1
|
Aljohani Y, Payne W, Yasuda RP, Olson T, Kellar KJ, Dezfuli G. Pharmacological target sites for restoration of age-associated deficits in NMDA receptor-mediated norepinephrine release in brain. J Neurochem 2025; 169:e16280. [PMID: 39655655 PMCID: PMC11629444 DOI: 10.1111/jnc.16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Aging affects virtually all organs of the body, but perhaps it has the most profound effects on the brain and its neurotransmitter systems, which influence a wide range of crucial functions, such as attention, focus, mood, neuroendocrine and autonomic functions, and sleep cycles. All of these essential functions, as well as fundamental cognitive processes such as memory, recall, and processing speed, utilize neuronal circuits that depend on neurotransmitter signaling between neurons. Glutamate (Glu), the main excitatory neurotransmitter in the CNS, is involved in most neuronal excitatory functions, including release of the neurotransmitter norepinephrine (NE). Previous studies from our lab demonstrated that the age-associated decline in Glu-stimulated NE release in rat cerebral cortex and hippocampus mediated by NMDA glutamate receptors, as well as deficits in dendritic spines, and cognitive functions are fully rescued by the CNS stimulant amphetamine. Here we further investigated Glu-stimulated NE release in the cerebral cortex to identify additional novel target sites for restoration of Glu-stimulated NE release. We found that blockade of alpha-2 adrenergic receptors fully restores Glu-stimulated NE release to the levels of young controls. In addition, we investigated the density and responsiveness of NMDA receptors as a potential underlying neuronal mechanism that could account for the observed age-associated decline in Glu-stimulated NE release. In the basal state of the receptor (no added glutamate and glycine) the density of NMDA receptors in the cortex from young and aged rats was similar. However, in contrast, in the presence of 10 μM added glutamate, which opens the receptor channel and increases the number of available [3H]-MK-801 binding sites within the channel, the density of [3H]-MK-801 binding sites was significantly less in the cortex from aged rats.
Collapse
Affiliation(s)
- Yousef Aljohani
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - William Payne
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Robert P. Yasuda
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Thao Olson
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Kenneth J. Kellar
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Ghazaul Dezfuli
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
2
|
Oliveira-Lima OC, de Carvalho GA, do Prado Assunção L, Bailão AM, Ulrich H, Marques BL, de Oliveira ACP, Gomez RS, Pinto MCX. GlyT1 Inhibition by NFPS Promotes Neuroprotection in Amyloid-β-Induced Alzheimer's Disease Animal Model. Neurochem Res 2024; 49:2535-2555. [PMID: 38888830 DOI: 10.1007/s11064-024-04190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/29/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-β, leading to N-methyl-D-aspartate (NMDA) receptor-dependent synaptic depression, spine elimination, and memory deficits. Glycine transporter type 1 (GlyT1) modulates glutamatergic neurotransmission via NMDA receptors (NMDAR), presenting a potential alternative therapeutic approach for AD. This study investigates the neuroprotective potential of GlyT1 inhibition in an amyloid-β-induced AD mouse model. C57BL/6 mice were treated with N-[3-([1,1-Biphenyl]-4-yloxy)-3-(4-fluorophenyl)propyl]-N-methylglycine (NFPS), a GlyT1 inhibitor, 24 h prior to intrahippocampal injection of amyloid-β. NFPS pretreatment prevented amyloid-β-induced cognitive deficits in short-term and long-term memory, evidenced by novel object recognition and spatial memory tasks. Moreover, NFPS pretreatment curbed microglial activation, astrocytic reactivity, and subsequent neuronal damage from amyloid-β injection. An extensive label-free quantitative UPLC-MSE proteomic analysis was performed on the hippocampi of mice treated with NFPS. In proteomics, KEGG enrichment analysis revealed increased in dopaminergic synapse, purine-containing compound biosynthetic process and long-term potentiation, and a reduction in Glucose catabolic process and glycolytic process pathways. The western blot analysis confirmed that NFPS treatment elevated BDNF levels, correlating with enhanced TRKB phosphorylation and mTOR activation. Moreover, NFPS treatment reduced the GluN2B expression after 6 h, which was associated with an increase on CaMKIV and CREB phosphorylation. Collectively, these findings demonstrate that GlyT1 inhibition by NFPS activates diverse neuroprotective pathways, enhancing long-term potentiation signaling and countering amyloid-β-induced hippocampal damage.
Collapse
Affiliation(s)
- Onésia Cristina Oliveira-Lima
- Laboratório de Neuroquímica e Neurofarmacologia Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança, S/N, UFG, Prédio ICB II, Sala 114, Goiânia-GO, CEP 74690-900, Brazil
| | - Gustavo Almeida de Carvalho
- Laboratório de Neuroquímica e Neurofarmacologia Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança, S/N, UFG, Prédio ICB II, Sala 114, Goiânia-GO, CEP 74690-900, Brazil
| | - Leandro do Prado Assunção
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO, CEP 74690-900, Brazil
| | - Alexandre Melo Bailão
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO, CEP 74690-900, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Bruno Lemes Marques
- Laboratório de Neuroquímica e Neurofarmacologia Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança, S/N, UFG, Prédio ICB II, Sala 114, Goiânia-GO, CEP 74690-900, Brazil
| | - Antônio Carlos Pinheiro de Oliveira
- Departamento de Farmacologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte-MG, 6627, 31270-901, Brazil
| | - Renato Santiago Gomez
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Alfredo Balena, 190, Belo Horizonte-MG, 30130-100, Brazil
| | - Mauro Cunha Xavier Pinto
- Laboratório de Neuroquímica e Neurofarmacologia Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança, S/N, UFG, Prédio ICB II, Sala 114, Goiânia-GO, CEP 74690-900, Brazil.
| |
Collapse
|
3
|
Raïch I, Lillo J, Rebassa JB, Capó T, Cordomí A, Reyes-Resina I, Pallàs M, Navarro G. Dual Role of NMDAR Containing NR2A and NR2B Subunits in Alzheimer's Disease. Int J Mol Sci 2024; 25:4757. [PMID: 38731978 PMCID: PMC11084423 DOI: 10.3390/ijms25094757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD) is the main cause of dementia worldwide. Given that learning and memory are impaired in this pathology, NMDA receptors (NMDARs) appear as key players in the onset and progression of the disease. NMDARs are glutamate receptors, mainly located at the post-synapse, which regulate voltage-dependent influx of calcium into the neurons. They are heterotetramers, and there are different subunits that can be part of the receptors, which are usually composed of two obligatory GluN1 subunits plus either two NR2A or two NR2B subunits. NR2A are mostly located at the synapse, and their activation is involved in the expression of pro-survival genes. Conversely, NR2B are mainly extrasynaptic, and their activation has been related to cell death and neurodegeneration. Thus, activation of NR2A and/or inactivation of NR2B-containing NMDARS has been proposed as a therapeutic strategy to treat AD. Here, we wanted to investigate the main differences between both subunits signalling in neuronal primary cultures of the cortex and hippocampus. It has been observed that Aβ induces a significant increase in calcium release and also in MAPK phosphorylation signalling in NR2B-containing NMDAR in cortical and hippocampal neurons. However, while NR2A-containing NMDAR decreases neuronal death and favours cell viability after Aβ treatment, NR2B-containing NMDAR shows higher levels of cytotoxicity and low levels of neuronal survival. Finally, it has been detected that NMDAR has no effect on pTau axonal transport. The present results demonstrate a different role between GluNA and GluNB subunits in neurodegenerative diseases such as Alzheimer's.
Collapse
Affiliation(s)
- Iu Raïch
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Jaume Lillo
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Joan Biel Rebassa
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Toni Capó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Arnau Cordomí
- Bioinformatics, Escola Superior de Comerç Internacional-University Pompeu Fabra (ESCI-UPF), 08003 Barcelona, Spain;
| | - Irene Reyes-Resina
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Mercè Pallàs
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Av Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
4
|
Yoon KN, Cui Y, Quan QL, Lee DH, Oh JH, Chung JH. Tomato and lemon extracts synergistically improve cognitive function by increasing brain-derived neurotrophic factor levels in aged mice. Br J Nutr 2024; 131:1105-1114. [PMID: 38016800 PMCID: PMC10918522 DOI: 10.1017/s0007114523002301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 11/30/2023]
Abstract
Brain ageing, the primary risk factor for cognitive impairment, occurs because of the accumulation of age-related neuropathologies. Identifying effective nutrients that increase cognitive function may help maintain brain health. Tomatoes and lemons have various bioactive functions and exert protective effects against oxidative stress, ageing and cancer. Moreover, they have been shown to enhance cognitive function. In the present study, we aimed to investigate the effects of tomato and lemon ethanolic extracts (TEE and LEE, respectively) and their possible synergistic effects on the enhancement of cognitive function and neurogenesis in aged mice. The molecular mechanisms underlying the synergistic effect of TEE and LEE were investigated. For the in vivo experiment, TEE, LEE or their mixture was orally administered to 12-month-old mice for 9 weeks. A single administration of either TEE or LEE improved cognitive function and neurogenesis in aged mice to some extent, as determined using the novel object recognition test and doublecortin immunohistochemical staining, respectively. However, a significant enhancement of cognitive function and neurogenesis in aged mice was observed after the administration of the TEE + LEE mixture, which had a synergistic effect. N-methyl-d-aspartate receptor 2B, postsynaptic density protein 95, and brain-derived neurotrophic factor (BDNF) levels and tropomyosin receptor kinase B (TrkB)/extracellular signal-regulated kinase (ERK) phosphorylation also synergistically increased after the administration of the mixture compared with those in the individual treatments. In conclusion, compared with their separate treatments, treatment with the TEE + LEE mixture synergistically improved the cognitive function, neurogenesis and synaptic plasticity in aged mice via the BDNF/TrkB/ERK signalling pathway.
Collapse
Affiliation(s)
- Kyeong-No Yoon
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Yidan Cui
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Qing-Ling Quan
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Hun Lee
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute on Aging, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Tsai YC, Huang SM, Peng HH, Lin SW, Lin SR, Chin TY, Huang SM. Imbalance of synaptic and extrasynaptic NMDA receptors induced by the deletion of CRMP1 accelerates age-related cognitive decline in mice. Neurobiol Aging 2024; 135:48-59. [PMID: 38176125 DOI: 10.1016/j.neurobiolaging.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Collapsin response mediator protein 1 (CRMP1) is involved in semaphorin 3A signaling pathway, promoting neurite extension and growth cone collapse. It is highly expressed in the nervous system, especially the hippocampus. The crmp1 knockout (KO) mice display impaired spatial learning and memory, and this phenomenon seemingly tends to deteriorate with age. Here we investigated whether CRMP1 is involved in age-related cognitive decline in WT and crmp1 KO mice at adult, middle-aged and older stages. The results revealed that cognitive dysfunction in the Morris water maze task became more severe and decreased glutamate and glutamine level in middle-aged crmp1 KO mice. Additionally, increasing levels of extrasynaptic NMDA receptors and phosphorylation of Tau were observed in middle-aged crmp1 KO mice, leading to synaptic and neuronal loss in the CA3 regions of hippocampus. These findings suggest that deletion of CRMP1 accelerates age-related cognitive decline by disrupting the balance between synaptic and extrasynaptic NMDA receptors, resulting in the loss of synapses and neurons.
