1
|
Timsina J, Dinasarapu A, Kilic-Berkmen G, Budde J, Sung YJ, Klein AM, Cruchaga C, Jinnah HA. Blood-Based Proteomics for Adult-Onset Focal Dystonias. Ann Neurol 2024; 96:110-120. [PMID: 38578115 PMCID: PMC11186717 DOI: 10.1002/ana.26929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVES The adult-onset focal dystonias are characterized by over-active muscles leading to abnormal movements. For most cases, the etiology and pathogenesis remain unknown. In the current study, unbiased proteomics methods were used to identify potential changes in blood plasma proteins. METHODS A large-scale unbiased proteomics screen was used to compare proteins (N = 6,345) in blood plasma of normal healthy controls (N = 49) with adult-onset focal dystonia (N = 143) consisting of specific subpopulations of cervical dystonia (N = 45), laryngeal dystonia (N = 49), and blepharospasm (N = 49). Pathway analyses were conducted to identify relevant biological pathways. Finally, protein changes were used to build a prediction model for dystonia. RESULTS After correction for multiple comparisons, 15 proteins were associated with adult-onset focal dystonia. Subgroup analyses revealed some proteins were shared across the dystonia subgroups while others were unique to 1 subgroup. The top biological pathways involved changes in the immune system, metal ion transport, and reactive oxygen species. A 4-protein model showed high accuracy in discriminating control individuals from dystonia cases [average area under the curve (AUC) = 0.89]. INTERPRETATION These studies provide novel insights into the etiopathogenesis of dystonia, as well as novel potential biomarkers. ANN NEUROL 2024;96:110-120.
Collapse
Affiliation(s)
- Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashok Dinasarapu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Gamze Kilic-Berkmen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Adam M. Klein
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurologic Diseases, Washington University in St. Louis, St. Louis, MO, USA
| | - H. A. Jinnah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
2
|
Reinhold C, Knorr S, McFleder RL, Rauschenberger L, Muthuraman M, Arampatzi P, Gräfenhan T, Schlosser A, Sendtner M, Volkmann J, Ip CW. Gene-environment interaction elicits dystonia-like features and impaired translational regulation in a DYT-TOR1A mouse model. Neurobiol Dis 2024; 193:106453. [PMID: 38402912 DOI: 10.1016/j.nbd.2024.106453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024] Open
Abstract
DYT-TOR1A dystonia is the most common monogenic dystonia characterized by involuntary muscle contractions and lack of therapeutic options. Despite some insights into its etiology, the disease's pathophysiology remains unclear. The reduced penetrance of about 30% suggests that extragenetic factors are needed to develop a dystonic phenotype. In order to systematically investigate this hypothesis, we induced a sciatic nerve crush injury in a genetically predisposed DYT-TOR1A mouse model (DYT1KI) to evoke a dystonic phenotype. Subsequently, we employed a multi-omic approach to uncover novel pathophysiological pathways that might be responsible for this condition. Using an unbiased deep-learning-based characterization of the dystonic phenotype showed that nerve-injured DYT1KI animals exhibited significantly more dystonia-like movements (DLM) compared to naive DYT1KI animals. This finding was noticeable as early as two weeks following the surgical procedure. Furthermore, nerve-injured DYT1KI mice displayed significantly more DLM than nerve-injured wildtype (wt) animals starting at 6 weeks post injury. In the cerebellum of nerve-injured wt mice, multi-omic analysis pointed towards regulation in translation related processes. These observations were not made in the cerebellum of nerve-injured DYT1KI mice; instead, they were localized to the cortex and striatum. Our findings indicate a failed translational compensatory mechanisms in the cerebellum of phenotypic DYT1KI mice that exhibit DLM, while translation dysregulations in the cortex and striatum likely promotes the dystonic phenotype.
Collapse
Affiliation(s)
- Colette Reinhold
- Department of Neurology, University Hospital of Würzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, Germany
| | | | | | | | | | - Tom Gräfenhan
- Core Unit Systems Medicine, Medical Faculty, University Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Germany.
| |
Collapse
|
3
|
Sciamanna G, El Atiallah I, Montanari M, Pisani A. Plasticity, genetics and epigenetics in dystonia: An update. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:199-206. [PMID: 35034734 DOI: 10.1016/b978-0-12-819410-2.00011-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dystonia represents a group of movement disorders characterized by involuntary muscle contractions that result in abnormal posture and twisting movements. In the last 20 years several animal models have been generated, greatly improving our knowledge of the neural and molecular mechanism underlying this pathological condition, but the pathophysiology remains still poorly understood. In this review we will discuss recent genetic factors related to dystonia and the current understanding of synaptic plasticity alterations reported by both clinical and experimental research. We will also present recent evidence involving epigenetics mechanisms in dystonia.
