition of such mechanisms leading to the emergence of novel therapeutics for bipolar disorders. These include the antioxidant N-acetylcysteine, the anti-inflammatory celecoxib, and ketamine - with effects on the glutamatergic system and microglial inhibition. We review these novel mechanisms and emerging therapeutics, and comment on next steps in this space.
Collapse
Affiliation(s)
- João Data-Franco
- Psychiatric Department, Hospital Beatriz Ângelo, Loures, Portugal; University of Lisbon, Faculty of Medicine, Lisbon, Portugal.
| | - Ajeet Singh
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, VIC, Australia
| | - Dina Popovic
- Bipolar Disorders Program, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain; Psychiatry Division, The Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Melanie Ashton
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia; Orygen Youth Health Research Centre, Parkville, VIC, Australia
| | - Eduard Vieta
- Bipolar Disorders Program, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - M L Figueira
- University of Lisbon, Faculty of Medicine, Lisbon, Portugal
| | - Olivia M Dean
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
23
|
Hong N, Choi YS, Kim SY, Kim HJ. Neuroprotective effect of lithium after pilocarpine-induced status epilepticus in mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 21:125-131. [PMID: 28066149 PMCID: PMC5214904 DOI: 10.4196/kjpp.2017.21.1.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 01/25/2023]
Abstract
Status epilepticus is the most common serious neurological condition triggered by abnormal electrical activity, leading to severe and widespread cell loss in the brain. Lithium has been one of the main drugs used for the treatment of bipolar disorder for decades, and its anticonvulsant and neuroprotective properties have been described in several neurological disease models. However, the therapeutic mechanisms underlying lithium's actions remain poorly understood. The muscarinic receptor agonist pilocarpine is used to induce status epilepticus, which is followed by hippocampal damage. The present study was designed to investigate the effects of lithium post-treatment on seizure susceptibility and hippocampal neuropathological changes following pilocarpine-induced status epilepticus. Status epilepticus was induced by administration of pilocarpine hydrochloride (320 mg/kg, i.p.) in C57BL/6 mice at 8 weeks of age. Lithium (80 mg/kg, i.p.) was administered 15 minutes after the pilocarpine injection. After the lithium injection, status epilepticus onset time and mortality were recorded. Lithium significantly delayed the onset time of status epilepticus and reduced mortality compared to the vehicle-treated group. Moreover, lithium effectively blocked pilocarpine-induced neuronal death in the hippocampus as estimated by cresyl violet and Fluoro-Jade B staining. However, lithium did not reduce glial activation following pilocarpine-induced status epilepticus. These results suggest that lithium has a neuroprotective effect and would be useful in the treatment of neurological disorders, in particular status epilepticus.
Collapse
Affiliation(s)
- Namgue Hong
- Department of Physiology, College of Medicine, Dankook University, Cheonan 31116, Korea.; Department of Medical Laser, Graduate School, Dankook University, Cheonan 31116, Korea
| | - Yun-Sik Choi
- Department of Pharmaceutical Science and Technology, College of Health and Medical Science, Catholic University of Daegu, Gyeongsan 38430, Korea
| | - Seong Yun Kim
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
24
|
Lithium ions in nanomolar concentration modulate glycine-activated chloride current in rat hippocampal neurons. Neurochem Int 2016; 94:67-73. [DOI: 10.1016/j.neuint.2016.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 11/17/2022]
|
25
|
Abstract
Electroencephalography (EEG) studies in patients with bipolar disorder have revealed lower amplitudes in brain oscillations. The aim of this review is to describe lithium-induced EEG changes in bipolar disorder and to discuss potential underlying factors. A literature survey about lithium-induced EEG changes in bipolar disorder was performed. Lithium consistently enhances magnitudes of brain oscillations in slow frequencies (delta and theta) in both resting-state EEG studies as well as event-related oscillations studies. Enhancement of magnitudes of beta oscillations is specific to event-related oscillations. Correlation between serum lithium levels and brain oscillations has been reported. Lithium-induced changes in brain oscillations might correspond to lithium-induced alterations in neurotransmitters, signaling cascades, plasticity, brain structure, or biophysical properties of lithium. Therefore, lithium-induced changes in brain oscillations could be promising biomarkers to assess the molecular mechanisms leading to variability in efficacy. Since the variability of lithium response in bipolar disorder is due to the genetic differences in the mechanisms involving lithium, it would be highly promising to assess the lithium-induced EEG changes as biomarkers in genetic studies.
Collapse
Affiliation(s)
- Murat İlhan Atagün
- Department of Psychiatry, Yıldırım Beyazıt University Medical School, Cankaya, Ankara, Turkey
| |
Collapse
|
26
|
León-Caballero J, Pacchiarotti I, Murru A, Valentí M, Colom F, Benach B, Pérez V, Dalmau J, Vieta E. Bipolar disorder and antibodies against the N-methyl-d-aspartate receptor: A gate to the involvement of autoimmunity in the pathophysiology of bipolar illness. Neurosci Biobehav Rev 2015; 55:403-412. [PMID: 26014349 DOI: 10.1016/j.neubiorev.2015.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 01/15/2023]
Abstract
The high prevalence of comorbidity between bipolar disorder (BD) and other medical conditions, including autoimmune diseases, supports the hypothesis of the nature of BD as a biological illness category. Hence, an immune dysregulation process may play an important role in the development of at least certain subtypes of BD. Increasing evidence also suggests that the N-methyl-d-aspartate receptor (NMDAR) may be relevant in the pathophysiology of BD. A possible key mechanism underlying the physiopathology of certain autoimmune diseases that may present with affective symptoms might be the production of anti-NMDAR auto-antibodies (auto-Abs). The best characterized autoimmune anti-NMDAR disease is the anti-NMDAR encephalitis. It has been found that 4% of these patients present isolated, mostly affective, psychiatric manifestations during their illness. An interesting suggestion emerged from this overview is that the same mechanisms that trigger affective symptoms in patients with increased anti-NMDAR auto-Abs levels could be involved in the physiopathology of at least a subgroup of BD. Future studies are needed to characterize the relationship between anti-NMDAR auto-Abs and BD.