Collapse
Affiliation(s)
- Yun-Chieh Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hsu-Hsia Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Rung Lin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Ting-Yu Chin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Shih-Ming Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
6
|
Ladagu AD, Olopade FE, Adejare A, Olopade JO. GluN2A and GluN2B N-Methyl-D-Aspartate Receptor (NMDARs) Subunits: Their Roles and Therapeutic Antagonists in Neurological Diseases. Pharmaceuticals (Basel) 2023; 16:1535. [PMID: 38004401 PMCID: PMC10674917 DOI: 10.3390/ph16111535] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ion channels that respond to the neurotransmitter glutamate, playing a crucial role in the permeability of calcium ions and excitatory neurotransmission in the central nervous system (CNS). Composed of various subunits, NMDARs are predominantly formed by two obligatory GluN1 subunits (with eight splice variants) along with regulatory subunits GluN2 (GluN2A-2D) and GluN3 (GluN3A-B). They are widely distributed throughout the CNS and are involved in essential functions such as synaptic transmission, learning, memory, plasticity, and excitotoxicity. The presence of GluN2A and GluN2B subunits is particularly important for cognitive processes and has been strongly implicated in neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. Understanding the roles of GluN2A and GluN2B NMDARs in neuropathologies provides valuable insights into the underlying causes and complexities of major nervous system disorders. This knowledge is vital for the development of selective antagonists targeting GluN2A and GluN2B subunits using pharmacological and molecular methods. Such antagonists represent a promising class of NMDA receptor inhibitors that have the potential to be developed into neuroprotective drugs with optimal therapeutic profiles.
Collapse
Affiliation(s)
- Amany Digal Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| | - Funmilayo Eniola Olopade
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| |
Collapse
|
7
|
Szumlinski KK, Herbert JN, Mejia Espinoza B, Madory LE, Scudder SL. Alcohol-drinking during later life by C57BL/6J mice induces sex- and age-dependent changes in hippocampal and prefrontal cortex expression of glutamate receptors and neuropathology markers. ADDICTION NEUROSCIENCE 2023; 7:100099. [PMID: 37396410 PMCID: PMC10310297 DOI: 10.1016/j.addicn.2023.100099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Heavy drinking can induce early-onset dementia and increase the likelihood of the progression and severity of Alzheimer's Disease and related dementias (ADRD). Recently, we showed that alcohol-drinking by mature adult C57BL/6J mice induces more signs of cognitive impairment in females versus males without worsening age-related cognitive decline in aged mice. Here, we immunoblotted for glutamate receptors and protein markers of ADRD-related neuropathology within the hippocampus and prefrontal cortex (PFC) of these mice after three weeks of alcohol withdrawal to determine protein correlates of alcohol-induced cognitive decline. Irrespective of alcohol history, age-related changes in protein expression included a male-specific decline in hippocampal glutamate receptors and an increase in the expression of a beta-site amyloid precursor protein cleaving enzyme (BACE) isoform in the PFC as well as a sex-independent increase in hippocampal amyloid precursor protein. Alcohol-drinking was associated with altered expression of glutamate receptors in the hippocampus in a sex-dependent manner, while all glutamate receptor proteins exhibited significant alcohol-related increases in the PFC of both sexes. Expression of BACE isoforms and phosphorylated tau varied in the PFC and hippocampus based on age, sex, and drinking history. The results of this study indicate that withdrawal from a history of alcohol-drinking during later life induces sex- and age-selective effects on glutamate receptor expression and protein markers of ADRD-related neuropathology within the hippocampus and PFC of potential relevance to the etiology, treatment and prevention of alcohol-induced dementia and Alzheimer's Disease.
Collapse
Affiliation(s)
- Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Jessica N. Herbert
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Brenda Mejia Espinoza
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Lauren E. Madory
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Samantha L. Scudder
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
- Department of Psychology, California State University Dominguez Hills, Carson, CA 90747, USA
| |
Collapse
|
8
|
Dong B, Yue Y, Dong H, Wang Y. N-methyl-D-aspartate receptor hypofunction as a potential contributor to the progression and manifestation of many neurological disorders. Front Mol Neurosci 2023; 16:1174738. [PMID: 37396784 PMCID: PMC10308130 DOI: 10.3389/fnmol.2023.1174738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDA) are glutamate-gated ion channels critical for synaptic transmission and plasticity. A slight variation of NMDAR expression and function can result in devastating consequences, and both hyperactivation and hypoactivation of NMDARs are detrimental to neural function. Compared to NMDAR hyperfunction, NMDAR hypofunction is widely implicated in many neurological disorders, such as intellectual disability, autism, schizophrenia, and age-related cognitive decline. Additionally, NMDAR hypofunction is associated with the progression and manifestation of these diseases. Here, we review the underlying mechanisms of NMDAR hypofunction in the progression of these neurological disorders and highlight that targeting NMDAR hypofunction is a promising therapeutic intervention in some neurological disorders.
Collapse
Affiliation(s)
- Bin Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Yue
- School of Psychology, Northeast Normal University, Changchun, China
| | - Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Zangbar HS, Fallahi S, Hosseini L, Ghorbani M, Jafarzadehgharehziaaddin M, Shahabi P. Spinal cord injury leads to more neurodegeneration in the hippocampus of aged male rats compared to young rats. Exp Brain Res 2023; 241:1569-1583. [PMID: 37129669 DOI: 10.1007/s00221-023-06577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/14/2023] [Indexed: 05/03/2023]
Abstract
Although the disruptive effects of spinal cord injury (SCI) on the hippocampus have been confirmed in some animal studies, no study has investigated its retrograde manifestations in the hippocampus of aged subjects. Herein, we compared the aged rats with young ones 3 weeks after the induction of SCI (Groups: Sham.Young, SCI.Young, Sham.Aged, SCI.Aged). The locomotion, hippocampal apoptosis, hippocampal rhythms (Delta, Theta, Beta, Gamma) max frequency (Max.rf) and power, hippocampal neurogenesis, and hippocampal receptors (NMDA, GABA A, Muscarinic1/M1), which are important in the generation of rhythms and neurogenesis, were compared in aged rats in contrast to young rats. At the end of the third week, the number of apoptotic (Tunel+) cells in the hippocampus (CA1, DG) of SCI animals was significantly higher compared to the sham animals, and also, it was significantly higher in the SCI.Aged group compared to SCI.Young group. Moreover, the rate of neurogenesis (DCX+, BrdU+ cells) and expression of M1 and NMDA receptors were significantly lower in the SCI.Aged group compared to SCI.Young group. The power and Max.fr of all rhythms were significantly lower in SCI groups compared to sham groups. Despite the decrease in the power of rhythms in the SCI.Aged group compared to SCI.Young group, there was no significant difference between them, and in terms of Max.fr index, only the Max.fr of theta and beta rhythms were significantly lower in the SCI.Aged group compared to SCI.Young group. This study showed that SCI could cause more neurodegeneration in the hippocampus of aged animals compared to young animals.
Collapse
Affiliation(s)
- Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, East Azarbayjan, Tabriz, Iran.
| | - Solmaz Fallahi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, East Azarbayjan, 51666-14766, Tabriz, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Ghorbani
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, East Azarbayjan, 51666-14766, Tabriz, Iran
| | | | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, East Azarbayjan, 51666-14766, Tabriz, Iran.
| |
Collapse
|
10
|
Yegla B, Rani A, Kumar A. Viral vector-mediated upregulation of serine racemase expression in medial prefrontal cortex improves learning and synaptic function in middle age rats. Aging (Albany NY) 2023; 15:2433-2449. [PMID: 37052995 PMCID: PMC10120901 DOI: 10.18632/aging.204652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
An age-associated decrease in N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic function contributes to impaired synaptic plasticity and is associated with cognitive impairments. Levels of serine racemase (SR), an enzyme that synthesizes D-serine, an NMDAR co-agonist, decline with age. Thus, enhancing NMDAR function via increased SR expression in middle age, when subtle declines in cognition emerge, was predicted to enhance performance on a prefrontal cortex-mediated task sensitive to aging. Middle-aged (~12 mo) male Fischer-344 rats were injected bilaterally in the medial prefrontal cortex (mPFC) with viral vector (LV), SR (LV-SR) or control (LV-GFP). Rats were trained on the operant attentional set-shift task (AST) to examine cognitive flexibility and attentional function. LV-SR rats exhibited a faster rate of learning compared to controls during visual discrimination of the AST. Extradimensional set shifting and reversal were not impacted. Immunohistochemical analyses demonstrated that LV-SR significantly increased SR expression in the mPFC. Electrophysiological characterization of synaptic transmission in the mPFC slices obtained from LV-GFP and LV-SR animals indicated a significant increase in isolated NMDAR-mediated synaptic responses in LV-SR slices. Thus, results of the current study demonstrated that prefrontal SR upregulation in middle age rats can improve learning of task contingencies for visual discrimination and increase glutamatergic synaptic transmission, including NMDAR activity.
Collapse
Affiliation(s)
- Brittney Yegla
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Konar-Nié M, Guzman-Castillo A, Armijo-Weingart L, Aguayo LG. Aging in nucleus accumbens and its impact on alcohol use disorders. Alcohol 2023; 107:73-90. [PMID: 36087859 DOI: 10.1016/j.alcohol.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 02/06/2023]
Abstract
Ethanol is one of the most widely consumed drugs in the world and prolonged excessive ethanol intake might lead to alcohol use disorders (AUDs), which are characterized by neuroadaptations in different brain regions, such as in the reward circuitry. In addition, the global population is aging, and it appears that they are increasing their ethanol consumption. Although research involving the effects of alcohol in aging subjects is limited, differential effects have been described. For example, studies in human subjects show that older adults perform worse in tests assessing working memory, attention, and cognition as compared to younger adults. Interestingly, in the field of the neurobiological basis of ethanol actions, there is a significant dichotomy between what we know about the effects of ethanol on neurochemical targets in young animals and how it might affect them in the aging brain. To be able to understand the distinct effects of ethanol in the aging brain, the following questions need to be answered: (1) How does physiological aging impact the function of an ethanol-relevant region (e.g., the nucleus accumbens)? and (2) How does ethanol affect these neurobiological systems in the aged brain? This review discusses the available data to try to understand how aging affects the nucleus accumbens (nAc) and its neurochemical response to alcohol. The data show that there is little information on the effects of ethanol in aged mice and rats, and that many studies had considered 2-3-month-old mice as adults, which needs to be reconsidered since more recent literature defines 6 months as young adults and >18 months as an older mouse. Considering the actual relevance of an aged worldwide population and that this segment is drinking more frequently, it appears at least reasonable to explore how ethanol affects the brain in adult and aged models.
Collapse
Affiliation(s)
- Macarena Konar-Nié
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile.
| | - Alejandra Guzman-Castillo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| | - Lorena Armijo-Weingart
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| | - Luis Gerardo Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| |
Collapse
|
12
|
Rajão-Saraiva J, Dunot J, Ribera A, Temido-Ferreira M, Coelho JE, König S, Moreno S, Enguita FJ, Willem M, Kins S, Marie H, Lopes LV, Pousinha PA. Age-dependent NMDA receptor function is regulated by the amyloid precursor protein. Aging Cell 2023; 22:e13778. [PMID: 36704841 PMCID: PMC10014064 DOI: 10.1111/acel.13778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 01/28/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are critical for the maturation and plasticity of glutamatergic synapses. In the hippocampus, NMDARs mainly contain GluN2A and/or GluN2B regulatory subunits. The amyloid precursor protein (APP) has emerged as a putative regulator of NMDARs, but the impact of this interaction to their function is largely unknown. By combining patch-clamp electrophysiology and molecular approaches, we unravel a dual mechanism by which APP controls GluN2B-NMDARs, depending on the life stage. We show that APP is highly abundant specifically at the postnatal postsynapse. It interacts with GluN2B-NMDARs, controlling its synaptic content and mediated currents, both in infant mice and primary neuronal cultures. Upon aging, the APP amyloidogenic-derived C-terminal fragments, rather than APP full-length, contribute to aberrant GluN2B-NMDAR currents. Accordingly, we found that the APP processing is increased upon aging, both in mice and human brain. Interfering with stability or production of the APP intracellular domain normalized the GluN2B-NMDARs currents. While the first mechanism might be essential for synaptic maturation during development, the latter could contribute to age-related synaptic impairments.