Collapse
Affiliation(s)
- Giuseppe Sciamanna
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Ilham El Atiallah
- Department of Systems Medicine, University of Rome 2 Tor Vergata, Rome, Italy
| | - Martina Montanari
- Department of Systems Medicine, University of Rome 2 Tor Vergata, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Movement Disorders Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
4
|
DYT-TOR1A subcellular proteomics reveals selective vulnerability of the nuclear proteome to cell stress. Neurobiol Dis 2021; 158:105464. [PMID: 34358617 DOI: 10.1016/j.nbd.2021.105464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022] Open
Abstract
TorsinA is a AAA+ ATPase that shuttles between the ER lumen and outer nuclear envelope in an ATP-dependent manner and is functionally implicated in nucleocytoplasmic transport. We hypothesized that the DYT-TOR1A dystonia disease-causing variant, ΔE TorsinA, may therefore disrupt the normal subcellular distribution of proteins between the nuclear and cytosolic compartments. To test this hypothesis, we performed proteomic analysis on nuclear and cytosolic subcellular fractions from DYT-TOR1A and wildtype mouse embryonic fibroblasts (MEFs). We further examined the compartmental proteomes following exposure to thapsigargin (Tg), an endoplasmic reticulum (ER) stressor, because DYT-TOR1A dystonia models have previously shown abnormalities in cellular stress responses. Across both subcellular compartments, proteomes of DYT-TOR1A cells showed basal state disruptions consistent with an activated stress response, and in response to thapsigargin, a blunted stress response. However, the DYT-TOR1A nuclear proteome under Tg cell stress showed the most pronounced and disproportionate degree of protein disruptions - 3-fold greater than all other conditions. The affected proteins extended beyond those typically associated with stress responses, including enrichments for processes critical for neuronal synaptic function. These findings highlight the advantage of subcellular proteomics to reveal events that localize to discrete subcellular compartments and refine thinking about the mechanisms and significance of cell stress in DYT-TOR1A pathogenesis.
Collapse
|
5
|
Briscione MA, Dinasarapu AR, Bagchi P, Donsante Y, Roman KM, Downs AM, Fan X, Hoehner J, Jinnah HA, Hess EJ. Differential expression of striatal proteins in a mouse model of DOPA-responsive dystonia reveals shared mechanisms among dystonic disorders. Mol Genet Metab 2021; 133:352-361. [PMID: 34092491 PMCID: PMC8292208 DOI: 10.1016/j.ymgme.2021.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022]
Abstract
Dystonia is characterized by involuntary muscle contractions that cause debilitating twisting movements and postures. Although dysfunction of the basal ganglia, a brain region that mediates movement, is implicated in many forms of dystonia, the underlying mechanisms are unclear. The inherited metabolic disorder DOPA-responsive dystonia is considered a prototype for understanding basal ganglia dysfunction in dystonia because it is caused by mutations in genes necessary for the synthesis of the neurotransmitter dopamine, which mediates the activity of the basal ganglia. Therefore, to reveal abnormal striatal cellular processes and pathways implicated in dystonia, we used an unbiased proteomic approach in a knockin mouse model of DOPA-responsive dystonia, a model in which the striatum is known to play a central role in the expression of dystonia. Fifty-seven of the 1805 proteins identified were differentially regulated in DOPA-responsive dystonia mice compared to control mice. Most differentially regulated proteins were associated with gene ontology terms that implicated either mitochondrial or synaptic dysfunction whereby proteins associated with mitochondrial function were generally over-represented and proteins associated with synaptic function were largely under-represented. Remarkably, nearly 20% of the differentially regulated striatal proteins identified in our screen are associated with pathogenic variants that cause inherited disorders with dystonia as a sign in humans suggesting shared mechanisms across many different forms of dystonia.
Collapse
Affiliation(s)
- Maria A Briscione
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | | | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, Atlanta, GA, USA
| | - Yuping Donsante
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Kaitlyn M Roman
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Anthony M Downs
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Xueliang Fan
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Jessica Hoehner
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - H A Jinnah
- Department of Human Genetics, Emory University, Atlanta, GA, USA; Department of Neurology, Emory University, Atlanta, GA, USA; Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Ellen J Hess
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA; Department of Neurology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
6
|
Zhunina OA, Yabbarov NG, Orekhov AN, Deykin AV. Modern approaches for modelling dystonia and Huntington's disease in vitro and in vivo. Int J Exp Pathol 2019; 100:64-71. [PMID: 31090117 DOI: 10.1111/iep.12320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Dystonia associated with Huntington's disease, Parkinson's disease or other neurodegenerative diseases substantially affects patients' quality of life and is a major health problem worldwide. The above-mentioned diseases are characterized by neurodegeneration accompanied by motor and cognitive impairment and often have complex aetiology. A frequent feature of these conditions is the abnormal accumulation of protein aggregates within specific neuronal populations in the affected brain regions. Familial neurodegenerative diseases are associated with a number of genetic mutations. Identification of these mutations allowed creation of modern model systems for studying neurodegeneration, either in cultured cells or in model animals. Animal models, especially mouse models, have contributed considerably to improving our understanding of the pathophysiology of neurodegenerative diseases. These models have allowed study of the pathogenic mechanisms and development of new disease-modifying strategies and therapeutic approaches. However, due to the complex nature of these pathologies and the irreversible damage that they cause to the neural tissue, effective therapies against neurodegeneration remain to be elaborated. In this review, we provide an overview of cellular and animal models developed for studying neurodegenerative diseases, including Huntington's disease and dystonia of different origins.