Collapse
Affiliation(s)
- J León-Caballero
- Bipolar Disorders Unit, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain; Institut de Neuropsiquiatria i Addiccions, Parc de Salut Mar, CIBERSAM, Universidad Autonoma de Barcelona, Barcelona, Catalonia, Spain
| | - I Pacchiarotti
- Bipolar Disorders Unit, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - A Murru
- Bipolar Disorders Unit, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - M Valentí
- Bipolar Disorders Unit, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - F Colom
- Bipolar Disorders Unit, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - B Benach
- Bipolar Disorders Unit, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - V Pérez
- Institut de Neuropsiquiatria i Addiccions, Parc de Salut Mar, CIBERSAM, Universidad Autonoma de Barcelona, Barcelona, Catalonia, Spain
| | - J Dalmau
- Catalan Institution for Research and Advanced Studies (ICREA), IDIBAPS, University of Barcelona; Department of Neurology, University of Pennsylvania
| | - E Vieta
- Bipolar Disorders Unit, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain.
| |
Collapse
|
27
|
Kato T, Takata M, Kitaichi M, Kassai M, Inoue M, Ishikawa C, Hirose W, Yoshida K, Shimizu I. DSR-98776, a novel selective mGlu5 receptor negative allosteric modulator with potent antidepressant and antimanic activity. Eur J Pharmacol 2015; 757:11-20. [PMID: 25823809 DOI: 10.1016/j.ejphar.2015.03.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
Modulation of monoaminergic systems has been the main stream of treatment for patients with mood disorders. However, recent evidence suggests that the glutamatergic system plays an important role in the pathophysiology of these disorders. This study pharmacologically characterized a structurally novel metabotropic glutamate 5 (mGlu5) receptor negative allosteric modulator, DSR-98776, and evaluated its effect on rodent models of depression and mania. First, DSR-98776 in vitro profile was assessed using intracellular calcium and radioligand binding assays. This compound showed dose-dependent inhibitory activity for mGlu5 receptors by binding to the same allosteric site as 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a known mGlu5 inhibitor. The in vivo therapeutic benefits of DSR-98776 were evaluated in common rodent models of depression and mania. In the rat forced swimming test, DSR-98776 (1-3mg/kg) significantly reduced rats immobility time after treatment for 7 consecutive days, while paroxetine (3 and 10mg/kg) required administration for 2 consecutive weeks to reduce rats immobility time. In the mouse forced swimming test, acute administration of DSR-98776 (10-30 mg/kg) significantly reduced immobility time. This effect was not influenced by 4-chloro-DL-phenylalanine methyl ester hydrochloride-induced 5-HT depletion. Finally, DSR-98776 (30 mg/kg) significantly decreased methamphetamine/chlordiazepoxide-induced hyperactivity in mice, which reflects this compound antimanic-like effect. These results indicate that DSR-98776 acts as an orally potent antidepressant and antimanic in rodent models and can be a promising therapeutic option for the treatment of a broad range of mood disorders with depressive and manic states.
Collapse
Affiliation(s)
- Taro Kato
- Drug Development Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan.
| | - Makoto Takata
- Research Planning & Intelligence, Sumitomo Dainippon Pharma Co., Ltd., 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Maiko Kitaichi
- Drug Development Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Momoe Kassai
- Innovative Drug Discovery Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Mitsuhiro Inoue
- Drug Development Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Chihiro Ishikawa
- Innovative Drug Discovery Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Wataru Hirose
- Drug Development Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Kozo Yoshida
- Innovative Drug Discovery Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Isao Shimizu
- Drug Development Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| |
Collapse
|
28
|
The role of NMDA receptors in the pathophysiology and treatment of mood disorders. Neurosci Biobehav Rev 2014; 47:336-58. [PMID: 25218759 DOI: 10.1016/j.neubiorev.2014.08.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 08/08/2014] [Accepted: 08/28/2014] [Indexed: 12/31/2022]
Abstract
Mood disorders such as major depressive disorder and bipolar disorder are chronic and recurrent illnesses that cause significant disability and affect approximately 350 million people worldwide. Currently available biogenic amine treatments provide relief for many and yet fail to ameliorate symptoms for others, highlighting the need to diversify the search for new therapeutic strategies. Here we present recent evidence implicating the role of N-methyl-D-aspartate receptor (NMDAR) signaling in the pathophysiology of mood disorders. The possible role of NMDARs in mood disorders has been supported by evidence demonstrating that: (i) both BPD and MDD are characterized by altered levels of central excitatory neurotransmitters; (ii) NMDAR expression, distribution, and function are atypical in patients with mood disorders; (iii) NMDAR modulators show positive therapeutic effects in BPD and MDD patients; and (iv) conventional antidepressants/mood stabilizers can modulate NMDAR function. Taken together, this evidence suggests the NMDAR system holds considerable promise as a therapeutic target for developing next generation drugs that may provide more rapid onset relief of symptoms. Identifying the subcircuits involved in mood and elucidating the role of NMDARs subtypes in specific brain circuits would constitute an important step toward the development of more effective therapies with fewer side effects.