Collapse
Affiliation(s)
- Joana Rajão-Saraiva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Jade Dunot
- University Côte d' Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Aurore Ribera
- University Côte d' Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Mariana Temido-Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Svenja König
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sébastien Moreno
- University Côte d' Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Michael Willem
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Kins
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Hélène Marie
- University Côte d' Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Luísa V Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Paula A Pousinha
- University Côte d' Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| |
Collapse
|
13
|
Paramanik V, Kurrey K, Singh P, Tiwari S. Roles of genistein in learning and memory during aging and neurological disorders. Biogerontology 2023; 24:329-346. [PMID: 36828983 DOI: 10.1007/s10522-023-10020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/23/2023] [Indexed: 02/26/2023]
Abstract
Genistein (GEN) is a non-steroidal phytoestrogen that belongs to the isoflavone class. It is abundantly found in soy. Soy and its products are used as food components in many countries including India. The present review is focused to address roles of GEN in brain functions in the context of learning and memory as a function of aging and neurological disorders. Memory decline is one of the most disabling features observed during normal aging and age-associated neurodegenerative disorders namely Alzheimer's disease (AD) and Parkinson's disease (PD), etc. Anatomical, physiological, biochemical and molecular changes in the brain with advancement of age and pathological conditions lead to decline of cognitive functions. GEN is chemically comparable to estradiol and binds to estrogen receptors (ERs). GEN acts through ERs and mimics estrogen action. After binding to ERs, GEN regulates a plethora of brain functions including learning and memory; however detailed study still remains elusive. Due to the neuroprotective, anti-oxidative and anti-inflammatory properties, GEN is used to restore or improve memory functions in different animal models and humans. The present review may be helpful to understand roles of GEN in learning and memory during aging and neurological disorders, its direction of research and therapeutic perspectives.
Collapse
Affiliation(s)
- Vijay Paramanik
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484 887, MP, India.
| | - Khuleshwari Kurrey
- Department of Psychiatry and Behavioral Sciences, Neurobiology Division, John Hopkins University, School of Medicine, Baltimore, MD, 21287, USA
| | - Padmanabh Singh
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484 887, MP, India
| | - Sneha Tiwari
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484 887, MP, India
| |
Collapse
|
14
|
Patel SV, DeCarlo CM, Book SA, Schormans AL, Whitehead SN, Allman BL, Hayes SH. Noise exposure in early adulthood causes age-dependent and brain region-specific impairments in cognitive function. Front Neurosci 2022; 16:1001686. [PMID: 36312027 PMCID: PMC9606802 DOI: 10.3389/fnins.2022.1001686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Hearing loss is a chronic health condition that affects millions of people worldwide. In addition to age-related hearing impairment, excessive noise exposure is a leading cause of hearing loss. Beyond the devastating effects of hearing impairment itself, epidemiological studies have identified hearing loss as a major risk factor for age-related cognitive decline, including dementia. At present, we currently lack a full understanding of the brain regions and underlying molecular changes that are responsible for mediating the link between hearing loss and cognitive impairment across aging. In the present study, we exposed 6-month-old rats to an occupational-like noise (100 dB SPL, 4 h/day × 30 days) or sham exposure and investigated both hippocampal-dependent (i.e., spatial learning and memory, assessed using the Morris water maze) and striatal-dependent (i.e., visuomotor associative learning, assessed using an operant-conditioning task) cognitive function across aging at 7, 10, and 13 months of age. We also investigated brain region-specific changes in microglial expression following noise/sham exposure in order to assess the potential contribution of this cell type to noise-induced cognitive impairments. Consistent with human studies, the occupational-like noise exposure resulted in high-frequency hearing loss, evidenced by a significant increase in hearing thresholds at 20 kHz. Ultimately, our results suggest that not all higher-level cognitive tasks or their associated brain regions appear to be equally susceptible to noise-induced deficits during aging, as the occupational-like noise exposure caused an age-dependent deficit in spatial but not visuomotor associative learning, as well as altered microglial expression in the hippocampus but not the striatum. Interestingly, we found no significant relationships between spatial learning ability and the level of hearing loss or altered microglial density in the hippocampus following noise exposure, suggesting that other changes in the brain likely contribute to hippocampal-dependent cognitive dysfunction following noise exposure. Lastly, we found that a subset of younger animals also showed noise-induced deficits in spatial learning; findings which suggest that noise exposure may represent an increased risk for cognitive impairment in vulnerable subjects. Overall, our findings highlight that even a mild occupational-like noise exposure earlier in adulthood can have long lasting implications for cognitive function later in life.
Collapse
|
15
|
Lee J, Kim HJ. Normal Aging Induces Changes in the Brain and Neurodegeneration Progress: Review of the Structural, Biochemical, Metabolic, Cellular, and Molecular Changes. Front Aging Neurosci 2022; 14:931536. [PMID: 35847660 PMCID: PMC9281621 DOI: 10.3389/fnagi.2022.931536] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Aging is accompanied by many changes in brain and contributes to progressive cognitive decline. In contrast to pathological changes in brain, normal aging brain changes have relatively mild but important changes in structural, biochemical and molecular level. Representatively, aging associated brain changes include atrophy of tissues, alteration in neurotransmitters and damage accumulation in cellular environment. These effects have causative link with age associated changes which ultimately results in cognitive decline. Although several evidences were found in normal aging changes of brain, it is not clearly integrated. Figuring out aging related changes in brain is important as aging is the process that everyone goes through, and comprehensive understanding may help to progress further studies. This review clarifies normal aging brain changes in an asymptotic and comprehensive manner, from a gross level to a microscopic and molecular level, and discusses potential approaches to seek the changes with cognitive decline.
Collapse
Affiliation(s)
- Jiseon Lee
- Department of Neurology, Hanyang University Hospital, Seoul, South Korea
| | - Hee-Jin Kim
- Department of Neurology, Hanyang University Hospital, Seoul, South Korea
| |
Collapse
|
16
|
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci 2022; 15:855752. [PMID: 35795689 PMCID: PMC9252440 DOI: 10.3389/fnmol.2022.855752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic synapses harbor abundant amounts of the multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety of membrane proteins at the synapse and thus exert spatially restricted activity. The abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although its prominent function still appears to be that of a kinase. The multimeric structure of CaMKII also confers several functional capabilities on the enzyme. The versatility of the enzyme has prompted hypotheses proposing several roles for the enzyme such as Ca2+ signal transduction, memory molecule function and scaffolding. The article will review the multiple roles played by CaMKII in glutamatergic synapses and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Archana G. Mohanan
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - R. V. Omkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: R. V. Omkumar,
| |
Collapse
|
17
|
Gramuntell Y, Klimczak P, Coviello S, Perez-Rando M, Nacher J. Effects of Aging on the Structure and Expression of NMDA Receptors of Somatostatin Expressing Neurons in the Mouse Hippocampus. Front Aging Neurosci 2022; 13:782737. [PMID: 35002680 PMCID: PMC8733323 DOI: 10.3389/fnagi.2021.782737] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Changes in the physiology, neurochemistry and structure of neurons, particularly of their dendritic spines, are thought to be crucial players in age-related cognitive decline. One of the most studied brain structures affected by aging is the hippocampus, known to be involved in different essential cognitive processes. While the aging-associated quantitative changes in dendritic spines of hippocampal pyramidal cells have already been studied, the relationship between aging and the structural dynamics of hippocampal interneurons remains relatively unknown. Spines are not a frequent feature in cortical inhibitory neurons, but these postsynaptic structures are abundant in a subpopulation of somatostatin expressing interneurons, particularly in oriens-lacunosum moleculare (O-LM) cells in the hippocampal CA1. Previous studies from our laboratory have shown that the spines of these interneurons are highly plastic and influenced by NMDA receptor manipulation. Thus, in the present study, we have investigated the impact of aging on this interneuronal subpopulation. The analyses were performed in 3−, 9−, and 16-month-old GIN mice, a strain in which somatostatin positive interneurons express GFP. We studied the changes in the density of dendritic spines, en passant boutons, and the expression of NMDA receptors (GluN1 and GluN2B) using confocal microscopy and image analysis. We observed a significant decrease in dendritic spine density in 9-month-old animals when compared with 3-month-old animals. We also observed a decrease in the expression of the GluN2B subunit in O-LM cells, but not of that of GluN1, during aging. These results will constitute the basis for more advanced studies of the structure and connectivity of interneurons during aging and their contribution to cognitive decline.
Collapse
Affiliation(s)
- Yaiza Gramuntell
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Patrycja Klimczak
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Simona Coviello
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Marta Perez-Rando
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| |
Collapse
|
18
|
Salman T, Afroz R, Nawaz S, Mahmood K, Haleem DJ, Zarina S. Differential effects of memory enhancing and impairing doses of methylphenidate on serotonin metabolism and 5-HT1A, GABA, glutamate receptor expression in the rat prefrontal cortex. Biochimie 2021; 191:51-61. [PMID: 34454977 DOI: 10.1016/j.biochi.2021.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/28/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023]
Abstract
Methylphenidate (MPD), a psychostimulant, is a prescription medicine for treating attention deficit hyperactivity disorder (ADHD). Previously we have shown that moderate doses of MPD enhanced learning and memory while higher doses impaired it. To understand neurochemical mechanisms and receptors involved in memory enhancing and impairing effects of MPD, the present study concerns the effects of these doses of MPD on serotonin, 5-HT1A, GABA, and NMDA receptor mRNA expression in the prefrontal cortex (PFC). We found that low doses (2.5 mg/kg) of MPD improved performance in the water-maze test but higher doses (5 mg/kg) impaired memory retention. Animals showing improved performance had high 5-HT metabolism in the PFC while these levels were not affected in the group treated with higher MPD doses and exhibiting impaired memory. There was downregulation of 5-HT1A receptors in the PFC of rats treated with higher dose MPD, which didn't occur in low dose of MPD treated animals. Further, a decrease in GABAAreceptor mRNA expression occurred in low doses of MPD treated animals and GluN2A expression was reduced in higher doses of MPD treated animals. The findings suggest that memory enhancing doses of MPD increase 5-HT and reduce GABAA receptor mRNA expression in the PFC to release excitatory glutamate neurons from the inhibitory influence of GABA. Conversely, higher dose of MPD downregulates 5-HT1A receptor mRNA expression to enhance inhibitory GABA influence on glutamate neurons and impair cognitive performance. The findings show an important role of 5-HT1A heteroreceptors in the PFC for improving therapeutic use of MPD and developing novel cognitive enhancers.