Collapse
Affiliation(s)
- Olga A Zhunina
- JSC "Russian Research Center for Molecular Diagnostics and Therapy", Moscow, Russia
| | - Nikita G Yabbarov
- JSC "Russian Research Center for Molecular Diagnostics and Therapy", Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | | |
Collapse
|
7
|
Mitchell SB, Iwabuchi S, Kawano H, Yuen TMT, Koh JY, Ho KWD, Harata NC. Structure of the Golgi apparatus is not influenced by a GAG deletion mutation in the dystonia-associated gene Tor1a. PLoS One 2018; 13:e0206123. [PMID: 30403723 PMCID: PMC6221310 DOI: 10.1371/journal.pone.0206123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022] Open
Abstract
Autosomal-dominant, early-onset DYT1 dystonia is associated with an in-frame deletion of a glutamic acid codon (ΔE) in the TOR1A gene. The gene product, torsinA, is an evolutionarily conserved AAA+ ATPase. The fact that constitutive secretion from patient fibroblasts is suppressed indicates that the ΔE-torsinA protein influences the cellular secretory machinery. However, which component is affected remains unclear. Prompted by recent reports that abnormal protein trafficking through the Golgi apparatus, the major protein-sorting center of the secretory pathway, is sometimes associated with a morphological change in the Golgi, we evaluated the influence of ΔE-torsinA on this organelle. Specifically, we examined its structure by confocal microscopy, in cultures of striatal, cerebral cortical and hippocampal neurons obtained from wild-type, heterozygous and homozygous ΔE-torsinA knock-in mice. In live neurons, the Golgi was assessed following uptake of a fluorescent ceramide analog, and in fixed neurons it was analyzed by immuno-fluorescence staining for the Golgi-marker GM130. Neither staining method indicated genotype-specific differences in the size, staining intensity, shape or localization of the Golgi. Moreover, no genotype-specific difference was observed as the neurons matured in vitro. These results were supported by a lack of genotype-specific differences in GM130 expression levels, as assessed by Western blotting. The Golgi was also disrupted by treatment with brefeldin A, but no genotype-specific differences were found in the immuno-fluorescence staining intensity of GM130. Overall, our results demonstrate that the ΔE-torsinA protein does not drastically influence Golgi morphology in neurons, irrespective of genotype, brain region (among those tested), or maturation stage in culture. While it remains possible that functional changes in the Golgi exist, our findings imply that any such changes are not severe enough to influence its morphology to a degree detectable by light microscopy.
Collapse
Affiliation(s)
- Sara B. Mitchell
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Sadahiro Iwabuchi
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Hiroyuki Kawano
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Tsun Ming Tom Yuen
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Chemical and Biochemical Engineering, University of Iowa College of Engineering, Iowa City, Iowa, United States of America
| | - Jin-Young Koh
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - K. W. David Ho
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - N. Charles Harata
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
8
|
Beauvais G, Rodriguez-Losada N, Ying L, Zakirova Z, Watson JL, Readhead B, Gadue P, French DL, Ehrlich ME, Gonzalez-Alegre P. Exploring the Interaction Between eIF2α Dysregulation, Acute Endoplasmic Reticulum Stress and DYT1 Dystonia in the Mammalian Brain. Neuroscience 2018; 371:455-468. [PMID: 29289717 DOI: 10.1016/j.neuroscience.2017.12.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
DYT1 dystonia is a neurological disease caused by dominant mutations in the TOR1A gene, encoding for the endoplasmic reticulum (ER)-resident protein torsinA. Recent reports linked expression of the DYT1-causing protein with dysregulation of eIF2α, a key component of the cellular response to ER stress known as the unfolded protein response (UPR). However, the response of the DYT1 mammalian brain to acute ER stress inducers has not been evaluated in vivo. We hypothesized that torsinA regulates the neuronal UPR and expression of its mutant form would alter this process. TorsinA was post-transcriptionally upregulated upon acute ER stress in different models, suggesting a role in this response. Moreover, increased basal phosphorylation of eIF2α in DYT1 transgenic rats was associated with an abnormal response to acute ER stress. Finally, an unbiased RNA-Seq-based transcriptomic analysis of embryonic brain tissue in heterozygous and homozygous DYT1 knockin mice confirmed the presence of eIF2α dysregulation in the DYT1 brain. In sum, these findings support previous reports linking torsinA function, eIF2α signaling and the neuronal response to ER stress in vivo. Furthermore, we describe novel protocols to investigate neuronal ER stress in cultured neurons and in vivo.