Collapse
|
29
|
Dual regulation of G proteins and the G-protein-activated K+ channels by lithium. Proc Natl Acad Sci U S A 2014; 111:5018-23. [PMID: 24639496 DOI: 10.1073/pnas.1316425111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lithium (Li(+)) is widely used to treat bipolar disorder (BPD). Cellular targets of Li(+), such as glycogen synthase kinase 3β (GSK3β) and G proteins, have long been implicated in BPD etiology; however, recent genetic studies link BPD to other proteins, particularly ion channels. Li(+) affects neuronal excitability, but the underlying mechanisms and the relevance to putative BPD targets are unknown. We discovered a dual regulation of G protein-gated K(+) (GIRK) channels by Li(+), and identified the underlying molecular mechanisms. In hippocampal neurons, therapeutic doses of Li(+) (1-2 mM) increased GIRK basal current (Ibasal) but attenuated neurotransmitter-evoked GIRK currents (Ievoked) mediated by Gi/o-coupled G-protein-coupled receptors (GPCRs). Molecular mechanisms of these regulations were studied with heterologously expressed GIRK1/2. In excised membrane patches, Li(+) increased Ibasal but reduced GPCR-induced GIRK currents. Both regulations were membrane-delimited and G protein-dependent, requiring both Gα and Gβγ subunits. Li(+) did not impair direct activation of GIRK channels by Gβγ, suggesting that inhibition of Ievoked results from an action of Li(+) on Gα, probably through inhibition of GTP-GDP exchange. In direct binding studies, Li(+) promoted GPCR-independent dissociation of Gαi(GDP) from Gβγ by a Mg(2+)-independent mechanism. This previously unknown Li(+) action on G proteins explains the second effect of Li(+), the enhancement of GIRK's Ibasal. The dual effect of Li(+) on GIRK may profoundly regulate the inhibitory effects of neurotransmitters acting via GIRK channels. Our findings link between Li(+), neuronal excitability, and both cellular and genetic targets of BPD: GPCRs, G proteins, and ion channels.
Collapse
|
30
|
Wallace J. Calcium dysregulation, and lithium treatment to forestall Alzheimer's disease – a merging of hypotheses. Cell Calcium 2014; 55:175-81. [DOI: 10.1016/j.ceca.2014.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/20/2014] [Accepted: 02/05/2014] [Indexed: 12/20/2022]
|
31
|
Machado-Vieira R, Soeiro-De-Souza MG, Richards EM, Teixeira AL, Zarate CA. Multiple levels of impaired neural plasticity and cellular resilience in bipolar disorder: developing treatments using an integrated translational approach. World J Biol Psychiatry 2014; 15:84-95. [PMID: 23998912 PMCID: PMC4180367 DOI: 10.3109/15622975.2013.830775] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES This paper reviews the neurobiology of bipolar disorder (BD), particularly findings associated with impaired cellular resilience and plasticity. METHODS PubMed/Medline articles and book chapters published over the last 20 years were identified using the following keyword combinations: BD, calcium, cytokines, endoplasmic reticulum (ER), genetics, glucocorticoids, glutamate, imaging, ketamine, lithium, mania, mitochondria, neuroplasticity, neuroprotection, neurotrophic, oxidative stress, plasticity, resilience, and valproate. RESULTS BD is associated with impaired cellular resilience and synaptic dysfunction at multiple levels, associated with impaired cellular resilience and plasticity. These findings were partially prevented or even reversed with the use of mood stabilizers, but longitudinal studies associated with clinical outcome remain scarce. CONCLUSIONS Evidence consistently suggests that BD involves impaired neural plasticity and cellular resilience at multiple levels. This includes the genetic and intra- and intercellular signalling levels, their impact on brain structure and function, as well as the final translation into behaviour/cognitive changes. Future studies are expected to adopt integrated translational approaches using a variety of methods (e.g., microarray approaches, neuroimaging, genetics, electrophysiology, and the new generation of -omics techniques). These studies will likely focus on more precise diagnoses and a personalized medicine paradigm in order to develop better treatments for those who need them most.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, USA,Laboratory of Neuroscience, LIM27, Institute and Department of Psychiatry, School of Medicine, University of Sao Paulo, SP, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, SP, Brazil
| | - Marcio G. Soeiro-De-Souza
- Mood Disorders Unit (GRUDA), Institute and Department of Psychiatry, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Erica M. Richards
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Antonio L. Teixeira
- Neurology Group, Department of Internal Medicine, School of Medicine, UFMG, Belo Horizonte, Brazil
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, USA
| |
Collapse
|
32
|
Soeiro-de-Souza MG, Bio DS, Dias VV, Vieta E, Machado-Vieira R, Moreno RA. The CACNA1C risk allele selectively impacts on executive function in bipolar type I disorder. Acta Psychiatr Scand 2013; 128:362-9. [PMID: 23406546 DOI: 10.1111/acps.12073] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/06/2012] [Accepted: 12/05/2012] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Calcium channels are important for converting electrical activity into biochemical events. A single nucleotide polymorphism (SNP) (rs1006737) in the CACNA1C gene has been strongly associated with increased risk for Bipolar disorder (BD) in genome-wide association studies. Recently, this same SNP has been reported to influence executive function in schizophrenia and controls, but it remains unclear whether this SNP affects behaviour, especially cognition in subjects with BD. METHOD A total of 109 BD type I subjects and 96 controls were genotyped for CACNA1C rs1006737 and assessed with an executive function tests battery [Wechsler Adult Intelligence Scale III (WAIS-III) Letter-Number Sequence subtest (WAIS-LNS), digit span (WAISDS), trail making test (TMT), and WCST (Wisconsin Card Sorting Test)]. RESULTS In patients with BD, the CACNA1C genotype Met/Met was associated with worse performance on all four executive function tests compared to Val/Val. No influence of CACNA1C was observed in the cognitive performance of healthy controls. CONCLUSION Our data indicate for the first time that the CACNA1C risk allele is likely associated with executive dysfunction as a trait in BD, as this association was found regardless the presence of mood symptoms. Larger studies should evaluate the potential influence of CACNA1C on other cognitive domains in BD.
