1
|
Hosoya M, Iwabu K, Kitama T, Nishiyama T, Oishi N, Okano H, Ozawa H. Development of cochlear spiral ligament fibrocytes of the common marmoset, a nonhuman model animal. Sci Rep 2023; 13:11789. [PMID: 37479821 PMCID: PMC10362005 DOI: 10.1038/s41598-023-39003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023] Open
Abstract
Spiral ligament fibrocytes generate potassium gradients, which hair cells require to convert mechanical sound waves into electrical palsy. Together with the stria vascularis, they regulate endolymph electrolyte homeostasis. Developing spiral ligament fibrocytes and generating endocochlear potential with an appropriate endolymph ion composition are essential for hearing. Understanding spiral ligament fibrocyte development is useful for studying age-related and genetic hearing loss, as well as for regenerative therapy and cochlear immunology. Despite interspecies differences, most studies of cochlear development have been conducted in rodent models due to the difficulty of using human fetal samples. This study investigated the cochlear development of spiral ligament fibrocytes in a small New World monkey species, the common marmoset (Callithrix jacchus). We examined the developmental expression of specific genes in spiral ligament fibrocytes, including those essential for the generation of endolymphatic potential. Our results showed that this animal model of spiral ligament fibrocyte development is similar to that of humans and is a suitable alternative for the analysis of human cochlear development. The time course established in this study will be useful for studying the primate-specific developmental biology of the inner ear, which may lead to novel treatment strategies for human hearing loss.
Collapse
Affiliation(s)
- Makoto Hosoya
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Kaho Iwabu
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tsubasa Kitama
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takanori Nishiyama
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Naoki Oishi
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, 2-1 Hirosawa Wako, Saitama, 351-0193, Japan
| | - Hiroyuki Ozawa
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
2
|
Self-protection of type III fibrocytes against severe 3-nitropropionic-acid-induced cochlear damage in mice. Neuroreport 2018; 29:252-258. [PMID: 29280748 DOI: 10.1097/wnr.0000000000000927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
After intense sound exposure, the lack of obvious degeneration in type III fibrocytes suggests that they might protect themselves against acoustic trauma. However, it is unknown whether and how type III fibrocytes play this role in other cochlear damage models. In this study, we investigated the self-protection of type III fibrocytes against severe cochlear energy failure induced by local administration of 3-nitropropionic acid to the inner ear. We detected that the type III fibrocytes did not degenerate significantly after 500 mM 3-nitropropionic acid application, and showed increased expression of proliferation marker Ki67. Moreover, low immunoreactivity for inducible nitric oxide synthase and cleaved caspase-3 was observed in type III fibrocytes 2 days after damage. These results indicate that after severe cochlear energy failure type III fibrocytes possess obvious proliferation activity, as well as strong antioxidant and antiapoptotic capacity, which can protect them from degeneration.
Collapse
|
3
|
Borse V, Al Aameri RFH, Sheehan K, Sheth S, Kaur T, Mukherjea D, Tupal S, Lowy M, Ghosh S, Dhukhwa A, Bhatta P, Rybak LP, Ramkumar V. Epigallocatechin-3-gallate, a prototypic chemopreventative agent for protection against cisplatin-based ototoxicity. Cell Death Dis 2017; 8:e2921. [PMID: 28703809 PMCID: PMC5550861 DOI: 10.1038/cddis.2017.314] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/11/2017] [Accepted: 05/25/2017] [Indexed: 12/23/2022]
Abstract
Cisplatin-induced ototoxicity is one of the major factors limiting cisplatin chemotherapy. Ototoxicity results from damage to outer hair cells (OHCs) and other regions of the cochlea. At the cellular level, cisplatin increases reactive oxygen species (ROS) leading to cochlear inflammation and apoptosis. Thus, ideal otoprotective drugs should target oxidative stress and inflammatory mechanisms without interfering with cisplatin's chemotherapeutic efficacy. In this study, we show that epigallocatechin-3-gallate (EGCG) is a prototypic agent exhibiting these properties of an effect otoprotective agent. Rats administered oral EGCG demonstrate reduced cisplatin-induced hearing loss, reduced loss of OHCs in the basal region of the cochlea and reduced oxidative stress and apoptotic markers. EGCG also protected against the loss of ribbon synapses associated with inner hair cells and Na+/K+ ATPase α1 in the stria vascularis and spiral ligament. In vitro studies showed that EGCG reduced cisplatin-induced ROS generation and ERK1/2 and signal transducer and activator of transcription-1 (STAT1) activity, but preserved the activity of STAT3 and Bcl-xL. The increase in STAT3/STAT1 ratio appears critical for mediating its otoprotection. EGCG did not alter cisplatin-induced apoptosis of human-derived cancer cells or cisplatin antitumor efficacy in a xenograft tumor model in mice because of its inability to rescue the downregulation of STAT3 in these cells. These data suggest that EGCG is an ideal otoprotective agent for treating cisplatin-induced hearing loss without compromising its antitumor efficacy.