Collapse
Affiliation(s)
- Genevieve Beauvais
- Raymond G. Perelman Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | | | - Lei Ying
- Raymond G. Perelman Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Zuchra Zakirova
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Jaime L Watson
- Raymond G. Perelman Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Ben Readhead
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Paul Gadue
- Raymond G. Perelman Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Deborah L French
- Raymond G. Perelman Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Pedro Gonzalez-Alegre
- Raymond G. Perelman Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
9
|
Mutations in THAP1/DYT6 reveal that diverse dystonia genes disrupt similar neuronal pathways and functions. PLoS Genet 2018; 14:e1007169. [PMID: 29364887 PMCID: PMC5798844 DOI: 10.1371/journal.pgen.1007169] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 02/05/2018] [Accepted: 12/25/2017] [Indexed: 12/14/2022] Open
Abstract
Dystonia is characterized by involuntary muscle contractions. Its many forms are genetically, phenotypically and etiologically diverse and it is unknown whether their pathogenesis converges on shared pathways. Mutations in THAP1 [THAP (Thanatos-associated protein) domain containing, apoptosis associated protein 1], a ubiquitously expressed transcription factor with DNA binding and protein-interaction domains, cause dystonia, DYT6. There is a unique, neuronal 50-kDa Thap1-like immunoreactive species, and Thap1 levels are auto-regulated on the mRNA level. However, THAP1 downstream targets in neurons, and the mechanism via which it causes dystonia are largely unknown. We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1 C54Y or ΔExon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum. Enriched pathways and gene ontology terms include eIF2α Signaling, Mitochondrial Dysfunction, Neuron Projection Development, Axonal Guidance Signaling, and Synaptic LongTerm Depression, which are dysregulated in a genotype and tissue-dependent manner. Electrophysiological and neurite outgrowth assays were consistent with those enrichments, and the plasticity defects were partially corrected by salubrinal. Notably, several of these pathways were recently implicated in other forms of inherited dystonia, including DYT1. We conclude that dysfunction of these pathways may represent a point of convergence in the pathophysiology of several forms of inherited dystonia. Dystonia is a brain disorder that causes disabling involuntary muscle contractions and abnormal postures. Mutations in THAP1, a zinc-finger transcription factor, cause DYT6, but its neuronal targets and functions are unknown. In this study, we sought to determine the effects of Thap1C54Y and ΔExon2 alleles on the gene transcription signatures at postnatal day 1 (P1) in the mouse striatum and cerebellum in order to correlate function with specific genes or pathways. Our unbiased transcriptomics approach showed that Thap1 mutants revealed multiple signaling pathways involved in neuronal plasticity, axonal guidance, and oxidative stress response, which are also present in other forms of dystonia, particularly DYT1. We conclude that dysfunction of these pathways may represent a point of convergence on the pathogenesis of unrelated forms of inherited dystonia.
Collapse
|
10
|
Disruption of Protein Processing in the Endoplasmic Reticulum of DYT1 Knock-in Mice Implicates Novel Pathways in Dystonia Pathogenesis. J Neurosci 2017; 36:10245-10256. [PMID: 27707963 DOI: 10.1523/jneurosci.0669-16.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/13/2016] [Indexed: 11/21/2022] Open
Abstract
Dystonia type 1 (DYT1) is a dominantly inherited neurological disease caused by mutations in TOR1A, the gene encoding the endoplasmic reticulum (ER)-resident protein torsinA. Previous work mostly completed in cell-based systems suggests that mutant torsinA alters protein processing in the secretory pathway. We hypothesized that inducing ER stress in the mammalian brain in vivo would trigger or exacerbate mutant torsinA-induced dysfunction. To test this hypothesis, we crossed DYT1 knock-in with p58(IPK)-null mice. The ER co-chaperone p58(IPK) interacts with BiP and assists in protein maturation by helping to fold ER cargo. Its deletion increases the cellular sensitivity to ER stress. We found a lower generation of DYT1 knock-in/p58 knock-out mice than expected from this cross, suggesting a developmental interaction that influences viability. However, surviving animals did not exhibit abnormal motor function. Analysis of brain tissue uncovered dysregulation of eiF2α and Akt/mTOR translational control pathways in the DYT1 brain, a finding confirmed in a second rodent model and in human brain. Finally, an unbiased proteomic analysis identified relevant changes in the neuronal protein landscape suggesting abnormal ER protein metabolism and calcium dysregulation. Functional studies confirmed the interaction between the DYT1 genotype and neuronal calcium dynamics. Overall, these findings advance our knowledge on dystonia, linking translational control pathways and calcium physiology to dystonia pathogenesis and identifying potential new pharmacological targets. SIGNIFICANCE STATEMENT Dystonia type 1 (DYT1) is one of the different forms of inherited dystonia, a neurological disorder characterized by involuntary, disabling movements. DYT1 is caused by mutations in the gene that encodes the endoplasmic reticulum (ER)-resident protein torsinA. How mutant torsinA causes neuronal dysfunction remains unknown. Here, we show the behavioral and molecular consequences of stressing the ER in DYT1 mice by increasing the amount of misfolded proteins. This resulted in the generation of a reduced number of animals, evidence of abnormal ER protein processing and dysregulation of translational control pathways. The work described here proposes a shared mechanism for different forms of dystonia, links for the first time known biological pathways to dystonia pathogenesis, and uncovers potential pharmacological targets for its treatment.