Collapse
Affiliation(s)
- M G Soeiro-de-Souza
- Mood Disorders Unit (GRUDA), Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo (IPq-FMUSP), São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Porciúncula LO, Sallaberry C, Mioranzza S, Botton PHS, Rosemberg DB. The Janus face of caffeine. Neurochem Int 2013; 63:594-609. [PMID: 24055856 DOI: 10.1016/j.neuint.2013.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022]
Abstract
Caffeine is certainly the psychostimulant substance most consumed worldwide. Over the past years, chronic consumption of caffeine has been associated with prevention of cognitive decline associated to aging and mnemonic deficits of brain disorders. While its preventive effects have been reported extensively, the cognitive enhancer properties of caffeine are relatively under debate. Surprisingly, there are scarce detailed ontogenetic studies focusing on neurochemical parameters related to the effects of caffeine during prenatal and earlier postnatal periods. Furthermore, despite the large number of epidemiological studies, it remains unclear how safe is caffeine consumption during pregnancy and brain development. Thus, the purpose of this article is to review what is currently known about the actions of caffeine intake on neurobehavioral and adenosinergic system during brain development. We also reviewed other neurochemical systems affected by caffeine, but not only during brain development. Besides, some recent epidemiological studies were also outlined with the control of "pregnancy signal" as confounding variable. The idea is to tease out how studies on the impact of caffeine consumption during brain development deserve more attention and further investigation.
Collapse
Affiliation(s)
- Lisiane O Porciúncula
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil.
| | - Cássia Sallaberry
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil
| | - Sabrina Mioranzza
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil
| | - Paulo Henrique S Botton
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil
| | - Denis B Rosemberg
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil; Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Exatas e Ambientais, Universidade Comunitária da Região de Chapecó. Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó/SC, Brazil
| |
Collapse
|
34
|
Abstract
Lithium has been used for the treatment of mood disorders for over 60 years, yet the exact mechanisms by which it exerts its therapeutic effects remain unclear. Two enzymatic chains or pathways emerge as targets for lithium: inositol monophosphatase within the phosphatidylinositol signalling pathway and the protein kinase glycogen synthase kinase 3. Lithium inhibits these enzymes through displacing the normal cofactor magnesium, a vital regulator of numerous signalling pathways. Here we provide an overview of evidence, supporting a role for the inhibition of glycogen synthase kinase 3 and inositol monophosphatase in the pharmacodynamic actions of lithium. We also explore how inhibition of these enzymes by lithium can lead to downstream effects of clinical relevance, both for mood disorders and neurodegenerative diseases. Establishing a better understanding of lithium's mechanisms of action may allow the development of more effective and more tolerable pharmacological agents for the treatment of a range of mental illnesses, and provide clearer insight into the pathophysiology of such disorders.
Collapse
Affiliation(s)
- Kayleigh M Brown
- Institute of Psychiatry, King's College London, PO Box 63, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | | |
Collapse
|
35
|
Dallaspezia S, Poletti S, Lorenzi C, Pirovano A, Colombo C, Benedetti F. Influence of an interaction between lithium salts and a functional polymorphism in SLC1A2 on the history of illness in bipolar disorder. Mol Diagn Ther 2013; 16:303-9. [PMID: 23023733 DOI: 10.1007/s40291-012-0004-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a recurrent and disabling illness, characterized by periods of depression and mania. The history of the illness differs widely between patients, with episode frequency emerging as a strong predictor of poor illness outcome. Lithium salts are the first-choice long-term mood-stabilizing therapy, but not all patients respond equally to the treatment. Evidence suggests that alterations in glutamatergic systems may contribute to the pathophysiology of depression. Moreover, glutamate signaling is involved in brain development and synaptic plasticity, both of which are modified in individuals affected by BD, and has been implicated in the etiology of the disorder. The inactivation of glutamate is handled by a series of molecular glutamate transporters (excitatory amino acid transporters [EAATs]), among which EAAT2/SLC1A2 is responsible for up to 95% of extracellular glutamate clearance. A functional single-nucleotide polymorphism at -181 bp from the transcription start site of the SLC1A2 gene has been described. This T-to-G (DNA forward strand) polymorphism, commonly known as SLC1A2 -181A>C, affects transporter expression, with the variant G allele inducing a 30% reduction in promoter activity compared with the T allele. OBJECTIVE The aims of the study were to investigate if factors affecting glutamate function, such as SLC1A2 -181A>C (rs4354668), could affect recurrence of illness in BD, and if they interact with lithium salt treatment. METHODS We performed an observational study in our university hospital in Milan. We enrolled 110 subjects (76 females, 34 males) affected by BD type I. The exclusion criteria were other diagnoses on Axis I, mental retardation on Axis II, a history of epilepsy, and major medical and neurologic disorders. Fifty-four patients had been treated with lithium salts for more than 6 months. Patients were genotyped for SLC1A2 -181A>C by polymerase chain reaction-restriction fragment length polymorphism, and the influence of genotype on BD episode recurrence rates, and the interaction between the single nucleotide polymorphism and lithium treatment, were analyzed. RESULTS The SLC1A2 -181A>C genotype significantly influenced the total recurrence of episodes, with T/T homozygotes showing a significantly lower frequency of episodes (F = 3.26; p = 0.042), and an interaction between lithium treatment and genotype (F = 3.77; p = 0.026) was found to influence the history of the illness. CONCLUSION According to our results, the glutamatergic system could be hypothesized to exert some influence on the history of illness in BD. The SLC1A2 functional polymorphism was shown to significantly influence the total episode recurrence rate, with wild-type T homozygotes presenting the lowest number of episodes, G homozygotes reporting the highest number, and heterozygotes showing an intermediate phenotype. We confirmed the efficacy of lithium treatment in reducing the recurrence of illness in BD, and we found an interaction between lithium treatment and the SLC1A2 -181A>C genotype, confirming previous studies reporting an interaction between lithium salts and the glutamatergic system.