Collapse
Affiliation(s)
- Vikrant Borse
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| | - Raheem F H Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| | - Kelly Sheehan
- Department of Surgery (Otolaryngology), Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Sandeep Sheth
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| | - Tejbeer Kaur
- Department of Otolaryngology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Debashree Mukherjea
- Department of Surgery (Otolaryngology), Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Srinivasan Tupal
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| | - Michelle Lowy
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| | - Sumana Ghosh
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| | - Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| | - Puspanjali Bhatta
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| | - Leonard P Rybak
- Department of Surgery (Otolaryngology), Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| |
Collapse
|
4
|
Abstract
Cochlear spiral ligament fibrocytes (SLFs) play essential roles in the physiology of hearing including ion recycling and the generation of endocochlear potential. In adult animals, SLFs can repopulate after damages, yet little is known about the characteristics of proliferating cells that support SLFs' self-renewal. Here we report in detail about the characteristics of cycling cells in the spiral ligament (SL). Fifteen P6 mice and six noise-exposed P28 mice were injected with 5-bromo-2'-deoxyuridine (BrdU) for 7 days and we chased BrdU retaining cells for as long as 60 days. Immunohistochemistry revealed that the BrdU positive IB4 (an endotherial marker) negative cells expressed an early SLF marker Pou3f4 but negative for cleaved-Caspase 3. Marker studies revealed that type 3 SLFs displayed significantly higher percentage of BrdU+ cells compared to other subtypes. Notably, the cells retained BrdU until P72, demonstrating they were dividing slowly. In the noise-damaged mice, in contrast to the loss of the other types, the number of type 3 SLFs did not altered and the BrdU incorporating- phosphorylated Histone H3 positive type 3 cells were increased from day 1 to 14 after noise exposure. Furthermore, the cells repopulating type 1 area, where the cells diminished profoundly after damage, were positive for the type 3 SLF markers. Collectively, in the latral wall of the cochlea, type 3 SLFs have the stem cell capacity and may contribute to the endogenous regeneration of lateral wall spiral ligament. Manipulating type 3 cells may be employed for potential regenerative therapies.
Collapse
Affiliation(s)
- Yang Li
- Department of Otorhinolaryngology, School of Medicine, Keio University,35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi Wu Lu, Xi'an, China
| | - Kotaro Watanabe
- Department of Otorhinolaryngology, School of Medicine, Keio University,35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Masato Fujioka
- Department of Otorhinolaryngology, School of Medicine, Keio University,35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| | - Kaoru Ogawa
- Department of Otorhinolaryngology, School of Medicine, Keio University,35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
5
|
Attenuation of progressive hearing loss in DBA/2J mice by reagents that affect epigenetic modifications is associated with up-regulation of the zinc importer Zip4. PLoS One 2015; 10:e0124301. [PMID: 25875282 PMCID: PMC4397065 DOI: 10.1371/journal.pone.0124301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 01/21/2023] Open
Abstract
Various factors that are important for proper hearing have been identified, including serum levels of zinc. Here we investigated whether epigenetic regulatory pathways, which can be modified by environmental factors, could modulate hearing. RT-PCR detected expression of genes encoding DNA methyltransferase and histone deacetylase (Hdac) in the postnatal as well as adult mouse auditory epithelium. DBA/2J mice, which are a model for progressive hearing loss, were injected subcutaneously with one or a combination of the following reagents: <smallcaps>L</smallcaps>-methionine as a methyl donor, valproic acid as a pan-Hdac inhibitor, and folic acid and vitamin B12 as putative factors involved in age-related hearing loss. The mice were treated from ages 4 to 12 weeks (N ≥ 5), and auditory brainstem response (ABR) thresholds were measured at 8, 16, and 32 kHz. Treatment of the mice with a combination of <smallcaps>L</smallcaps>-methionine and valproic acid (M+V) significantly reduced the increase in the ABR threshold at 32 kHz. Treatment with any of these reagents individually produced no such effect. Microarray analyses detected 299 gene probes that were significantly up- or down-regulated in the cochleae of mice treated with M+V compared with the control vehicle-treated mice. Quantitative RT-PCR confirmed significant up-regulation of a zinc importer gene, Zip4, in the cochleae of mice treated with M+V. Immunohistochemistry demonstrated an intense Zip4 signal in cochlear tissues such as the lateral wall, organ of Corti, and spiral ganglion. Finally, mice treated with the Zip4 inducer (–)-epigallocatechin-3-O-gallate showed a significant reduction in the increase of the ABR threshold at 32 kHz and up-regulation of Zip4 expression in the cochlea. This study suggests that epigenetic regulatory pathways can modify auditory function and that zinc intake in the cochlea via Zip4 mediates maintenance of mammalian hearing.