Collapse
|
11
|
Kim AY, Seo JB, Kim WT, Choi HJ, Kim SY, Morrow G, Tanguay RM, Steller H, Koh YH. The pathogenic human Torsin A in Drosophila activates the unfolded protein response and increases susceptibility to oxidative stress. BMC Genomics 2015; 16:338. [PMID: 25903460 PMCID: PMC4415242 DOI: 10.1186/s12864-015-1518-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 04/10/2015] [Indexed: 01/11/2023] Open
Abstract
Background Dystonia1 (DYT1) dystonia is caused by a glutamic acid deletion (ΔE) mutation in the gene encoding Torsin A in humans (HTorA). To investigate the unknown molecular and cellular mechanisms underlying DYT1 dystonia, we performed an unbiased proteomic analysis. Results We found that the amount of proteins and transcripts of an Endoplasmic reticulum (ER) resident chaperone Heat shock protein cognate 3 (HSC3) and a mitochondria chaperone Heat Shock Protein 22 (HSP22) were significantly increased in the HTorAΔE– expressing brains compared to the normal HTorA (HTorAWT) expressing brains. The physiological consequences included an increased susceptibility to oxidative and ER stress compared to normal HTorAWT flies. The alteration of transcripts of Inositol-requiring enzyme-1 (IRE1)-dependent spliced X box binding protein 1(Xbp1), several ER chaperones, a nucleotide exchange factor, Autophagy related protein 8b (ATG8b) and components of the ER associated degradation (ERAD) pathway and increased expression of the Xbp1-enhanced Green Fluorescence Protein (eGFP) in HTorAΔE brains strongly indicated the activation of the unfolded protein response (UPR). In addition, perturbed expression of the UPR sensors and inducers in the HTorAΔEDrosophila brains resulted in a significantly reduced life span of the flies. Furthermore, the types and quantities of proteins present in the anti-HSC3 positive microsomes in the HTorAΔE brains were different from those of the HTorAWT brains. Conclusion Taken together, these data show that HTorAΔE in Drosophila brains may activate the UPR and increase the expression of HSP22 to compensate for the toxic effects caused by HTorAΔE in the brains. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1518-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A-Young Kim
- ILSONG Institute of Life Science, Hallym University, 1605-4 Gwanyangdong, Dongan-gu, Anyang, Gyeonggido, 431-060, Republic of Korea. .,Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do, 200-702, Republic of Korea.
| | - Jong Bok Seo
- Korea Basic Science Institute, Sungbuk-gu, Seoul, 136-713, Republic of Korea.
| | - Won-Tae Kim
- National Academy of Agricultural Science, Rural Development Administration, Suwon, 441-707, Republic of Korea.
| | - Hee Jeong Choi
- ILSONG Institute of Life Science, Hallym University, 1605-4 Gwanyangdong, Dongan-gu, Anyang, Gyeonggido, 431-060, Republic of Korea. .,Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do, 200-702, Republic of Korea.
| | - Soo-Young Kim
- Korea Basic Science Institute, Sungbuk-gu, Seoul, 136-713, Republic of Korea.
| | - Genevieve Morrow
- Department of Molecular Biology, Medical Biochemistry & Pathology, Université Laval, Québec, Qc, G1V 0A6, Canada.
| | - Robert M Tanguay
- Department of Molecular Biology, Medical Biochemistry & Pathology, Université Laval, Québec, Qc, G1V 0A6, Canada.
| | - Hermann Steller
- Howard Hughes Medical Institute, the Rockefeller University, New York, NY, 10065, USA.
| | - Young Ho Koh
- ILSONG Institute of Life Science, Hallym University, 1605-4 Gwanyangdong, Dongan-gu, Anyang, Gyeonggido, 431-060, Republic of Korea. .,Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do, 200-702, Republic of Korea.
| |
Collapse
|
12
|
Yokoi F, Dang MT, Liu J, Gandre JR, Kwon K, Yuen R, Li Y. Decreased dopamine receptor 1 activity and impaired motor-skill transfer in Dyt1 ΔGAG heterozygous knock-in mice. Behav Brain Res 2014; 279:202-10. [PMID: 25451552 DOI: 10.1016/j.bbr.2014.11.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 11/21/2014] [Indexed: 01/08/2023]
Abstract
DYT1 dystonia is a movement disorder caused by a trinucleotide deletion (ΔGAG) in DYT1 (TOR1A), corresponding to a glutamic acid loss in the C-terminal region of torsinA. Functional alterations in the basal ganglia circuits have been reported in both DYT1 dystonia patients and rodent models. Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits and decreased striatal dopamine receptor 2 (D2R) binding activity, suggesting a malfunction of the indirect pathway. However, the role of the direct pathway in pathogenesis of dystonia is not yet clear. Here, we report that Dyt1 KI mice exhibit significantly decreased striatal dopamine receptor 1 (D1R) binding activity and D1R protein levels, suggesting the alteration of the direct pathway. The decreased D1R may be caused by translational or post-translational processes since Dyt1 KI mice had normal levels of striatal D1R mRNA and a normal number of striatal neurons expressing D1R. Levels of striatal ionotropic glutamate receptor subunits, dopamine transporter, acetylcholine muscarinic M4 receptor and adenosine A2A receptor were not altered suggesting a specificity of affected polytopic membrane-associated proteins. Contribution of the direct pathway to motor-skill learning has been suggested in another pharmacological rat model injected with a D1R antagonist. In the present study, we developed a novel motor skill transfer test for mice and found deficits in Dyt1 KI mice. Further characterization of both the direct and the indirect pathways in Dyt1 KI mice will aid the development of novel therapeutic drugs.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Mai T Dang
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jun Liu
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jason R Gandre
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Kelly Kwon
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Robert Yuen
- Department of Radiology, School of Medicine, Saint Louis University, Saint Louis, MO 63104, USA
| | - Yuqing Li
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA.