Collapse
Affiliation(s)
- Sara Dallaspezia
- Department of Clinical Neurosciences, Istituto Scientifico Ospedale San Raffaele, San Raffaele Turro, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Wallace J. Treatment of trauma with lithium to forestall the development of posttraumatic stress disorder by pharmacological induction of a mild transient amnesia. Med Hypotheses 2013; 80:711-5. [PMID: 23490200 DOI: 10.1016/j.mehy.2013.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/04/2013] [Accepted: 02/16/2013] [Indexed: 11/15/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a severe anxiety disorder that develops after exposure to trauma. Symptoms include persistent reexperiencing, persistent avoidance, persistent numbing, and persistent hyperarousal. Subsequent to trauma exposure, the onset of symptoms of an acute stress reaction can typically develop over varying amounts of time from days to months. Current pharmacotherapies for PTSD are available after symptoms manifest, and primarily consist of selective serotonin reuptake inhibitor (SSRI) antidepressants. There are currently no FDA approved pharmacological interventions available for the treatment of acutely traumatized individuals to forestall the development of PTSD after trauma and prior to the onset of symptoms. A prominent model of PTSD developed by Roger Pitman attributes the pathogenesis of PTSD to over-consolidated traumatic memories that are mediated by endogenous stress hormones released with trauma and after trauma. The molecular processes of memory consolidation in neurons are mediated by intracellular signaling pathways. One secondary messenger signaling pathway with a putative role in long-term potentiation (LTP) is the inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) secondary messenger system. Lithium, a treatment for bipolar disorder, and a pharmacotherapy that is associated with inducing transient impairments in cognition, memory, and learning, is an inhibitor of inositol monophosphatase (IMP), an enzyme in the IP3 and DAG secondary messenger pathway. I am advancing the hypothesis that the administration of lithium for a brief interval to traumatized individuals at risk for PTSD within the time period after trauma and prior to the onset of symptoms could potentially forestall the development of PTSD by disrupting LTP. I am proposing that this treatment will reduce the incidence of PTSD and reduce the severity of symptoms in those who eventually develop PTSD.
Collapse
Affiliation(s)
- James Wallace
- The Aging and Dementia Research Center, New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA.
| |
Collapse
|
37
|
Yamantürk-Çelik P, Unlüçerçi Y, Sevgi S, Bekpinar S, Eroğlu L. Nitrergic, glutamatergic and gabaergic systems in lithium toxicity. J Toxicol Sci 2013; 37:1017-23. [PMID: 23038008 DOI: 10.2131/jts.37.1017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We examined the role of nitrergic, glutamatergic and gamma-aminobutyric acid (GABA)-ergic systems in the mechanism(s) underlying lithium induced acute toxicity. With this aim, lithium (18 mEq/kg, i.p.) intoxicated rats were observed for 3 hr recording their clinical signs and death. Lithium exposure at the dose used produced central nervous system (CNS) depression. Pre-treatment of N(w)-nitro-L-arginine methyl ester (L-NAME) a nonselective nitric oxide synthase inhibitor (10 mg/kg, i.p.), 7-nitroindazole (7-NI) a selective neuronal nitric oxide synthase inhibitor (25 mg/kg, i.p.), nitric oxide precursor L-arginine (1,000 mg/kg, i.p.) and MK-801 a noncompetitive antagonist of N-methyl-D-aspartic acid class of glutamate receptors (0.5 mg/kg, i.p.) all increased CNS depression and mortality in lithium group however, no change was seen in GABA receptor agonist GABA (1,000 mg/kg, i.p.) or D-arginine (1,000 mg/kg, i.p.) a biologically inactive enantiomer of L-arginine pre-treated rats. Glutamic acid decarboxylase (GAD) enzyme activity was measured in hippocampus, cerebral cortex and cerebellum of the different groups of animals. GAD enzyme activity reduced in cerebral cortex but not altered in hippocampus or cerebellum by lithium as compared to the control (saline) group. We conclude that an interaction with nitrergic and glutamatergic systems may have a role in the acute toxicity of lithium in rats.The inhibition of glutamate metabolism may arise from this interaction and the involvement of GABA-ergic system should be further investigated in this toxicity.