Collapse
Affiliation(s)
- Tabinda Salman
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| | - Rushda Afroz
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Shazia Nawaz
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Khalid Mahmood
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Darakhshan J Haleem
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Shamshad Zarina
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
19
|
Arias-Cavieres A, Fonteh A, Castro-Rivera CI, Garcia AJ. Intermittent Hypoxia causes targeted disruption to NMDA receptor dependent synaptic plasticity in area CA1 of the hippocampus. Exp Neurol 2021; 344:113808. [PMID: 34256046 DOI: 10.1016/j.expneurol.2021.113808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 12/27/2022]
Abstract
Changed NMDA receptor (NMDAr) physiology is implicated with cognitive deficit resulting from conditions ranging from normal aging to neurological disease. Using intermittent hypoxia (IH) to experimentally model untreated sleep apnea, a clinical condition whose comorbidities include neurocognitive impairment, we recently demonstrated that IH causes a pro-oxidant condition that contributes to deficits in spatial memory and in NMDAr-dependent long-term potentiation (LTP). However, the impact of IH on additional forms of synaptic plasticity remains ill-defined. Here we show that IH prevents the induction of NMDAr-dependent LTP and long-term depression (LTD) in hippocampal brain slices from mice exposed to ten days of IH (IH10) yet spares NMDAr-independent forms of synaptic plasticity. Deficits in synaptic plasticity were accompanied by a reduction in hippocampal GluN1 expression. Acute manipulation of redox state using the reducing agent, Dithiothreitol (DTT) stimulated the NMDAr-dependent fEPSP following IH10. However, acute use of either DTT or MnTMPyP did not restore NMDAr-dependent synaptic plasticity after IH10 or prevent the IH-dependent reduction in GluN1, the obligatory subunit of the NMDAr. In contrast, MnTMPyP during IH10 (10-MnTMPyP), prevented the suppressive effects of IH on both NMDAr-dependent synaptic plasticity and GluN1 expression. These findings indicate that while the IH-dependent pro-oxidant state causes reversible oxidative neuromodulation of NMDAr activity, acute manipulation of redox state is ineffective in rescuing two key effects of IH related to the NMDAr within the hippocampus. These IH-dependent changes associated with the NMDAr may be a primary avenue by which IH enhances the vulnerability to impaired learning and memory when sleep apnea is left untreated in normal aging and in disease.
Collapse
Affiliation(s)
- Alejandra Arias-Cavieres
- Institute for Integrative Physiology, The University of Chicago, USA; Department of Medicine, Section of Emergency Medicine, The University of Chicago, USA
| | - Ateh Fonteh
- Department of Medicine, Section of Emergency Medicine, The University of Chicago, USA
| | - Carolina I Castro-Rivera
- Institute for Integrative Physiology, The University of Chicago, USA; Grossman Institute for Neuroscience, Quantitative Biology & Human Behavior, The University of Chicago, USA
| | - Alfredo J Garcia
- Institute for Integrative Physiology, The University of Chicago, USA; Grossman Institute for Neuroscience, Quantitative Biology & Human Behavior, The University of Chicago, USA; Department of Medicine, Section of Emergency Medicine, The University of Chicago, USA.
| |
Collapse
|
20
|
Fleming SA, Hauser J, Yan J, Donovan SM, Wang M, Dilger RN. A Mediation Analysis to Identify Links between Gut Bacteria and Memory in Context of Human Milk Oligosaccharides. Microorganisms 2021; 9:846. [PMID: 33920826 PMCID: PMC8071191 DOI: 10.3390/microorganisms9040846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/23/2022] Open
Abstract
Elucidating relationships between the gut and brain is of intense research focus. Multiple studies have demonstrated that modulation of the intestinal environment via prebiotics or probiotics can induce cognitively beneficial effects, such as improved memory or reduced anxiety. However, the mechanisms by which either act remain largely unknown. We previously demonstrated that different types of oligosaccharides affected short- and long-term memory in distinct ways. Given that the oligosaccharide content of human milk is highly variable, and that formula-fed infants typically do not consume similar amounts or types of oligosaccharides, their potential effects on brain development warrant investigation. Herein, a mediation analysis was performed on existing datasets, including relative abundance of bacterial genera, gene expression, brain volume, and cognition in young pigs. Analyses revealed that numerous bacterial genera in both the colon and feces were related to short- and/or long-term memory. Relationships between genera and memory appeared to differ between diets. Mediating variables frequently included GABAergic and glutamatergic hippocampal gene expression. Other mediating variables included genes related to myelination, transcription factors, brain volume, and exploratory behavior. Overall, this analysis identified multiple pathways between the gut and brain, with a focus on genes related to excitatory/inhibitory neurotransmission.
Collapse
Affiliation(s)
| | - Jonas Hauser
- Société des Produits Nestlé SA, 1000 Lausanne, Switzerland;
| | - Jian Yan
- Nestlé Product Technology Center Nutrition, CH-1800 Vevey, Switzerland;
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA; (S.M.D.); (M.W.)
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Mei Wang
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA; (S.M.D.); (M.W.)
| | - Ryan N. Dilger
- Traverse Science, Inc., Champaign, IL 61820, USA;
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
- Piglet Nutrition and Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
21
|
Wong L, Chong YS, Lin W, Kisiswa L, Sim E, Ibáñez CF, Sajikumar S. Age-related changes in hippocampal-dependent synaptic plasticity and memory mediated by p75 neurotrophin receptor. Aging Cell 2021; 20:e13305. [PMID: 33448137 PMCID: PMC7884039 DOI: 10.1111/acel.13305] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 11/25/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
The plasticity mechanisms in the nervous system that are important for learning and memory are greatly impacted during aging. Notably, hippocampal-dependent long-term plasticity and its associative plasticity, such as synaptic tagging and capture (STC), show considerable age-related decline. The p75 neurotrophin receptor (p75NTR ) is a negative regulator of structural and functional plasticity in the brain and thus represents a potential candidate to mediate age-related alterations. However, the mechanisms by which p75NTR affects synaptic plasticity of aged neuronal networks and ultimately contribute to deficits in cognitive function have not been well characterized. Here, we report that mutant mice lacking the p75NTR were resistant to age-associated changes in long-term plasticity, associative plasticity, and associative memory. Our study shows that p75NTR is responsible for age-dependent disruption of hippocampal homeostatic plasticity by modulating several signaling pathways, including BDNF, MAPK, Arc, and RhoA-ROCK2-LIMK1-cofilin. p75NTR may thus represent an important therapeutic target for limiting the age-related memory and cognitive function deficits.
Collapse
Affiliation(s)
- Lik‐Wei Wong
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
- Healthy Longevity Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
| | - Yee Song Chong
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
| | - Wei Lin
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
| | - Lilian Kisiswa
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
| | - Eunice Sim
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
| | - Carlos F. Ibáñez
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| | - Sreedharan Sajikumar
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
- Healthy Longevity Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
| |
Collapse
|
22
|
The aging mouse brain: cognition, connectivity and calcium. Cell Calcium 2021; 94:102358. [PMID: 33517250 DOI: 10.1016/j.ceca.2021.102358] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
Aging is a complex process that differentially impacts multiple cognitive, sensory, neuronal and molecular processes. Technological innovations now allow for parallel investigation of neuronal circuit function, structure and molecular composition in the brain of awake behaving adult mice. Thus, mice have become a critical tool to better understand how aging impacts the brain. However, a more granular systems-based approach, which considers the impact of age on key features relating to neural processing, is required. Here, we review evidence probing the impact of age on the mouse brain. We focus on a range of processes relating to neuronal function, including cognitive abilities, sensory systems, synaptic plasticity and calcium regulation. Across many systems, we find evidence for prominent age-related dysregulation even before 12 months of age, suggesting that emerging age-related alterations can manifest by late adulthood. However, we also find reports suggesting that some processes are remarkably resilient to aging. The evidence suggests that aging does not drive a parallel, linear dysregulation of all systems, but instead impacts some processes earlier, and more severely, than others. We propose that capturing the more fine-scale emerging features of age-related vulnerability and resilience may provide better opportunities for the rejuvenation of the aged brain.
Collapse
|
23
|
Radiske A, Gonzalez MC, Nôga DA, Rossato JI, Bevilaqua LRM, Cammarota M. GluN2B and GluN2A-containing NMDAR are differentially involved in extinction memory destabilization and restabilization during reconsolidation. Sci Rep 2021; 11:186. [PMID: 33420399 PMCID: PMC7794413 DOI: 10.1038/s41598-020-80674-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/24/2020] [Indexed: 12/01/2022] Open
Abstract
Extinction memory destabilized by recall is restabilized through mTOR-dependent reconsolidation in the hippocampus, but the upstream pathways controlling these processes remain unknown. Hippocampal NMDARs drive local protein synthesis via mTOR signaling and may control active memory maintenance. We found that in adult male Wistar rats, intra dorsal-CA1 administration of the non-subunit selective NMDAR antagonist AP5 or of the GluN2A subunit-containing NMDAR antagonist TCN201 after step down inhibitory avoidance (SDIA) extinction memory recall impaired extinction memory retention and caused SDIA memory recovery. On the contrary, pre-recall administration of AP5 or of the GluN2B subunit-containing NMDAR antagonist RO25-6981 had no effect on extinction memory recall or retention per se but hindered the recovery of the avoidance response induced by post-recall intra-CA1 infusion of the mTOR inhibitor rapamycin. Our results indicate that GluN2B-containing NMDARs are necessary for extinction memory destabilization whereas GluN2A-containing NMDARs are involved in its restabilization, and suggest that pharmacological modulation of the relative activation state of these receptor subtypes around the moment of extinction memory recall may regulate the dominance of extinction memory over the original memory trace.
Collapse
Affiliation(s)
- Andressa Radiske
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, Natal, RN, 59056-450, Brazil
| | - Maria Carolina Gonzalez
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, Natal, RN, 59056-450, Brazil.,Edmond and Lily Safra International Institute of Neuroscience, Av. Alberto Santos Dumont 1560, Macaiba, RN, 59280-000, Brazil
| | - Diana A Nôga
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, Natal, RN, 59056-450, Brazil
| | - Janine I Rossato
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, Natal, RN, 59056-450, Brazil.,Department of Physiology, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, Natal, RN, 59064-741, Brazil
| | - Lia R M Bevilaqua
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, Natal, RN, 59056-450, Brazil
| | - Martín Cammarota
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, Natal, RN, 59056-450, Brazil.
| |
Collapse
|
24
|
Huang L, Zhou H, Chen K, Chen X, Yang G. Learning-Dependent Dendritic Spine Plasticity Is Reduced in the Aged Mouse Cortex. Front Neural Circuits 2020; 14:581435. [PMID: 33324172 PMCID: PMC7726160 DOI: 10.3389/fncir.2020.581435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/05/2020] [Indexed: 11/13/2022] Open
Abstract
Aging is accompanied by a progressive decrease in learning and memory function. Synaptic loss, one of the hallmarks of normal aging, likely plays an important role in age-related cognitive decline. But little is known about the impact of advanced age on synaptic plasticity and neuronal function in vivo. In this study, we examined the structural dynamics of postsynaptic dendritic spines as well as calcium activity of layer 5 pyramidal neurons in the cerebral cortex of young and old mice. Using transcranial two-photon microscopy, we found that in both sensory and motor cortices, the elimination rates of dendritic spines were comparable between young (3-5 months) and mature adults (8-10 months), but seemed higher in old mice (>20 months), contributing to a reduction of total spine number in the old brain. During the process of motor learning, old mice compared to young mice had fewer new spines formed in the primary motor cortex. Motor training-evoked somatic calcium activity in layer 5 pyramidal neurons of the motor cortex was also lower in old than young mice, which was associated with the decline of motor learning ability during aging. Together, these results demonstrate the effects of aging on learning-dependent synapse remodeling and neuronal activity in the living cortex and suggest that synaptic deficits may contribute to age-related learning impairment.