| |
Collapse
|
13
|
Harata NC. Current Gaps in the Understanding of the Subcellular Distribution of Exogenous and Endogenous Protein TorsinA. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2014; 4:260. [PMID: 25279252 PMCID: PMC4175402 DOI: 10.7916/d8js9nr2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/25/2014] [Indexed: 12/01/2022]
Abstract
Background An in-frame deletion leading to the loss of a single glutamic acid residue in the protein torsinA (ΔE-torsinA) results in an inherited movement disorder, DYT1 dystonia. This autosomal dominant disease affects the function of the brain without causing neurodegeneration, by a mechanism that remains unknown. Methods We evaluated the literature regarding the subcellular localization of torsinA. Results Efforts to elucidate the pathophysiological basis of DYT1 dystonia have relied partly on examining the subcellular distribution of the wild-type and mutated proteins. A typical approach is to introduce the human torsinA gene (TOR1A) into host cells and overexpress the protein therein. In both neurons and non-neuronal cells, exogenous wild-type torsinA introduced in this manner has been found to localize mainly to the endoplasmic reticulum, whereas exogenous ΔE-torsinA is predominantly in the nuclear envelope or cytoplasmic inclusions. Although these outcomes are relatively consistent, findings for the localization of endogenous torsinA have been variable, leaving its physiological distribution a matter of debate. Discussion As patients’ cells do not overexpress torsinA proteins, it is important to understand why the reported distributions of the endogenous proteins are inconsistent. We propose that careful optimization of experimental methods will be critical in addressing the causes of the differences among the distributions of endogenous (non-overexpressed) vs. exogenously introduced (overexpressed) proteins.
Collapse
Affiliation(s)
- N Charles Harata
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
14
|
Leiphrakpam PD, Rajput A, Mathiesen M, Agarwal E, Lazenby AJ, Are C, Brattain MG, Chowdhury S. Ezrin expression and cell survival regulation in colorectal cancer. Cell Signal 2014; 26:868-79. [PMID: 24462708 PMCID: PMC3974425 DOI: 10.1016/j.cellsig.2014.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is the second largest cause of cancer deaths in the United States. A key barrier that prevents better outcomes for this type of cancer as well as other solid tumors is the lack of effective therapies against the metastatic disease. Thus there is an urgent need to fill this gap in cancer therapy. We utilized a 2D-DIGE proteomics approach to identify and characterize proteins that are differentially regulated between primary colon tumor and liver metastatic deposits of the IGF1R-dependent GEO human CRC xenograft, orthotopically implanted in athymic nude mice that may serve as potential therapeutic targets against CRC metastasis. We observed increased expression of ezrin in liver metastasis in comparison to the primary colonic tumor. Increased ezrin expression was further confirmed by western blot and microarray analyses. Ezrin, a cytoskeletal protein belonging to Ezrin-Radixin-Moesin (ERM) family plays important roles in cell motility, invasion and metastasis. However, its exact function in colorectal cancer is not well characterized. Establishment of advanced GEO cell lines with enhanced liver-metastasizing ability showed a significant increase in ezrin expression in liver metastasis. Increased phosphorylation of ezrin at the T567 site (termed here as p-ezrin T567) was observed in liver metastasis. IHC studies of human CRC patient specimens showed an increased expression of p-ezrin T567 in liver metastasis compared to the primary tumors of the same patient. Ezrin modulation by siRNA, inhibitors and T567A/D point mutations significantly downregulated inhibitors of apoptosis (IAP) proteins XIAP and survivin that have been linked to increased aberrant cell survival and metastasis and increased cell death. Inhibition of the IGF1R signaling pathway by humanized recombinant IGF1R monoclonal antibody MK-0646 in athymic mouse subcutaneous xenografts resulted in inhibition of p-ezrin T567 indicating ezrin signaling is downstream of the IGF1R signaling pathway. We identified increased expression of p-ezrin T567 in CRC liver metastasis in both orthotopically implanted GEO tumors as well as human patient specimens. We report for the first time that p-ezrin T567 is downstream of the IGF1R signaling and demonstrate that ezrin regulates cell survival through survivin/XIAP modulation.
Collapse
Affiliation(s)
- Premila D Leiphrakpam
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, United States
| | - Ashwani Rajput
- Department of Surgery, University of New Mexico Health Science Center, 1 University of New Mexico, Albuquerque, NM 87131-0001, United States
| | - Michelle Mathiesen
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, United States
| | - Ekta Agarwal
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, United States
| | - Audrey J Lazenby
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983515 Nebraska Medical Center, Omaha, NE 68198-3135, United States
| | - Chandrakanth Are
- Department of Surgical Oncology, University of Nebraska Medical Center, 984533 Nebraska Medical Center, Omaha, NE 68198-4533, United States
| | - Michael G Brattain
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, United States.
| | - Sanjib Chowdhury
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, United States.