Collapse
Affiliation(s)
- Pınar Yamantürk-Çelik
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Turkey.
| | | | | | | | | |
Collapse
|
38
|
A noncanonical postsynaptic transport route for a GPCR belonging to the serotonin receptor family. J Neurosci 2013; 32:17998-8008. [PMID: 23238716 DOI: 10.1523/jneurosci.1804-12.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Postsynaptic receptor trafficking plays an essential role in tuning neurotransmission and signal plasticity and has emerged as a potential therapeutic target in neuropsychiatric disease. Using a novel application of fluorescence recovery after photobleaching in rat hippocampal neurons, we examined transport from the soma to dendrites of seven G-protein-coupled receptors (GPCRs) implicated in mood disorders. Most GPCRs were delivered to dendrites via lateral diffusion, but one GPCR, the serotonin 1B receptor (5-HT(1B)), was delivered to the dendrites in secretory vesicles. Within the dendrites, 5-HT(1B) were stored in a reservoir of accessible vesicles that were recruited to preferential sites in plasma membrane, as observed with superecliptic pHluorin labeling. After membrane recruitment, 5-HT(1B) transport via lateral diffusion and temporal confinement to inhibitory and excitatory synapses was monitored by single particle tracking. These results suggest an alternative mechanism for control of neuronal activity via a GPCR that has been implicated in mood regulation.
Collapse
|
39
|
Malhi GS, Tanious M, Das P, Coulston CM, Berk M. Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs 2013; 27:135-53. [PMID: 23371914 DOI: 10.1007/s40263-013-0039-0] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lithium has been used for over half a century for the treatment of bipolar disorder as the archetypal mood stabilizer, and has a wealth of empirical evidence supporting its efficacy in this role. Despite this, the specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Given the inherently complex nature of the pathophysiology of bipolar disorder, this paper aims to capture what is known about the actions of lithium ranging from macroscopic changes in mood, cognition and brain structure, to its effects at the microscopic level on neurotransmission and intracellular and molecular pathways. A comprehensive literature search of databases including MEDLINE, EMBASE and PsycINFO was conducted using relevant keywords and the findings from the literature were then reviewed and synthesized. Numerous studies report that lithium is effective in the treatment of acute mania and for the long-term maintenance of mood and prophylaxis; in comparison, evidence for its efficacy in depression is modest. However, lithium possesses unique anti-suicidal properties that set it apart from other agents. With respect to cognition, studies suggest that lithium may reduce cognitive decline in patients; however, these findings require further investigation using both neuropsychological and functional neuroimaging probes. Interestingly, lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy. Overall, it is clear that the processes which underpin the therapeutic actions of lithium are sophisticated and most likely inter-related.
Collapse
Affiliation(s)
- Gin S Malhi
- Discipline of Psychiatry, Sydney Medical School, University of Sydney, and Department of Psychiatry, Royal North Shore Hospital, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
40
|
Soeiro-de-Souza MG, Otaduy MCG, Dias CZ, Bio DS, Machado-Vieira R, Moreno RA. The impact of the CACNA1C risk allele on limbic structures and facial emotions recognition in bipolar disorder subjects and healthy controls. J Affect Disord 2012; 141:94-101. [PMID: 22464935 DOI: 10.1016/j.jad.2012.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/06/2012] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Impairments in facial emotion recognition (FER) have been reported in bipolar disorder (BD) during all mood states. FER has been the focus of functional magnetic resonance imaging studies evaluating differential activation of limbic regions. Recently, the α1-C subunit of the L-type voltage-gated calcium channel (CACNA1C) gene has been described as a risk gene for BD and its Met allele found to increase CACNA1C mRNA expression. In healthy controls, the CACNA1C risk (Met) allele has been reported to increase limbic system activation during emotional stimuli and also to impact on cognitive function. The aim of this study was to investigate the impact of CACNA1C genotype on FER scores and limbic system morphology in subjects with BD and healthy controls. MATERIAL AND METHODS Thirty-nine euthymic BD I subjects and 40 healthy controls were submitted to a FER recognition test battery and genotyped for CACNA1C. Subjects were also examined with a 3D 3-Tesla structural imaging protocol. RESULTS The CACNA1C risk allele for BD was associated to FER impairment in BD, while in controls nothing was observed. The CACNA1C genotype did not impact on amygdala or hippocampus volume neither in BD nor controls. LIMITATIONS Sample size. CONCLUSION The present findings suggest that a polymorphism in calcium channels interferes FER phenotype exclusively in BD and doesn't interfere on limbic structures morphology.
Collapse
Affiliation(s)
- Márcio Gerhardt Soeiro-de-Souza
- Mood disorders Unit (GRUDA), Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo, GRUDA IPq-FMUSP, Brazil.
| | | | | | | | | | | |
Collapse
|
41
|
Dickerson F, Stallings C, Vaughan C, Origoni A, Khushalani S, Yolken R. Antibodies to the glutamate receptor in mania. Bipolar Disord 2012; 14:547-53. [PMID: 22672262 DOI: 10.1111/j.1399-5618.2012.01028.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND There is evidence that the glutamatergic system is involved in the pathophysiology of mania. Antibodies to the NR2 subunits of the N-methyl-D-aspartate (NMDA) receptor have been shown to adversely affect glutamate functioning. METHODS We measured serum antibodies to the NR2 peptide of the NMDA receptor in 60 individuals with different subtypes of mania, including schizoaffective cases, who were assessed at up to three time points. We also measured these antibodies in 295 individuals in other psychiatric groups and in 170 non-psychiatric controls. NR2 antibody levels were compared among groups by multivariate analyses and within the mania group by repeated measures analysis of variance. RESULTS Individuals with mania had increased levels of antibodies to the NR2 peptide compared to levels in non-psychiatric controls when measured at the time of admission (t = 2.99, p = 0.003) and the time of evaluation (t = 2.57, p = 0.010), but not at follow-up six months later. The levels of antibodies in individuals in other psychiatric groups did not differ significantly from the levels measured in the control population. Within the mania group, there was a significant decrease in antibody levels over the three time points of the study (F = 5.4, df = 2, p = 0.0067). CONCLUSIONS NR2 antibodies are elevated during the acute phase of mania but not at follow-up. Our findings support a role for antibodies to the NMDA receptor in the pathogenesis of acute mania.