Collapse
Affiliation(s)
- Lianyan Huang
- Department of Anesthesiology, New York University School of Medicine, New York, NY, United States.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hang Zhou
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, United States
| | - Kai Chen
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, United States
| | - Xiao Chen
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Guang Yang
- Department of Anesthesiology, New York University School of Medicine, New York, NY, United States.,Department of Anesthesiology, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
25
|
Spectral blueshift of biophotonic activity and transmission in the ageing mouse brain. Brain Res 2020; 1749:147133. [PMID: 32971084 DOI: 10.1016/j.brainres.2020.147133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/31/2020] [Accepted: 09/16/2020] [Indexed: 11/20/2022]
Abstract
The brain is considered to be a complex system with extremely low energy consumption and high-efficiency information transmission and processing, and this system has not been replicated by any artificial systems so far. Several studies indicate that the activity and transmission of biophotons in neural circuits may play an important role in neural information communication, while the biophotonic spectral redshift from lower to higher in animals may be related to the evolution of intelligence. The ageing processes of higher organisms are often accompanied by a decline in brain functions; however, the underlying mechanisms are unclear. Combining an ultraweak biophoton imaging system with the improved biophoton spectral analysis device, we compared and analyzed the spectra of glutamate-induced biophotonic emissions in mouse brain slices at different ages (newborn, 1, 3, 6, 12, 15, and 18 months). We found that the glutamate-induced biophotonic emissions presented a spectral blueshift from young to old mice, suggesting that the brain may transform to use relatively high-energy biophotons for neural information transmission and processing during the ageing process. Such a change may lead to a gradual decrease in the efficiency of the nervous system and provide a new biophysical mechanism for explaining the ageing-related changes in cognitive functions.
Collapse
|
26
|
Effects of Gestational Inflammation with Postpartum Enriched Environment on Age-Related Changes in Cognition and Hippocampal Synaptic Plasticity-Related Proteins. Neural Plast 2020. [DOI: 10.1155/2020/9082945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence indicates that exposure to inflammation during pregnancy intensifies the offspring’s cognitive impairment during aging, which might be correlated with changes in some synaptic plasticity-related proteins. In addition, an enriched environment (EE) can significantly exert a beneficial impact on cognition and synaptic plasticity. However, it is unclear whether gestational inflammation combined with postnatal EE affects the changes in cognition and synaptic plasticity-related proteins during aging. In this study, pregnant mice were intraperitoneally injected with lipopolysaccharides (LPS, 50 μg/kg) or normal saline at days 15–17 of pregnancy. At 21 days after delivery, some LPS-treated mice were randomly selected for EE treatment. At the age of 6 and 18 months, Morris water maze (MWM) and western blotting were, respectively, used to evaluate or measure the ability of spatial learning and memory and the levels of postsynaptic plasticity-related proteins in the hippocampus, including postsynaptic density protein 95 (PSD-95), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) GluA1 subunit, and Homer-1b/c. The results showed that 18-month-old control mice had worse spatial learning and memory and lower levels of these synaptic plasticity-related proteins (PSD-95, GluA1, and Homer-1b/c) than the 6-month-old controls. Gestational LPS exposure exacerbated these age-related changes of cognition and synaptic proteins, but EE could alleviate the treatment effect of LPS. In addition, the performance during learning and memory periods in the MWM correlated with the hippocampal levels of PSD-95, GluA1, and Homer-1b/c. Our results suggested that gestational inflammation accelerated age-related cognitive impairment and the decline of PSD-95, GluA1, and Homer-1b/c protein expression, and postpartum EE could alleviate these changes.
Collapse
|
27
|
Goldsworthy MR, Rogasch NC, Ballinger S, Graetz L, Van Dam JM, Harris R, Yu S, Pitcher JB, Baune BT, Ridding MC. Age-related decline of neuroplasticity to intermittent theta burst stimulation of the lateral prefrontal cortex and its relationship with late-life memory performance. Clin Neurophysiol 2020; 131:2181-2191. [DOI: 10.1016/j.clinph.2020.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 04/09/2020] [Accepted: 06/01/2020] [Indexed: 01/08/2023]
|
28
|
Teissier T, Boulanger E, Deramecourt V. Normal ageing of the brain: Histological and biological aspects. Rev Neurol (Paris) 2020; 176:649-660. [PMID: 32418702 DOI: 10.1016/j.neurol.2020.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/02/2023]
Abstract
All the hallmarks of ageing are observed in the brain, and its cells, especially neurons, are characterized by their remarkably long lifetime. Like any organ or system, the brain is exposed to ageing processes which affect molecules, cells, blood vessels, gross morphology and, uniquely for this organ, cognition. The preponderant cerebral structures are characterized by the cellular processes of neurons and glial cells and while the quantity of cerebral interstitial fluid is limited, it is now recognized as playing a crucial role in maintaining cerebral homeostasis. Most of our current knowledge of the ageing brain derives from studies of neurodegenerative disorders. It is interesting to note that common features of these disorders, like Tau, phosphoTau and amyloid peptide accumulation, can begin relatively early in life as a result of physiological ageing and are present in subclinical cases while also being used as early-stage markers of neurodegenerative diseases in progression. In this article, we review tissue and cellular modifications in the ageing brain. Commonly described macroscopic, microscopic and vascular changes that in the ageing brain are contrasted with those seen in neurodegenerative contexts. We also review the molecular changes that occur with age in the brain, such as modifications in gene expression, insulin/insulin-like growth factor 1 signalling dysfunction, post-translational protein modifications, mitochondrial dysfunction, autophagy and calcium conductance changes.
Collapse
Affiliation(s)
- T Teissier
- Inserm, université de Lille, CHU de Lille, Institut Pasteur de Lille, U1167 - RID-AGE - facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, équipe « de l'inflammation au vieillissement, 59000 Lille, France.
| | - E Boulanger
- Inserm, université de Lille, CHU de Lille, Institut Pasteur de Lille, U1167 - RID-AGE - facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, équipe « de l'inflammation au vieillissement, 59000 Lille, France; Pôle de gérontologie, CHU de Lille, 59000 Lille, France
| | - V Deramecourt
- Inserm, UMR-S 1172 « Alzheimer et Tauopathies », centre mémoire de ressources et de recherche, Labex DISTALZ, université de Lille, CHU de Lille, 59000 Lille, France; Pôle de neurologie, CHU de Lille, 59000 Lille, France
| |
Collapse
|
29
|
Pegasiou CM, Zolnourian A, Gomez-Nicola D, Deinhardt K, Nicoll JAR, Ahmed AI, Vajramani G, Grundy P, Verhoog MB, Mansvelder HD, Perry VH, Bulters D, Vargas-Caballero M. Age-Dependent Changes in Synaptic NMDA Receptor Composition in Adult Human Cortical Neurons. Cereb Cortex 2020; 30:4246-4256. [PMID: 32191258 DOI: 10.1093/cercor/bhaa052] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/13/2022] Open
Abstract
The molecular processes underlying the aging-related decline in cognitive performance and memory observed in humans are poorly understood. Studies in rodents have shown a decrease in N-methyl-D-aspartate receptors (NMDARs) that contain the GluN2B subunit in aging synapses, and this decrease is correlated with impaired memory functions. However, the age-dependent contribution of GluN2B-containing receptors to synaptic transmission in human cortical synapses has not been previously studied. We investigated the synaptic contribution of GluN2A and GluN2B-containing NMDARs in adult human neurons using fresh nonpathological temporal cortical tissue resected during neurosurgical procedures. The tissue we obtained fulfilled quality criteria by the absence of inflammation markers and proteomic degradation. We show an age-dependent decline in the NMDA/AMPA receptor ratio in adult human temporal cortical synapses. We demonstrate that GluN2B-containing NMDA receptors contribute to synaptic responses in the adult human brain with a reduced contribution in older individuals. With previous evidence demonstrating the critical role of synaptic GluN2B in regulating synaptic strength and memory storage in mice, this progressive reduction of GluN2B in the human brain during aging may underlie a molecular mechanism in the age-related decline in cognitive abilities and memory observed in humans.
Collapse
Affiliation(s)
- Chrysia M Pegasiou
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ardalan Zolnourian
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, SO16 6YD, UK.,Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Katrin Deinhardt
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - James A R Nicoll
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, Southampton, SO16 6YD, UK
| | - Aminul I Ahmed
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, SO16 6YD, UK.,Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Girish Vajramani
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Paul Grundy
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Matthijs B Verhoog
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Amsterdam, VU University Amsterdam, Amsterdam, 1081 HV, the Netherlands.,Division of Cell Biology, Department of Human Biology, Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Amsterdam, VU University Amsterdam, Amsterdam, 1081 HV, the Netherlands
| | - V H Perry
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Diederik Bulters
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, SO16 6YD, UK.,Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Mariana Vargas-Caballero
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
30
|
Kumar A. Calcium Signaling During Brain Aging and Its Influence on the Hippocampal Synaptic Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:985-1012. [PMID: 31646542 DOI: 10.1007/978-3-030-12457-1_39] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Calcium (Ca2+) ions are highly versatile intracellular signaling molecules and are universal second messenger for regulating a variety of cellular and physiological functions including synaptic plasticity. Ca2+ homeostasis in the central nervous system endures subtle dysregulation with advancing age. Research has provided abundant evidence that brain aging is associated with altered neuronal Ca2+ regulation and synaptic plasticity mechanisms. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during aging. The current chapter takes a specific perspective, assessing various Ca2+ sources and the influence of aging on Ca2+ sources and synaptic plasticity in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in neuronal Ca2+ signaling and synaptic plasticity mechanisms will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment associated with aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
31
|
Brivio P, Paladini MS, Racagni G, Riva MA, Calabrese F, Molteni R. From Healthy Aging to Frailty: In Search of the Underlying Mechanisms. Curr Med Chem 2019; 26:3685-3701. [PMID: 31333079 DOI: 10.2174/0929867326666190717152739] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/14/2018] [Accepted: 03/08/2019] [Indexed: 11/22/2022]
Abstract
Population aging is accelerating rapidly worldwide, from 461 million people older than 65 years in 2004 to an estimated 2 billion people by 2050, leading to critical implications for the planning and delivery of health and social care. The most problematic expression of population aging is the clinical condition of frailty, which is a state of increased vulnerability that develops as a consequence of the accumulation of microscopic damages in many physiological systems that lead to a striking and disproportionate change in health state, even after an apparently small insult. Since little is known about the biology of frailty, an important perspective to understand this phenomenon is to establish how the alterations that physiologically occur during a condition of healthy aging may instead promote cumulative decline with subsequent depletion of homoeostatic reserve and increase the vulnerability also after minor stressor events. In this context, the present review aims to provide a description of the molecular mechanisms that, by having a critical impact on behavior and neuronal function in aging, might be relevant for the development of frailty. Moreover, since these biological systems are also involved in the coping strategies set in motion to respond to environmental challenges, we propose a role for lifestyle stress as an important player to drive frailty in aging.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.,Associazione di Psicofarmacologia, Milan, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
32
|
Abstract
The management of acute pain in older adults (age 65 or greater) requires special attention due to various physiologic, cognitive, functional, and social issues that may change with aging. Especially in the postoperative setting, there are significant complications that can occur if pain is not treated adequately for elderly patients. In this article, the authors describe these changes in detail and discuss how pain should be assessed appropriately in older patients. In addition, the authors detail the unique risks and benefits of several mainstream analgesic medications as well as interventional treatments for elderly patients. The authors' goal is to provide recommendations for health care providers on appropriately recognizing and treating pain in a safe, effective manner for aging patients.