Collapse
|
6
|
Yamaguchi T, Nagashima R, Yoneyama M, Shiba T, Ogita K. Disruption of ion-trafficking system in the cochlear spiral ligament prior to permanent hearing loss induced by exposure to intense noise: possible involvement of 4-hydroxy-2-nonenal as a mediator of oxidative stress. PLoS One 2014; 9:e102133. [PMID: 25013956 PMCID: PMC4094500 DOI: 10.1371/journal.pone.0102133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/16/2014] [Indexed: 12/02/2022] Open
Abstract
Noise-induced hearing loss is at least in part due to disruption of endocochlear potential, which is maintained by various K+ transport apparatuses including Na+, K+-ATPase and gap junction-mediated intercellular communication in the lateral wall structures. In this study, we examined the changes in the ion-trafficking-related proteins in the spiral ligament fibrocytes (SLFs) following in vivo acoustic overstimulation or in vitro exposure of cultured SLFs to 4-hydroxy-2-nonenal, which is a mediator of oxidative stress. Connexin (Cx)26 and Cx30 were ubiquitously expressed throughout the spiral ligament, whereas Na+, K+-ATPase α1 was predominantly detected in the stria vascularis and spiral prominence (type 2 SLFs). One-hour exposure of mice to 8 kHz octave band noise at a 110 dB sound pressure level produced an immediate and prolonged decrease in the Cx26 expression level and in Na+, K+-ATPase activity, as well as a delayed decrease in Cx30 expression in the SLFs. The noise-induced hearing loss and decrease in the Cx26 protein level and Na+, K+-ATPase activity were abolished by a systemic treatment with a free radical-scavenging agent, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl, or with a nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester hydrochloride. In vitro exposure of SLFs in primary culture to 4-hydroxy-2-nonenal produced a decrease in the protein levels of Cx26 and Na+, K+-ATPase α1, as well as Na+, K+-ATPase activity, and also resulted in dysfunction of the intercellular communication between the SLFs. Taken together, our data suggest that disruption of the ion-trafficking system in the cochlear SLFs is caused by the decrease in Cxs level and Na+, K+-ATPase activity, and at least in part involved in permanent hearing loss induced by intense noise. Oxidative stress-mediated products might contribute to the decrease in Cxs content and Na+, K+-ATPase activity in the cochlear lateral wall structures.
Collapse
Affiliation(s)
- Taro Yamaguchi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Reiko Nagashima
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Masanori Yoneyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Tatsuo Shiba
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Kiyokazu Ogita
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
- * E-mail:
| |
Collapse
|
7
|
Sun GW, Fujii M, Matsunaga T. Functional interaction between mesenchymal stem cells and spiral ligament fibrocytes. J Neurosci Res 2012; 90:1713-22. [DOI: 10.1002/jnr.23067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 03/03/2012] [Accepted: 03/20/2012] [Indexed: 01/15/2023]
|
8
|
Mahendrasingam S, Bebb C, Shepard E, Furness DN. Subcellular distribution and relative expression of fibrocyte markers in the CD/1 mouse cochlea assessed by semiquantitative immunogold electron microscopy. J Histochem Cytochem 2011; 59:984-1000. [PMID: 22043022 DOI: 10.1369/0022155411421801] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spiral ligament fibrocytes function in cochlear homeostasis, maintaining the endocochlear potential by participating in potassium recycling, and fibrocyte degeneration contributes to hearing loss. Their superficial location makes them amenable to replacement by cellular transplantation. Fibrocyte cultures offer one source of transplantable cells, but determining what fibrocyte types they contain and what phenotype transplanted cells may adopt is problematic. Here, we use immunogold electron microscopy to assess the relative expression of markers in native fibrocytes of the CD/1 mouse spiral ligament. Caldesmon and aquaporin 1 are expressed more in type III fibrocytes than any other type. S-100 is strongly expressed in types I, II, and V fibrocytes, and α1Na,K-ATPase is expressed strongly only in types II and V. By combining caldesmon or aquaporin 1 with S-100 and α1Na,K-ATPase, a ratiometric analysis of immunogold density distinguishes all except type II and type V fibrocytes. Other putative markers (creatine kinase BB and connective tissue growth factor) did not provide additional useful analytical attributes. By labeling serial sections or by double or triple labeling with combinations of three antibodies, this technique could be used to distinguish all except type II and type V fibrocytes in culture or after cellular transplantation into the lateral wall.