Collapse
Affiliation(s)
- Faith Dickerson
- Sheppard Pratt The Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Cousins DA, Grunze H. Interpreting magnetic resonance imaging findings in bipolar disorder. CNS Neurosci Ther 2012; 18:201-207. [PMID: 22449107 PMCID: PMC6493435 DOI: 10.1111/j.1755-5949.2011.00280.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/13/2011] [Accepted: 08/04/2011] [Indexed: 02/05/2023] Open
Abstract
The episodic nature of bipolar disorder together with the ostensibly polar extremes of mania and depression have favored the acceptance of a functional model postulating regionally disturbed brain activity returning to normal with time or treatment. Seemingly contrary to that view, anatomical imaging studies have demonstrated abnormalities in brain structure which could reflect neurodegeneration or represent disturbed neuronal development. Resolution may come from an appreciation of adult neurogenesis, especially given the neuroprotective properties of drugs, such as lithium and their effects on brain volume. The brain regions vulnerable to structural changes also show evidence of dysfunction, giving rise to corticolimbic dysregulation interpretations of bipolar disorder. This article reviews the structural and functional magnetic resonance imaging data in bipolar disorder. Its focus is on the interpretation of findings in light of recent developments in the fields of neurobiology and image analysis, with particular attention paid to both the confounding effects of medication and the baseline energy state of the brain.
Collapse
Affiliation(s)
- David A Cousins
- Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| | | |
Collapse
|
43
|
Abstract
AbstractLithium is one of the most widely used drugs in neuropsychopharmacology. Preclinical scientists have made several advances in ascertaining the molecular mechanisms of action of this cation; such as its ability to stabilize monoamine levels, to interact with second messengers, and its neuroprotective effects, possibly over suicidal behaviors. Nevertheless, there remains a gap of knowledge between the pharmacological advances and the number of reliable clinical trials, creating a lack of evidence-based medicine to support medical prescriptions. In this review we examine lithium’s molecular mechanisms of action and evaluate their relevance in clinical applications.
Collapse
|
44
|
Altamura AC, Lietti L, Dobrea C, Benatti B, Arici C, Dell'Osso B. Mood stabilizers for patients with bipolar disorder: the state of the art. Expert Rev Neurother 2011; 11:85-99. [PMID: 21158558 DOI: 10.1586/ern.10.181] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bipolar disorder (BD) is a prevalent and disabling condition, often comorbid with other medical and psychiatric conditions and frequently misdiagnosed. International treatment guidelines for BD recommend the use of mood stabilizers - either in monotherapy or in association - as the gold standard in both acute and long-term therapy. Commonly used in the clinical practice of BD, mood stabilizers have represented an evolving field over the last few years. The concept of stabilization, in fact, has been stressed as the ultimate objective of the treatment of BD, given the chronic and recurrent nature of the illness, which accounts for its significant levels of impairment and disability. To date, different compounds are included within the broad class of mood stabilizers, with lithium, anticonvulsants and, more recently, atypical antipsychotics being the most representative agents. This article is aimed at providing an updated review of the available literature in relation to the role of mood stabilizers in BD, with particular emphasis on their mechanism of action, main clinical aspects and specific use in the different phases of BD treatment, according to the most recently published international treatment guidelines.
Collapse
Affiliation(s)
- A Carlo Altamura
- Department of Neurological Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|
45
|
Ghasemi M, Dehpour AR. The NMDA receptor/nitric oxide pathway: a target for the therapeutic and toxic effects of lithium. Trends Pharmacol Sci 2011; 32:420-34. [PMID: 21492946 DOI: 10.1016/j.tips.2011.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/03/2011] [Accepted: 03/11/2011] [Indexed: 12/18/2022]
Abstract
Although lithium has largely met its initial promise as the first drug discovered in the modern era of psychopharmacology, to date no definitive mechanism for its effects has been established. It has been proposed that lithium exerts its therapeutic effects by interfering with signal transduction through G-protein-coupled receptor (GPCR) pathways or direct inhibition of specific targets in signaling systems, including inositol monophosphatase and glycogen synthase kinase-3 (GSK-3). Recently, increasing evidence has suggested that N-methyl-D-aspartate receptor (NMDAR)/nitric oxide (NO) signaling could mediate some lithium-induced responses in the brain and peripheral tissues. However, the probable role of the NMDAR/NO system in the action of lithium has not been fully elucidated. In this review, we discuss biochemical, preclinical/behavioral and physiological evidence that implicates NMDAR/NO signaling in the therapeutic effect of lithium. NMDAR/NO signaling could also explain some of side effects of lithium.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
46
|
Chang JW, Choi H, Cotman SL, Jung YK. Lithium rescues the impaired autophagy process in CbCln3(Δex7/8/Δex7/8) cerebellar cells and reduces neuronal vulnerability to cell death via IMPase inhibition. J Neurochem 2011; 116:659-68. [PMID: 21175620 PMCID: PMC4517618 DOI: 10.1111/j.1471-4159.2010.07158.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (Batten disease) is a neurodegenerative disorder caused by mutation in CLN3. Defective autophagy and concomitant accumulation of autofluorescence enriched with mitochondrial ATP synthase subunit c were previously discovered in Cln3 mutant knock-in mice. In this study, we show that treatment with lithium reduces numbers of LC3-positive autophagosomes and accumulation of LC3-II in Cln3 mutant knock-in cerebellar cells (CbCln3(Δex7/8/Δex7/8) ). Lithium, an inhibitor of GSK3 and IMPase, reduces the accumulation of mitochondrial ATP synthase subunit c and autofluorescence in CbCln3(Δex7/8/Δex7/8) cells, and mitigates the abnormal subcellular distribution of acidic vesicles in the cells. L690,330, an IMPase inhibitor, is as effective as lithium in restoring autophagy in CbCln3(Δex7/8/Δex7/8) cells. Moreover, lithium or down-regulation of IMPase expression protects CbCln3(Δex7/8/Δex7/8) cells from cell death induced by amino acid deprivation. These results suggest that lithium overcomes the autophagic defect in CbCln3(Δex7/8/Δex7/8) cerebellar cells probably through IMPase, thereby reducing their vulnerability to cell death.