Collapse
Affiliation(s)
- Jay Rajan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 513 Parnassus Avenue, S-455, San Francisco, CA 94143, USA
| | - Matthias Behrends
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 513 Parnassus Avenue, S-455, San Francisco, CA 94143, USA.
| |
Collapse
|
33
|
Gao T, Liu Y, Zhao Z, Luo Y, Wang L, Wang Y, Yin Y. L-655,708 Does not Prevent Isoflurane-induced Memory Deficits in Old Mice. Transl Neurosci 2019; 10:180-186. [PMID: 31410301 PMCID: PMC6689210 DOI: 10.1515/tnsci-2019-0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/21/2019] [Indexed: 01/07/2023] Open
Abstract
Background General anesthesia and increasing age are two main risk factors for postoperative cognitive dysfunction (POCD). Effective agents for the prevention or treatment of POCD are urgently needed. L-655,708, an inverse agonist of α5 subunit-containing γ-aminobutyric acid subtype A (α5GABAA) receptors, can prevent anesthesia-induced memory deficits in young animals. However, there is a lack of evidence of its efficacy in old animals. Methodology Young (3- to 5-month-old) and old (18- to 20-month-old) mice were given an inhalation of 1.33% isoflurane for 1 hour and their associative memory was evaluated 24 hours after anesthesia using fear-conditioning tests (FCTs). To evaluate the effect of L-655,708, mice received intraperitoneal injections of L-655,708 (0.7 mg/kg) or vehicle 30 minutes before anesthesia. Results Old mice exhibited impaired memory and lower hippocampal α5GABAA levels than young mice under physiological conditions. Pre-injections of L-655,708 significantly alleviated isoflurane-induced memory decline in young mice, but not in old mice. Conclusions L-655,708 is not as effective for the prevention of POCD in old mice as it is in young mice. The use of inverse agonists of α5GABAA in preventing POCD in old patients should be carefully considered.
Collapse
Affiliation(s)
- Teng Gao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yue Liu
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zifang Zhao
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Lifang Wang
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Yiqing Yin
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China
| |
Collapse
|
34
|
Age-related differences in brain activations during spatial memory formation in a well-learned virtual Morris water maze (vMWM) task. Neuroimage 2019; 202:116069. [PMID: 31382044 DOI: 10.1016/j.neuroimage.2019.116069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/03/2019] [Accepted: 08/02/2019] [Indexed: 11/21/2022] Open
Abstract
The current study applied a rodent-based virtual Morris water maze (vMWM) protocol to an investigation of differences in search performance and brain activations between young and older male human adults. All participants completed in-lab practice and testing before performing the task in the fMRI scanner. Behavioral performance during fMRI scanning - measured in terms of corrected cumulative proximity (CCProx) to the goal - showed that a subgroup of older good performers attained comparable levels of search accuracy to the young while another subgroup of older poor performers exhibited consistently lower levels of search accuracy than both older good performers and the young. With regard to brain activations, young adults exhibited greater activations in the cerebellum and cuneus than all older adults, as well as older poor performers. Older good performers exhibited higher activation than older poor performers in the orbitofrontal cortex (BA 10/11), as well as in the cuneus and cerebellum. Brain-behavior correlations further showed that activations in regions involved in visuomotor control (cerebellum, lingual gyrus) and egocentric spatial processing (premotor cortex, precuneus) correlated positively with search accuracy (i.e., closer proximity to goal) in all participants. Notably, activations in the anterior hippocampus correlated positively with search accuracy (CCProx inversed) in the young but not in the old. Taken together, these findings implicated the orbitofrontal cortex and the cerebellum as playing crucial roles in executive and visuospatial processing in older adults, supporting the proposal of an age-related compensatory shift in spatial memory functions away from the hippocampus toward the prefrontal cortex.
Collapse
|
35
|
Nam SM, Yoo DY, Kwon HJ, Kim JW, Jung HY, Kim DW, Seong JK, Hwang IK, Yoon YS. Effects of long-term exposure to aluminum in the hippocampus in the type 2 diabetes model rats. Toxicol Res (Camb) 2019; 8:206-215. [PMID: 30931101 PMCID: PMC6404161 DOI: 10.1039/c8tx00192h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/21/2018] [Indexed: 11/21/2022] Open
Abstract
We investigated the long-term effects of aluminum (Al) exposure in the hippocampus in Zucker diabetic fatty (ZDF) rats and Zucker lean control (ZLC) rats. Six-week-old ZLC and ZDF rats were randomly divided into Al- and non-Al-groups. They were sacrificed 27 weeks after Al exposure (2000 ppm) through drinking water. Al exposure did not affect physiological parameters such as the body weight and blood glucose levels, but the prolonged diabetic condition had significant effects on the body weight and blood glucose levels. To determine the effects of diabetes and Al exposure on the neural plasticity and inflammatory response in the hippocampus, we examined the levels of doublecortin (DCX), N-methyl-d-aspartate receptors (NMDAR1, NMDAR2A, and NMDAR2B), and ionized calcium-binding adapter molecule 1 (Iba-1) in the hippocampus. DCX immunohistochemical staining revealed that Al exposure significantly reduced neuronal differentiation in both ZLC and ZDF rats. In particular, ZDF rats showed significantly decreased DCX immunoreactive neuroblasts compared with ZLC rats after aluminum exposure. In contrast, the expression of postsynaptic NMDARs was altered only in ZDF-Al rats; the protein expression level of NMDAR1 was reduced, but that of NMDAR2B increased in the hippocampus. Iba-1-immunoreactive microglia with morphological changes, including increased cytoplasm and retracted processes, were detected in the long-term diabetic condition and in the case of the co-existence of diabetes and Al exposure. Al exposure aggravated the diabetes-induced reduction of neuroblast differentiation and NMDAR signaling and facilitated the morphological changes associated with inflammatory activation in microglia in the hippocampus. However, further studies are still needed to confirm these findings.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy and Cell Biology , College of Veterinary Medicine , and Research Institute for Veterinary Science , Seoul National University , Seoul 08826 , South Korea . ; ; Tel: +82 2 8801264
- Department of Anatomy , College of Veterinary Medicine , Konkuk University , Seoul 05030 , Republic of Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology , College of Veterinary Medicine , and Research Institute for Veterinary Science , Seoul National University , Seoul 08826 , South Korea . ; ; Tel: +82 2 8801264
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology , Research Institute of Oral Sciences , College of Dentistry , Gangneung-Wonju National University , Gangneung 25457 , South Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology , College of Veterinary Medicine , and Research Institute for Veterinary Science , Seoul National University , Seoul 08826 , South Korea . ; ; Tel: +82 2 8801264
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology , College of Veterinary Medicine , and Research Institute for Veterinary Science , Seoul National University , Seoul 08826 , South Korea . ; ; Tel: +82 2 8801264
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology , Research Institute of Oral Sciences , College of Dentistry , Gangneung-Wonju National University , Gangneung 25457 , South Korea
| | - Je Kyung Seong
- Department of Anatomy and Cell Biology , College of Veterinary Medicine , and Research Institute for Veterinary Science , Seoul National University , Seoul 08826 , South Korea . ; ; Tel: +82 2 8801264
- KMPC (Korea Mouse Phenotyping Center) , Seoul National University , Seoul 08826 , South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology , College of Veterinary Medicine , and Research Institute for Veterinary Science , Seoul National University , Seoul 08826 , South Korea . ; ; Tel: +82 2 8801264
- KMPC (Korea Mouse Phenotyping Center) , Seoul National University , Seoul 08826 , South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology , College of Veterinary Medicine , and Research Institute for Veterinary Science , Seoul National University , Seoul 08826 , South Korea . ; ; Tel: +82 2 8801264
- KMPC (Korea Mouse Phenotyping Center) , Seoul National University , Seoul 08826 , South Korea
| |
Collapse
|
36
|
Hara Y, Crimins JL, Puri R, Wang ACJ, Motley SE, Yuk F, Ramos TM, Janssen WGM, Rapp PR, Morrison JH. Estrogen Alters the Synaptic Distribution of Phospho-GluN2B in the Dorsolateral Prefrontal Cortex While Promoting Working Memory in Aged Rhesus Monkeys. Neuroscience 2019; 394:303-315. [PMID: 30482274 DOI: 10.1016/j.neuroscience.2018.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/06/2023]
Abstract
Age- and menopause-related deficits in working memory can be partially restored with estradiol replacement in women and female nonhuman primates. Working memory is a cognitive function reliant on persistent firing of dorsolateral prefrontal cortex (dlPFC) neurons that requires the activation of GluN2B-containing glutamate NMDA receptors. We tested the hypothesis that the distribution of phospho-Tyr1472-GluN2B (pGluN2B), a predominant form of GluN2B seen at the synapse, is sensitive to aging or estradiol treatment and coupled to working memory performance. First, ovariectomized young and aged rhesus monkeys (Macaca mulatta) received long-term cyclic vehicle (V) or estradiol (E) treatment and were tested on the delayed response (DR) test of working memory. Then, serial section electron microscopic immunocytochemistry was performed to quantitatively assess the subcellular distribution of pGluN2B. While the densities of pGluN2B immunogold particles in dlPFC dendritic spines were not different across age or treatment groups, the percentage of gold particles located within the synaptic compartment was significantly lower in aged-E monkeys compared to young-E and aged-V monkeys. On the other hand, the percentage of pGluN2B gold particles in the spine cytoplasm was decreased with E treatment in young, but increased with E in aged monkeys. In aged monkeys, DR average accuracy inversely correlated with the percentage of synaptic pGluN2B, while it positively correlated with the percentage of cytoplasmic pGluN2B. Together, E replacement may promote cognitive health in aged monkeys, in part, by decreasing the relative representation of synaptic pGluN2B and potentially protecting the dlPFC from calcium toxicity.
Collapse
Affiliation(s)
- Yuko Hara
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Johanna L Crimins
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Rishi Puri
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Athena C J Wang
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Sarah E Motley
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; California National Primate Research Center, Davis, CA 95616, United States
| | - Frank Yuk
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Tiffany M Ramos
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - William G M Janssen
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Peter R Rapp
- National Institute on Aging, Laboratory of Behavioral Neuroscience, Baltimore, MD 21224, United States
| | - John H Morrison
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; California National Primate Research Center, Davis, CA 95616, United States; Department of Neurology, School of Medicine, University of California, Davis, CA 95616, United States.
| |
Collapse
|
37
|
Zamzow DR, Elias V, Acosta VA, Escobedo E, Magnusson KR. Higher Levels of Protein Palmitoylation in the Frontal Cortex across Aging Were Associated with Reference Memory and Executive Function Declines. eNeuro 2019; 6:ENEURO.0310-18.2019. [PMID: 30740518 PMCID: PMC6366935 DOI: 10.1523/eneuro.0310-18.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/17/2022] Open
Abstract
Cognitive decline with aging is often due to altered levels of protein expression. The NMDA receptor (NMDAR) and the complex of proteins surrounding the receptor are susceptible to age-related changes in expression. In the frontal cortex of aged mice, there is a significant loss of expression of the GluN2B subunit of the NMDAR, an increase in Fyn expression, and no change in PSD-95. Studies have also found that, in the frontal cortex, phosphorylation of GluN2B subunits and palmitoylation of GluN2 subunits and NMDAR complex proteins are affected by age. In this study, we examined some of the factors that may lead to the differences in the palmitoylation levels of NMDAR complex proteins in the frontal cortex of aged animals. The Morris water maze was used to test spatial learning in 3- and 24-month-old mice. The acyl-biotinyl exchange method was used to precipitate palmitoylated proteins from the frontal cortices and hippocampi of the mice. Additionally, brain lysates from old and young mice were probed for the expression of fatty acid transporter proteins. An age-related increase of palmitoylated GluN2A, GluN2B, Fyn, PSD-95, and APT1 (acyl protein thioesterase 1) in the frontal cortex was associated with poorer reference memory and/or executive functions. These data suggest that there may be a perturbation in the palmitoylation cycle in the frontal cortex of aged mice that contributes to age-related cognitive declines.