Collapse
|
9
|
Late-phase recovery in the cochlear lateral wall following severe degeneration by acute energy failure. Brain Res 2011; 1419:1-11. [DOI: 10.1016/j.brainres.2011.08.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/26/2011] [Accepted: 08/24/2011] [Indexed: 11/24/2022]
|
10
|
Kelly JJ, Forge A, Jagger DJ. Development of gap junctional intercellular communication within the lateral wall of the rat cochlea. Neuroscience 2011; 180:360-9. [PMID: 21320575 DOI: 10.1016/j.neuroscience.2011.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 02/03/2011] [Accepted: 02/05/2011] [Indexed: 01/27/2023]
Abstract
Auditory function depends on gap junctional intercellular communication (GJIC) between fibrocytes within the cochlear spiral ligament, and basal cells and intermediate cells within stria vascularis. This communication within the lateral wall is hypothesized to support recirculation of K+ from perilymph to the intra-strial space, and thus is essential for the high [K+] measured within endolymph, and the generation of the endocochlear potential. In rats, the [K+] within endolymph reaches adult levels by postnatal day 7 (P7), several days before hearing onset, suggesting that GJIC matures before auditory responses are detectable. In this study we have mapped the postnatal development of GJIC within the cochlear lateral wall, to determine the stage at which direct communication first exists between the spiral ligament and stria vascularis. Connexin 30 immunofluorescence revealed a progressive increase of gap junction plaque numbers from P0 onwards, initially in the condensing mesenchyme behind strial marginal cells, and spreading throughout the lateral wall by P7-P8. Whole-cell patch clamp experiments revealed compartmentalized intercellular dye-coupling in the lateral wall between P2 and P5. There was extensive dye-coupling throughout the fibrocyte syncytium by P7. Also, by P7 dye introduced to fibrocytes could also be detected within strial basal cells and intermediate cells. These data suggest that lateral wall function matures several days in advance of hearing onset, and provide anatomical evidence of the existence of a putative K+ recirculation pathway within the cochlear lateral wall.
Collapse
Affiliation(s)
- J J Kelly
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X8EE, UK
| | | | | |
Collapse
|
11
|
Fujinami Y, Mutai H, Kamiya K, Mizutari K, Fujii M, Matsunaga T. Enhanced expression of C/EBP homologous protein (CHOP) precedes degeneration of fibrocytes in the lateral wall after acute cochlear mitochondrial dysfunction induced by 3-nitropropionic acid. Neurochem Int 2009; 56:487-94. [PMID: 20026213 DOI: 10.1016/j.neuint.2009.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/28/2009] [Accepted: 12/14/2009] [Indexed: 12/27/2022]
Abstract
We previously reported that treatment of the rat cochlea with a mitochondrial toxin, 3-nitropropionic acid (3-NP), causes temporary to permanent hearing loss depending on the amount of the drug. Furthermore, apoptosis of cochlear lateral wall fibrocytes, which are important for maintaining the endolymph, is a predominant pathological feature in this animal model. 3-NP is known to induce oxidative stress as well as neuronal apoptosis. C/EBP homologous protein gene (chop) is one of the marker genes induced during endoplasmic reticulum (ER) stress, and is also considered to be involved in apoptosis. To elucidate the molecular mechanism of cochlear fibrocyte apoptosis induced by 3-NP, we studied spatiotemporal expression of C/EBP homologous protein (CHOP) and other signaling molecules related to ER stress as well as the appearance of apoptotic cells in the cochlear lateral wall after 3-NP treatment. Quantitative real-time PCR revealed that chop and activating transcription factor 4 gene (atf-4) showed marked increase within 6h, whereas expression of other ER stress-responsive genes such as grp78 and grp94 did not change. Immunohistochemistry showed that 3-NP treatment caused up-regulation of CHOP, especially in type II and type IV fibrocytes, followed by the appearance of terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling (TUNEL)-positive apoptotic cells in the same confined area. Thus, apoptosis of lateral wall fibrocytes induced by 3-NP is likely to be mediated by induction of CHOP. These results contribute clarification of pathological mechanism of cochlear fibrocytes and may lead to development of novel therapeutic strategy for hearing loss.
Collapse
Affiliation(s)
- Yoshiaki Fujinami
- Laboratory of Auditory Disorders, National Institute of Sensory Organs, National Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan
| | | | | | | | | | | |
Collapse
|