Collapse
Affiliation(s)
- Jae-Woong Chang
- Creative Research Initiative (CRI)-Acceleration Research Laboratory, School of Biological Science/Bio-MAX Institute, Seoul National University, 599 Gwanak-ro, Seoul 151-747, Korea
| | - Hyunwoo Choi
- Creative Research Initiative (CRI)-Acceleration Research Laboratory, School of Biological Science/Bio-MAX Institute, Seoul National University, 599 Gwanak-ro, Seoul 151-747, Korea
| | - Susan L. Cotman
- Molecular Neurogenetics Unit and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yong-Keun Jung
- Creative Research Initiative (CRI)-Acceleration Research Laboratory, School of Biological Science/Bio-MAX Institute, Seoul National University, 599 Gwanak-ro, Seoul 151-747, Korea
| |
Collapse
|
47
|
Ghasemi M, Shafaroodi H, Nazarbeiki S, Meskar H, Heydarpour P, Ghasemi A, Talab SS, Ziai P, Bahremand A, Dehpour AR. Voltage-dependent calcium channel and NMDA receptor antagonists augment anticonvulsant effects of lithium chloride on pentylenetetrazole-induced clonic seizures in mice. Epilepsy Behav 2010; 18:171-178. [PMID: 20605531 DOI: 10.1016/j.yebeh.2010.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/29/2010] [Accepted: 04/02/2010] [Indexed: 01/18/2023]
Abstract
Although lithium is still a mainstay in the treatment of bipolar disorder, its underlying mechanisms of action have not been completely elucidated. Several studies have shown that lithium can also modulate seizure susceptibility in a variety of models. In the present study, using a model of clonic seizures induced with pentylenetetrazole (PTZ) in male Swiss mice, we investigated whether there is any interaction between lithium and either calcium channel blockers (CCBs: nifedipine, verapamil, and diltiazem) or N-methyl-D-aspartate (NMDA) receptor antagonists (ketamine and MK-801) in modulating seizure threshold. Acute lithium administration (5-100mg/kg, ip) significantly (P<0.01) increased seizure threshold. CCBs and NMDA receptor antagonists also exerted dose-dependent anticonvulsant effects on PTZ-induced seizures. Noneffective doses of CCBs (5mg/kg, ip), when combined with a noneffective dose of lithium (5mg/kg, ip), exerted significant anticonvulsant effects. Moreover, co-administration of a noneffective dose of either MK-801 (0.05mg/kg, ip) or ketamine (5mg/kg, ip) with a noneffective dose of lithium (5mg/kg, ip) significantly increased seizure threshold. Our findings demonstrate that lithium increases the clonic seizure threshold induced by PTZ in mice and interacts with either CCBs or NMDA receptor antagonists in exerting this effect, suggesting a role for Ca(2+) signaling in the anticonvulsant effects of lithium in the PTZ model of clonic seizures in mice.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Crespo-Biel N, Camins A, Canudas AM, Pallàs M. Kainate-induced toxicity in the hippocampus: potential role of lithium. Bipolar Disord 2010; 12:425-36. [PMID: 20636640 DOI: 10.1111/j.1399-5618.2010.00825.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES We investigated the neuroprotective effects of lithium in an experimental neurodegeneration model gated to kainate (KA) receptor activation. METHODS The hippocampus from KA-treated mice and hippocampal cell cultures were used to evaluate the pathways regulated by chronic lithium pretreatment in both in vivo and in vitro models. RESULTS Treatment with KA, as measured by fragmentation of alpha-spectrin and biochemically, induced the activation of calpain resulting in p35 cleavage to p25, indicating activation of cyclin-dependent kinase 5 (cdk5) and glycogen synthase kinase-3ss (GSK-3ss) and an increase in tau protein phosphorylation. Treatment with lithium reduced calpain activation and reduced the effects of cdk5 and GSK-3ss on tau. KA treatment of cultures resulted in neuronal demise. According to nuclear condensed cell counts, the addition of lithium to neuronal cell cultures (0.5-1 mM) a few days before KA treatment had neuroprotective and also antiapoptotic effects. The action of lithium on calpain/cdk5 and GSK-3ss pathways produced similar results in vivo. As calpain is activated by an increase in intracellular calcium, we showed that lithium reduced calcium concentrations in basal and KA-treated hippocampal cells, which was accompanied by an increase in NCX3, a Na+/Ca2+ exchanger pump. CONCLUSION A robust neuroprotective effect of lithium in the excitotoxic process induced by KA in mouse hippocampus was demonstrated via modulation of calcium entry and the subsequent inhibition of the calpain pathway. These mechanisms may act in an additive way with other mechanisms previously described for lithium, suggesting that it may be useful as a possible therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Natalia Crespo-Biel
- Unitat de Farmacologia i Farmacognòsia i Institut de Biomedicina (IBUB) i Centro de Investigación de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, Barcelona, Spain
| | | | | | | |
Collapse
|
49
|
|