Collapse
Affiliation(s)
| | - Valerie Elias
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon 97331
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331
| | - Varinia A. Acosta
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon 97331
| | - Emily Escobedo
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon 97331
| | - Kathy R. Magnusson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon 97331
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
38
|
Chandran R, Kumar M, Kesavan L, Jacob RS, Gunasekaran S, Lakshmi S, Sadasivan C, Omkumar R. Cellular calcium signaling in the aging brain. J Chem Neuroanat 2019; 95:95-114. [DOI: 10.1016/j.jchemneu.2017.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/03/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
|
39
|
Johnson S, Wozniak DF, Imai S. CA1 Nampt knockdown recapitulates hippocampal cognitive phenotypes in old mice which nicotinamide mononucleotide improves. NPJ Aging Mech Dis 2018; 4:10. [PMID: 30416740 PMCID: PMC6224504 DOI: 10.1038/s41514-018-0029-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Cognitive dysfunction is one of the most concerning outcomes in global population aging. However, the mechanisms by which cognitive functions are impaired during aging remain elusive. It has been established that NAD+ levels are reduced in multiple tissues and organs, including the brain. We found that NAD+ levels declined in the hippocampus of mice during the course of aging, and whereas we observed minimal age-related effects on spatial learning/memory capabilities in old mice, we discovered that they developed cognitive hypersensitivity in response to aversive stimulation during contextual fear conditioning tests. This cognitive hypersensitivity appears to be associated with alterations in emotionality (fear/anxiety) and sensory processing (shock sensitivity), rather than reflect genuine conditioning/retention effects, during aging. Supplementation of nicotinamide mononucleotide (NMN) improved the sensory processing aspect of the hypersensitivity and possibly other related behaviors. Specific knockdown of nicotinamide phosphoribosyltransferase (Nampt) in the CA1 region, but not in the dentate gyrus, recapitulates this cognitive hypersensitivity observed in old mice. We identified calcium/calmodulin-dependent serine protein kinase (Cask) as a potential downstream effector in response to age-associated NAD+ reduction in the hippocampus. Cask expression is responsive to NAD+ changes and also reduced in the hippocampus during aging. Short-term NMN supplementation can enhance Cask expression in the hippocampus of old mice. Its promoter activity is regulated in a Sirt1-dependent manner. Taken together, NAD+ reduction in the CA1 region contributes to development of age-associated cognitive dysfunction, aspects of which may be prevented or treated by enhancing NAD+ availability through supplementation of NAD+ intermediates, such as NMN. Cognitive dysfunction is one of the most concerning outcomes in global population aging. However, the mechanisms of cognitive impairment during aging remain elusive. We found that in old mice, levels of nicotinamide adenine dinucleotide (NAD+), an essential chemical for all living organisms, declined in the hippocampus, a critical part of the brain for memory and learning. We also found that age-associated hypersensitivity in cognitive and behavioral functions (cognitive hypersensitivity) was induced by reduced NAD+ availability in the hippocampus. Supplementation of nicotinamide mononucleotide (NMN), a critical chemical that is converted to NAD+, is able to mitigate the cognitive hypersensitivity observed in old mice. Our findings provide new insights into how NAD+ decline affects age-associated anxiety/depression and how such impairments can be prevented or treated by enhancing NAD+.
Collapse
Affiliation(s)
- Sean Johnson
- 1Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110 USA.,3Present Address: Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - David F Wozniak
- 2Department of Psychiatry, The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - S Imai
- 1Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
40
|
Susceptibility of the cerebral cortex to spreading depolarization in neurological disease states: The impact of aging. Neurochem Int 2018; 127:125-136. [PMID: 30336178 DOI: 10.1016/j.neuint.2018.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 12/17/2022]
Abstract
Secondary injury following acute brain insults significantly contributes to poorer neurological outcome. The spontaneous, recurrent occurrence of spreading depolarization events (SD) has been recognized as a potent secondary injury mechanism in subarachnoid hemorrhage, malignant ischemic stroke and traumatic brain injury. In addition, SD is the underlying mechanism of the aura symptoms of migraineurs. The susceptibility of the nervous tissue to SD is subject to the metabolic status of the tissue, the ionic composition of the extracellular space, and the functional status of ion pumps, voltage-gated and other cation channels, glutamate receptors and excitatory amino acid transporters. All these mechanisms tune the excitability of the nervous tissue. Aging has also been found to alter SD susceptibility, which appears to be highest at young adulthood, and decline over the aging process. The lower susceptibility of the cerebral gray matter to SD in the old brain may be caused by the age-related impairment of mechanisms implicated in ion translocations between the intra- and extracellular compartments, glutamate signaling and surplus potassium and glutamate clearance. Even though the aging nervous tissue is thus less able to sustain SD, the consequences of SD recurrence in the old brain have proven to be graver, possibly leading to accelerated lesion maturation. Taken that recurrent SDs may pose an increased burden in the aging injured brain, the benefit of therapeutic approaches to restrict SD generation and propagation may be particularly relevant for elderly patients.
Collapse
|
41
|
Kumar A, Foster TC. Alteration in NMDA Receptor Mediated Glutamatergic Neurotransmission in the Hippocampus During Senescence. Neurochem Res 2018; 44:38-48. [PMID: 30209673 DOI: 10.1007/s11064-018-2634-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 12/17/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in neurons and glia. N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate receptors are major ionotropic glutamate receptors. Glutamatergic neurotransmission is strongly linked with Ca2+ homeostasis. Research has provided ample evidence that brain aging is associated with altered glutamatergic neurotransmission and Ca2+ dysregulation. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during senescence. The current review examines Ca2+ regulation with a focus on the NMDA receptors in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in Ca2+ homeostasis and NMDA receptor-mediated glutamatergic neurotransmission will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, PO Box 100244, Gainesville, FL, 32610-0244, USA.
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, PO Box 100244, Gainesville, FL, 32610-0244, USA.
- Genetics and Genomics Program, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
42
|
Zhan JQ, Zheng LL, Chen HB, Yu B, Wang W, Wang T, Ruan B, Pan BX, Chen JR, Li XF, Wei B, Yang YJ. Hydrogen Sulfide Reverses Aging-Associated Amygdalar Synaptic Plasticity and Fear Memory Deficits in Rats. Front Neurosci 2018; 12:390. [PMID: 29930496 PMCID: PMC5999728 DOI: 10.3389/fnins.2018.00390] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/22/2018] [Indexed: 01/05/2023] Open
Abstract
As an endogenous neuromodulator, hydrogen sulfide (H2S) exerts multiple biological effects in the brain. Previous studies have shown that H2S is involved in the regulation of neural synaptic plasticity and cognition in healthy rodents. It is well known that there is a progressive decline of cognitive function that occurs with increased age. The purpose of this study was to investigate the role of H2S in aging-associated amygdalar synaptic plasticity and cued fear memory deficits as well as to explore the underlying mechanisms. We found that H2S levels in the amygdala were significantly lower in aged rats when compared with healthy adult rates, which displayed significant deficits in long-term potentiation (LTP) in the thalamo-lateral amygdala (LA) pathway and amygdala-dependent cued fear memory. Bath application of an H2S donor, sodium hydrogen sulfide (NaHS), significantly reversed the impaired LTP in brain slices from aged rats, and intra-LA infusion of NaHS restored the cued fear memory in aged rats. Mechanismly, we found that H2S treatment significantly enhanced NMDAR-mediated synaptic responses in the thalamo-LA pathway of aged rats. Notably, GluN2B-containing NMDARs, but not GluN2A-containing NMDARs, contributed to the effects of H2S on aging-associated impairments of amygdalar LTP and fear memory, because applying GluN2B antagonist could abolish the beneficial effects of NaHS treatment on amygdalar LTP and cognitive performance in aged rats. Collectively, these results show that H2S can reverse aging-associated amygdalar synaptic plasticity and fear memory deficits by restoring the function of GluN2B-containing NMDARs, suggesting that supplement of H2S might be a therapeutic approach for aging-related cognitive disorders.
Collapse
Affiliation(s)
- Jin-Qiong Zhan
- Biological Psychiatry Laboratory, Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Li-Li Zheng
- Department of Pharmacy, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Hai-Bo Chen
- Biological Psychiatry Laboratory, Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Bin Yu
- Biological Psychiatry Laboratory, Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Wei Wang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Wang
- Department of Pharmacology, College of Medical Science, China Three Gorges University, Yichang, China
| | - Bo Ruan
- Department of Pharmacology, College of Medical Science, China Three Gorges University, Yichang, China
| | - Bin-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, China
| | - Juan-Ru Chen
- Biological Psychiatry Laboratory, Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Xue-Fen Li
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bo Wei
- Biological Psychiatry Laboratory, Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Yuan-Jian Yang
- Biological Psychiatry Laboratory, Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
43
|
Zhong JY, Magnusson KR, Swarts ME, Clendinen CA, Reynolds NC, Moffat SD. The application of a rodent-based Morris water maze (MWM) protocol to an investigation of age-related differences in human spatial learning. Behav Neurosci 2018; 131:470-482. [PMID: 29189018 DOI: 10.1037/bne0000219] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The current study applied a rodent-based Morris water maze (MWM) protocol to an investigation of search performance differences between young and older adult humans. To investigate whether similar age-related decline in search performance could be seen in humans based on the rodent-based protocol, we implemented a virtual MWM (vMWM) that has characteristics similar to those of the MWM used in previous studies of spatial learning in mice. Through the use of a proximity to platform measure, robust differences were found between healthy young and older adults in search performance. After dividing older adults into good and poor performers based on a median split of their corrected cumulative proximity values, the age effects in place learning were found to be largely related to search performance differences between the young and poor-performing older adults. When compared with the young, poor-performing older adults exhibited significantly higher proximity values in 83% of 24 place trials and overall in the probe trials that assessed spatial learning in the absence of the hidden platform. In contrast, good-performing older adults exhibited patterns of search performance that were comparable with that of the younger adults in most place and probe trials. Taken together, our findings suggest that the low search accuracy in poor-performing older adults stemmed from potential differences in strategy selection, differences in assumptions or expectations of task demands, as well as possible underlying functional and/or structural changes in the brain regions involved in vMWM search performance. (PsycINFO Database Record
Collapse
Affiliation(s)
- Jimmy Y Zhong
- School of Psychology, College of Sciences, Georgia Institute of Technology
| | - Kathy R Magnusson
- Department of Biomedical Sciences, College of Veterinary Medicine & Linus Pauling Institute, Oregon State University
| | - Matthew E Swarts
- School of Architecture, College of Design, Georgia Institute of Technology
| | | | - Nadjalisse C Reynolds
- Department of Biomedical Sciences, College of Veterinary Medicine & Linus Pauling Institute, Oregon State University
| | - Scott D Moffat
- School of Psychology, College of Sciences, Georgia Institute of Technology
| |
Collapse
|
44
|
Chiang ACA, Fowler SW, Reddy R, Pletnikova O, Troncoso JC, Sherman MA, Lesne SE, Jankowsky JL. Discrete Pools of Oligomeric Amyloid-β Track with Spatial Learning Deficits in a Mouse Model of Alzheimer Amyloidosis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:739-756. [PMID: 29248459 PMCID: PMC5840490 DOI: 10.1016/j.ajpath.2017.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 01/08/2023]
Abstract
Despite increasing appreciation that oligomeric amyloid-β (Aβ) may contribute to cognitive decline of Alzheimer disease, defining the most critical forms has been thwarted by the changeable nature of these aggregates and the varying methods used for detection. Herein, using a broad approach, we quantified Aβ oligomers during the evolution of cognitive deficits in an aggressive model of Aβ amyloidosis. Amyloid precursor protein/tetracycline transactivator mice underwent behavioral testing at 3, 6, 9, and 12 months of age to evaluate spatial learning and memory, followed by histologic assessment of amyloid burden and biochemical characterization of oligomeric Aβ species. Transgenic mice displayed progressive impairments in acquisition and immediate recall of the trained platform location. Biochemical analysis of cortical extracts from behaviorally tested mice revealed distinct age-dependent patterns of accumulation in multiple oligomeric species. Dot blot analysis demonstrated that nonfibrillar Aβ oligomers were highly soluble and extracted into a fraction enriched for extracellular proteins, whereas prefibrillar species required high-detergent conditions to retrieve, consistent with membrane localization. Low-detergent extracts tested by 82E1 enzyme-linked immunosorbent assay confirmed the presence of bona fide Aβ oligomers, whereas immunoprecipitation-Western blotting using high-detergent extracts revealed a variety of SDS-stable low-n species. These findings show that different Aβ oligomers vary in solubility, consistent with distinct localization, and identify nonfibrillar Aβ oligomer-positive aggregates as tracking most closely with cognitive decline in this model.