| |
Collapse
|
15
|
van Gool AJ, Hendrickson RC. The proteomic toolbox for studying cerebrospinal fluid. Expert Rev Proteomics 2014; 9:165-79. [DOI: 10.1586/epr.12.6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Pre-synaptic release deficits in a DYT1 dystonia mouse model. PLoS One 2013; 8:e72491. [PMID: 23967309 PMCID: PMC3742515 DOI: 10.1371/journal.pone.0072491] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 07/17/2013] [Indexed: 01/01/2023] Open
Abstract
DYT1 early-onset generalized torsion dystonia (DYT1 dystonia) is an inherited movement disorder caused by mutations in one allele of DYT1 (TOR1A), coding for torsinA. The most common mutation is a trinucleotide deletion (ΔGAG), which causes a deletion of a glutamic acid residue (ΔE) in the C-terminal region of torsinA. Although recent studies using cultured cells suggest that torsinA contributes to protein processing in the secretory pathway, endocytosis, and the stability of synaptic proteins, the nature of how this mutation affects synaptic transmission remains unclear. We previously reported that theta-burst-induced long-term potentiation (LTP) in the CA1 region of the hippocampal slice is not altered in Dyt1 ΔGAG heterozygous knock-in (KI) mice. Here, we examined short-term synaptic plasticity and synaptic transmission in the hippocampal slices. Field recordings in the hippocampal Schaffer collaterals (SC) pathway revealed significantly enhanced paired pulse ratios (PPRs) in Dyt1 ΔGAG heterozygous KI mice, suggesting an impaired synaptic vesicle release. Whole-cell recordings from the CA1 neurons showed that Dyt1 ΔGAG heterozygous KI mice exhibited normal miniature excitatory post-synaptic currents (mEPSC), suggesting that action-potential independent spontaneous pre-synaptic release was normal. On the other hand, there was a significant decrease in the frequency, but not amplitude or kinetics, of spontaneous excitatory post-synaptic currents (sEPSC) in Dyt1 ΔGAG heterozygous KI mice, suggesting that the action-potential dependent pre-synaptic release was impaired. Moreover, hippocampal torsinA was significantly reduced in Dyt1 ΔGAG heterozygous KI mice. Although the hippocampal slice model may not represent the neurons directly associated with dystonic symptoms, impaired release of neurotransmitters caused by partial dysfunction of torsinA in other brain regions may contribute to the pathophysiology of DYT1 dystonia.
Collapse
|
17
|
Bode N, Massey C, Gonzalez-Alegre P. DYT1 knock-in mice are not sensitized against mitochondrial complex-II inhibition. PLoS One 2012; 7:e42644. [PMID: 22880064 PMCID: PMC3411799 DOI: 10.1371/journal.pone.0042644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/11/2012] [Indexed: 01/03/2023] Open
Abstract
DYT1 is caused by a partly penetrant dominant mutation in TOR1A that leads to a glutamic acid deletion (ΔE) in torsinA. Identifying environmental factors that modulate disease pathogenesis and penetrance could help design therapeutic strategies for dystonia. Several cell-based studies suggest that expression of torsinA(ΔE) increases the susceptibility of neuronal cells to challenges to their oxidative/energy metabolism. Based on those reports, we hypothesized that mice expressing torsinA(ΔE) would be more susceptible than control littermates to the effects of oxidative stress and ATP deficits caused by disruption of the mitochondrial respiratory chain in neurons. To test this hypothesis, we administered 20 or 50 mg/kg/day of the irreversible complex-II inhibitor 3-nitropropionic acid (3-NP) intraperitoneally for 15 consecutive days to young heterozygote DYT1 knock-in (KI) mice and wild type littermates. Repeated phenotypic assessments were performed at baseline, during and after the injections. Animals were then sacrificed and their brains processed for protein analysis. The administration of 20 mg/kg 3-NP led to increased levels of torsinA in the striatum, the main target of 3-NP, but did not cause motor dysfunction in DYT1 KI or control mice. The administration of 50 mg/kg/day of 3-NP caused the death of ∼40% of wild type animals. Interestingly, DYT1 KI animals showed significantly reduced mortality. Surviving animals exhibited abnormal motor behavior during and right after the injection period, but recovered by 4 weeks postinjection independent of genotype. In contrast to the findings reported in cultured cells, these studies suggest the DYT1 mutation does not sensitize central neurons against the toxic effects of oxidative stress and energy deficits.
Collapse
Affiliation(s)
- Nicole Bode
- Department of Neurology, Roy J and Lucille Carver College of Medicine at the University of Iowa, Iowa City, Iowa, United States of America
| | - Cory Massey
- Graduate Program in Neuroscience, the University of Iowa, Iowa City, Iowa, United States of America
| | - Pedro Gonzalez-Alegre
- Department of Neurology, Roy J and Lucille Carver College of Medicine at the University of Iowa, Iowa City, Iowa, United States of America
- Graduate Program in Neuroscience, the University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abstract
Herpes simplex virus 1 (HSV-1) capsids leave the nucleus by a process of envelopment and de-envelopment at the nuclear envelope (NE) that is accompanied by structural alterations of the NE. As capsids translocate across the NE, transient primary enveloped virions form in the perinuclear space. Here, we provide evidence that torsinA (TA), a ubiquitously expressed ATPase, has a role in HSV-1 nuclear egress. TA resides within the lumen of the endoplasmic reticulum (ER)/NE and functions in maintaining normal NE architecture. We show that perturbation of TA normal function by overexpressing torsinA wild type (TAwt) inhibits HSV-1 production. Ultrastructural analysis of infected cells overexpressing TAwt revealed reduced levels of surface virions in addition to accumulation of novel, double-membrane structures called virus-like vesicles (VLVs). Although mainly found in the cytoplasm, VLVs resemble primary virions in their size, by the appearance of the inner membrane, and by the presence of pUL34, a structural component of primary virions. Collectively, our data suggest a model in which interference of TA normal function by overexpression impairs de-envelopment of the primary virions leading to their accumulation in a cytoplasmic membrane compartment. This implies novel functions for TA at the NE.