Collapse
Affiliation(s)
- Angie C A Chiang
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Stephanie W Fowler
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Rohit Reddy
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas; Department of Cognitive Science, Rice University, Houston, Texas
| | - Olga Pletnikova
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Juan C Troncoso
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mathew A Sherman
- Department of Neuroscience, N. Bud Grossman Center for Memory Research and Care, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Sylvain E Lesne
- Department of Neuroscience, N. Bud Grossman Center for Memory Research and Care, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Joanna L Jankowsky
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas; Department of Neurology and Neurosurgery, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
45
|
Jiang Y, Lin MK, Jicha GA, Ding X, McIlwrath SL, Fardo DW, Broster LS, Schmitt FA, Kryscio R, Lipsky RH. Functional human GRIN2B promoter polymorphism and variation of mental processing speed in older adults. Aging (Albany NY) 2018; 9:1293-1306. [PMID: 28439047 PMCID: PMC5425128 DOI: 10.18632/aging.101228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023]
Abstract
We investigated the role of a single nucleotide polymorphism rs3764030 (G>A) within the human GRIN2B promoter in mental processing speed in healthy, cognitively intact, older adults. In vitro DNA-binding and reporter gene assays of different allele combinations in transfected cells showed that the A allele was a gain-of-function variant associated with increasing GRIN2B mRNA levels. We tested the hypothesis that individuals with A allele will have better memory performance (i.e. faster reaction times) in older age. Twenty-eight older adults (ages 65-86) from a well-characterized longitudinal cohort were recruited and performed a modified delayed match-to-sample task. The rs3764030 polymorphism was genotyped and participants were grouped based on the presence of the A allele into GG and AA/AG. Carriers of the A allele maintained their speed of memory retrieval over age compared to GG carriers (p = 0.026 slope of the regression line between AA and AG versus GG groups). To validate the results, 12 older adults from the same cohort participated in a different version of the short-term memory task. Reaction times were significantly slower with age in older adults with G allele (p < 0.001). These findings support a role for rs3764030 in maintaining faster mental processing speed over aging.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Behavioral Science, University of Kentucky, Lexington, KY 40536, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Ming Kuan Lin
- Department of Molecular Neuroscience, the Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Xiuhua Ding
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Departments of Statistics and Biostatistics, University of Kentucky, Lexington, KY 40536, USA
| | - Sabrina L McIlwrath
- Department of Behavioral Science, University of Kentucky, Lexington, KY 40536, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Departments of Statistics and Biostatistics, University of Kentucky, Lexington, KY 40536, USA
| | - Lucas S Broster
- Department of Behavioral Science, University of Kentucky, Lexington, KY 40536, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Richard Kryscio
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Departments of Statistics and Biostatistics, University of Kentucky, Lexington, KY 40536, USA
| | - Robert H Lipsky
- Department of Molecular Neuroscience, the Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA.,Department of Neurosciences, Inova Neuroscience Institute, Inova Health System, Falls Church, VA 22042, USA
| |
Collapse
|
46
|
Avila J, Llorens-Martín M, Pallas-Bazarra N, Bolós M, Perea JR, Rodríguez-Matellán A, Hernández F. Cognitive Decline in Neuronal Aging and Alzheimer's Disease: Role of NMDA Receptors and Associated Proteins. Front Neurosci 2017; 11:626. [PMID: 29176942 PMCID: PMC5687061 DOI: 10.3389/fnins.2017.00626] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/26/2017] [Indexed: 01/01/2023] Open
Abstract
Molecular changes associated with neuronal aging lead to a decrease in cognitive capacity. Here we discuss these alterations at the level of brain regions, brain cells, and brain membrane and cytoskeletal proteins with an special focus in NMDA molecular changes through aging and its effect in cognitive decline and Alzheimer disease. Here, we propose that some neurodegenerative disorders, like Alzheimer's disease (AD), are characterized by an increase and acceleration of some of these changes.
Collapse
Affiliation(s)
- Jesús Avila
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Llorens-Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Noemí Pallas-Bazarra
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marta Bolós
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan R Perea
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Alberto Rodríguez-Matellán
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
47
|
Yanai S, Ito H, Endo S. Long-term cilostazol administration prevents age-related decline of hippocampus-dependent memory in mice. Neuropharmacology 2017; 129:57-68. [PMID: 29122629 DOI: 10.1016/j.neuropharm.2017.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/30/2017] [Accepted: 11/04/2017] [Indexed: 12/17/2022]
Abstract
Phosphodiesterases (PDEs) are enzymes that hydrolyze and inactivate 3', 5'-cyclic adenosine monophosphate (cAMP) and/or 3', 5'-cyclic guanosine monophosphate (cGMP). The regulation of intracellular signaling pathways mediated by cyclic nucleotides is imperative to synaptic plasticity and memory in animals. Because PDEs play an important role in this regulation, PDE inhibitors are considered as candidate compounds for treating cognitive and memory disorders. In the present study, we tested whether cilostazol, a selective PDE3 inhibitor, prevents the cognitive deterioration that occurs during the course of normal aging in mice. Ten months of cilostazol administration (1.5%) in 13-month-old mice improved spatial memory when tested at 23 months of age. First, it prevented the decline in the ability of these aged mice to recognize a change in an object's location in the object recognition task. Second, spatial memory of these cilostazol-treated aged mice in the Morris water maze was comparable to that of untreated middle-aged mice (13 months old). Cilostazol administration had no effect on the emotional states and physical ability of aged mice. Thus, long-term cilostazol administration prevented hippocampus-dependent memory decline in aged mice, allowing them to achieve a level of cognitive performance similar to middle-aged mice and without negative behavioral side effects. Considering its well-established safety in other medical contexts, cilostazol may be a potential therapeutic candidate drug for staving off cognitive decline in the aging human population.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Hideki Ito
- Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, 771-0192, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan.
| |
Collapse
|
48
|
Leon J, Moreno AJ, Garay BI, Chalkley RJ, Burlingame AL, Wang D, Dubal DB. Peripheral Elevation of a Klotho Fragment Enhances Brain Function and Resilience in Young, Aging, and α-Synuclein Transgenic Mice. Cell Rep 2017; 20:1360-1371. [PMID: 28793260 PMCID: PMC5816951 DOI: 10.1016/j.celrep.2017.07.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/28/2017] [Accepted: 07/12/2017] [Indexed: 01/24/2023] Open
Abstract
Cognitive dysfunction and decreased mobility from aging and neurodegenerative conditions, such as Parkinson and Alzheimer diseases, are major biomedical challenges in need of more effective therapies. Increasing brain resilience may represent a new treatment strategy. Klotho, a longevity factor, enhances cognition when genetically and broadly overexpressed in its full, wild-type form over the mouse lifespan. Whether acute klotho treatment can rapidly enhance cognitive and motor functions or induce resilience is a gap in our knowledge of its therapeutic potential. Here, we show that an α-klotho protein fragment (αKL-F), administered peripherally, surprisingly induced cognitive enhancement and neural resilience despite impermeability to the blood-brain barrier in young, aging, and transgenic α-synuclein mice. αKL-F treatment induced cleavage of the NMDAR subunit GluN2B and also enhanced NMDAR-dependent synaptic plasticity. GluN2B blockade abolished αKL-F-mediated effects. Peripheral αKL-F treatment is sufficient to induce neural enhancement and resilience in mice and may prove therapeutic in humans.
Collapse
Affiliation(s)
- Julio Leon
- Department of Neurology, Biomedical Sciences Graduate Program, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Arturo J Moreno
- Department of Neurology, Biomedical Sciences Graduate Program, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bayardo I Garay
- Department of Neurology, Biomedical Sciences Graduate Program, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Robert J Chalkley
- Department of Chemistry and Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alma L Burlingame
- Department of Chemistry and Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dan Wang
- Department of Neurology, Biomedical Sciences Graduate Program, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dena B Dubal
- Department of Neurology, Biomedical Sciences Graduate Program, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
49
|
Prenatal high sucrose intake affected learning and memory of aged rat offspring with abnormal oxidative stress and NMDARs/Wnt signaling in the hippocampus. Brain Res 2017; 1669:114-121. [PMID: 28532855 DOI: 10.1016/j.brainres.2017.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/29/2017] [Accepted: 05/19/2017] [Indexed: 01/07/2023]
Abstract
Maternal over-nutrition may predispose offspring to obesity, type 2 diabetes and other adult diseases. The present study investigated long-term impact of prenatal high sucrose (HS) diets on cognitive capabilities in aged rat offspring. The fasting plasma glucose concentration did not differ between the control and HS groups. However, the fasting plasma insulin and insulin resistance index values were significantly increased in HS offspring that showed abnormal glucose tolerance test. HS offspring exhibited increased escape latency and swimming path length to the platform, and reduced time in the target quadrant and the number of crossing the platform, as compared with the control group. The expression of Grin2b/NR2B, Wnt2, Wnt3a and active form of β-catenin protein were decreased, and Dickkopf-related protein 1 was increased in the HS group. In addition, the levels of lipid peroxidation biomarker thiobarbituricacid reactive substance, nicotinamide adenine dinucleotide phosphate oxidases 2 and superoxide dismutase 1 were significantly increased, and the activity of catalase was decreased in the hippocampus in the HS group. The results demonstrate that prenatal HS-induced metabolic changes cause cognitive deficits in aged rat offspring, probably due to altered N-methyl-d-aspartate receptors/Wnt signaling and oxidative stress in the hippocampus.
Collapse
|
50
|
Shivarama Shetty M, Sajikumar S. 'Tagging' along memories in aging: Synaptic tagging and capture mechanisms in the aged hippocampus. Ageing Res Rev 2017; 35:22-35. [PMID: 28065806 DOI: 10.1016/j.arr.2016.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/12/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023]
Abstract
Aging is accompanied by a general decline in the physiological functions of the body with the deteriorating organ systems. Brain is no exception to this and deficits in cognitive functions are quite common in advanced aging. Though a variety of age-related alterations are observed in the structure and function throughout the brain, certain regions show selective vulnerability. Medial temporal lobe, especially the hippocampus, is one such preferentially vulnerable region and is a crucial structure involved in the learning and long-term memory functions. Hippocampal synaptic plasticity, such as long-term potentiation (LTP) and depression (LTD), are candidate cellular correlates of learning and memory and alterations in these properties have been well documented in aging. A related phenomenon called synaptic tagging and capture (STC) has been proposed as a mechanism for cellular memory consolidation and to account for temporal association of memories. Mounting evidences from behavioral settings suggest that STC could be a physiological phenomenon. In this article, we review the recent data concerning STC and provide a framework for how alterations in STC-related mechanisms could contribute to the age-associated memory impairments. The enormity of impairment in learning and memory functions demands an understanding of age-associated memory deficits at the fundamental level given its impact in the everyday tasks, thereby in the quality of life. Such an understanding is also crucial for designing interventions and preventive measures for successful brain aging.
Collapse
|