Collapse
|
19
|
Bragg DC, Armata IA, Nery FC, Breakefield XO, Sharma N. Molecular pathways in dystonia. Neurobiol Dis 2011; 42:136-47. [PMID: 21134457 PMCID: PMC3073693 DOI: 10.1016/j.nbd.2010.11.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 11/08/2010] [Accepted: 11/26/2010] [Indexed: 11/27/2022] Open
Abstract
The hereditary dystonias comprise a set of diseases defined by a common constellation of motor deficits. These disorders are most likely associated with different molecular etiologies, many of which have yet to be elucidated. Here we discuss recent advances in three forms of hereditary dystonia, DYT1, DYT6 and DYT16, which share a similar clinical picture: onset in childhood or adolescence, progressive spread of symptoms with generalized involvement of body regions and a steady state affliction without treatment. Unlike DYT1, the genes responsible for DYT6 and DYT16 have only recently been identified, with relatively little information about the function of the encoded proteins. Nevertheless, recent data suggest that these proteins may fit together within interacting pathways involved in dopaminergic signaling, transcriptional regulation, and cellular stress responses. This review focuses on these molecular pathways, highlighting potential common themes among these dystonias which may serve as areas for future research. This article is part of a Special Issue entitled "Advances in dystonia".
Collapse
Affiliation(s)
- D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
| | | | | | | | | |
Collapse
|
20
|
Exploring the influence of torsinA expression on protein quality control. Neurochem Res 2010; 36:452-9. [PMID: 21161590 DOI: 10.1007/s11064-010-0363-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2010] [Indexed: 10/18/2022]
Abstract
DYT1 dystonia is caused by a glutamic acid deletion (ΔE) in the endoplasmic reticulum (ER) protein torsinA. Previous studies suggest that torsinA modulates the aggregation of cytosolic misfolded proteins and ER stress responses, although the mechanisms underlying those effects remain unclear. In order to investigate the bases of these observations, we analyzed the interaction between torsinA expression, protein aggregation and ER stress in PC6.3 cells. Unexpectedly, we found that expression of torsinA(wt) or (ΔE) does not influence the inclusion formation by an expanded polyglutamine reporter protein in this cellular model. Furthermore, torsinA does not prevent the activation of ER stress induced by thapsigargin or the reducing agent DTT. Interestingly, DTT induces post-translational changes in torsinA, more prominently for torsinA(wt) than (ΔE). This work highlights the importance of model system selection for the study of torsinA function. Furthermore, it provides additional evidence suggesting that torsinA is sensitive to changes in the cellular redox potential.
Collapse
|
21
|
Chen XP, Hu XH, Wu SH, Zhang YW, Xiao B, Shang HF. RNA interference-mediated inhibition of wild-type Torsin A expression increases apoptosis caused by oxidative stress in cultured cells. Neurochem Res 2010; 35:1214-23. [PMID: 20455020 DOI: 10.1007/s11064-010-0177-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2010] [Indexed: 02/05/2023]
Abstract
To assess RNAi mediated inhibition of the expression of wt-DYT1 on H(2)O(2)-induced toxicity in NIH 3T3 cells and primary cortical neurons. To detect the function of wild-type Torsin A and the effect of SiRNA on the wt-DYT1 gene. The shRNA expression vector was constructed by ligating annealed complementary shRNA oligonucleotides into the down-stream of the human U6 promoter (PU6) of the RNAi-ready pSIREN-Shuttle vector. Then, the pSIREN-Shuttle-DYT1-shRNA cassette was ligated to Adeno-X Viral DNA to construct the recombinant adenoviral vector pAd-DYT1-shRNA. Cultured cerebral cortical neurons and NIH 3T3 cells were transfected with pAd-DYT1-shRNA and pSIREN-Shuttle-DYT1-shRNA. We evaluated NIH 3T3 cells and neurons in the presence of oxidative stress using a TUNEL assay under different conditions. The knockdown efficacy of the DYT1 was confirmed by real-time RT-PCR and Western Blot analysis. After exposure to H(2)O(2,) the quantity of NIH 3T3 cells transfected with pSIREN-Shuttle-DYT1-shRNA, which stained positively in the TUNEL assay, was significantly higher than the cells transfected with pSIREN-Shuttle-negative control-shRNA. (44.85 +/- 1.81% vs. 8.98 +/- 2.73%, t = 26.168). There were significantly more apoptotic neurons infected with pAd-DYT1-shRNA (45.63 +/- 7.53%) than neurons infected with pAd-X-negative control-shRNA (17.33 +/- 2.43%) (t = 9.816). The observed silencing of wild-type Torsin A expression by DYT1-shRNA was sequence-specific. RNAi-mediated inhibition of the expression of wild-type Torsin A increases apoptosis caused by oxidative stress. It is reasonable to consider that wild-type Torsin A has the capacity to protect cortical neurons against oxidative stress, and in the development of DYT1-delta GAG-dystonia the neuroprotective function of wild-type Torsin A may be compromised.
Collapse
Affiliation(s)
- Xue-Ping Chen
- Department of Neurology, West China Hospital, SiChuan University, Chengdu, Sichuan, China
| | | | | | | | | | | |
Collapse
|