1
|
Basu P, Taylor BK. Neuropeptide Y Y2 receptors in acute and chronic pain and itch. Neuropeptides 2024; 108:102478. [PMID: 39461244 DOI: 10.1016/j.npep.2024.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Pain and itch are regulated by a diverse array of neuropeptides and their receptors in superficial laminae of the spinal cord dorsal horn (DH). Neuropeptide Y (NPY) is normally expressed on DH neurons but not sensory neurons. By contrast, the Npy2r receptor (Y2) is expressed on the central and peripheral terminals of sensory neurons but not on DH neurons. Neurophysiological slice recordings indicate that Y2-selective agonists inhibits spinal neurotransmitter release from sensory neurons. However, behavioral pharmacology studies indicate that Y2 agonists exert minimal changes in nociception, even after injury. Additional discrepancies in the behavioral actions of the Y2-antagonist BIIE0246 - reports of either pronociception or antinociception - have now been resolved. In the normal state, spinally-directed (intrathecal) administration of BIIE0246 elicits ongoing nociception, hypersensitivity to sensory stimulation, and aversion. Conversely, in the setting of nerve injury and inflammation, intrathecal BIIE024 reduced not only mechanical and thermal hypersensitivity, but also a measure of the affective dimension of pain (conditioned place preference). When administered in chronic pain models of latent sensitization, BIIE0246 produced a profound reinstatement of pain-like behaviors. We propose that tissue or nerve injury induces a G protein switch in the action of NPY-Y2 signaling from antinociception in the naïve state to the inhibition of mechanical and heat hyperalgesia in the injured state, and then a switch back to antinociception to keep LS in a state of remission. This model clarifies the pharmacotherapeutic potential of Y2 research, pointing to the development of a new non-opioid pharmacotherapy for chronic pain using Y2 antagonists in patients who do not develop LS.
Collapse
Affiliation(s)
- Paramita Basu
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, United States of America
| | - Bradley K Taylor
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, United States of America; Department of Pharmacology and Chemical Biology, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
2
|
Luo M, Han X, Li H, Zhou G, Chen H, Gao F. Effects of Remifentanil Gradual Withdrawal Combined with Postoperative Infusion on Postoperative Hyperalgesia in Patients Undergoing Laparoscopic hysterectomy: A Factorial Design, Double-Blind, Randomized Controlled Trial. Drug Des Devel Ther 2024; 18:583-595. [PMID: 38436039 PMCID: PMC10908282 DOI: 10.2147/dddt.s451913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Background Remifentanil-induced hyperalgesia (RIH) increases the risk of persistent postoperative pain, making early postoperative analgesic therapy ineffective and affecting postoperative patient satisfaction. This study aimed to verify the effects of gradual withdrawal of remifentanil combined with postoperative pump infusion of remifentanil on postoperative hyperalgesia and pain in patients undergoing laparoscopic hysterectomy. Methods This trial was a factorial design, double-blind, randomized controlled trial. Patients undergoing laparoscopic hysterectomy were randomly allocated to the control group, postoperative pump infusion of remifentanil group, gradual withdrawal of remifentanil group, or gradual withdrawal plus postoperative pump infusion of remifentanil group (n = 35 each). The primary outcome was postoperative mechanical pain thresholds in the medial forearm. The secondary outcomes included postoperative mechanical pain thresholds around the incision, pain numeric rating scale scores, analgesic utilization, awakening agitation or sedation scores, a 15-item quality of recovery survey, and postoperative complications. Results Gradual withdrawal of remifentanil significantly increased postoperative pain thresholds versus abrupt discontinuation (P < 0.05), whereas postoperative infusion did not show significant differences compared to the absence of infusion (P > 0.05). The combined gradual withdrawal and postoperative infusion group exhibited the highest thresholds and had the lowest postoperative pain scores and analgesic requirements as well as the highest quality of recovery scores (P < 0.05). No significant differences were observed for agitation scores, sedation scores, or complication rates (P > 0.05). Conclusion The novel combined gradual withdrawal and postoperative infusion of remifentanil uniquely attenuates postoperative hyperalgesia, pain severity, analgesic necessity, and improves recovery quality after laparoscopic hysterectomy.
Collapse
Affiliation(s)
- Meng Luo
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Xue Han
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Huan Li
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Guangyue Zhou
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Haoxuan Chen
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Fang Gao
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
3
|
Han X, Pinto LG, Vilar B, McNaughton PA. Opioid-Induced Hyperalgesia and Tolerance Are Driven by HCN Ion Channels. J Neurosci 2024; 44:e1368232023. [PMID: 38124021 PMCID: PMC11059424 DOI: 10.1523/jneurosci.1368-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
Prolonged exposure to opioids causes an enhanced sensitivity to painful stimuli (opioid-induced hyperalgesia, OIH) and a need for increased opioid doses to maintain analgesia (opioid-induced tolerance, OIT), but the mechanisms underlying both processes remain obscure. We found that pharmacological block or genetic deletion of HCN2 ion channels in primary nociceptive neurons of male mice completely abolished OIH but had no effect on OIT. Conversely, pharmacological inhibition of central HCN channels alleviated OIT but had no effect on OIH. Expression of C-FOS, a marker of neuronal activity, was increased in second-order neurons of the dorsal spinal cord by induction of OIH, and the increase was prevented by peripheral block or genetic deletion of HCN2, but block of OIT by spinal block of HCN channels had no impact on C-FOS expression in dorsal horn neurons. Collectively, these observations show that OIH is driven by HCN2 ion channels in peripheral nociceptors, while OIT is driven by a member of the HCN family located in the CNS. Induction of OIH increased cAMP in nociceptive neurons, and a consequent shift in the activation curve of HCN2 caused an increase in nociceptor firing. The shift in HCN2 was caused by expression of a constitutively active μ-opioid receptor (MOR) and was reversed by MOR antagonists. We identified the opioid-induced MOR as a six-transmembrane splice variant, and we show that it increases cAMP by coupling constitutively to Gs HCN2 ion channels therefore drive OIH, and likely OIT, and may be a novel therapeutic target for the treatment of addiction.
Collapse
Affiliation(s)
- Xue Han
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Larissa Garcia Pinto
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Bruno Vilar
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Peter A McNaughton
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
4
|
Pearl-Dowler L, Posa L, Lopez-Canul M, Teggin A, Gobbi G. Anti-allodynic and medullary modulatory effects of a single dose of delta-9-tetrahydrocannabinol (THC) in neuropathic rats tolerant to morphine. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110805. [PMID: 37257771 DOI: 10.1016/j.pnpbp.2023.110805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Neuropathic pain (NP) is often treated with opioids, the prolonged use of which causes tolerance to their analgesic effect and can potentially cause death by overdose. The phytocannabinoid delta-9-tetrahydrocannabinol (THC) may be an effective alternative analgesic to treat NP in morphine-tolerant subjects. Male Wistar rats developed NP after spared nerve injury, and were then treated with increasing doses of THC (1, 1.5, 2, 2.5, and 5 mg/kg, intraperitoneally), which reduced mechanical allodynia at the dose of 2.5 and 5 mg/kg. Another group of NP rats were treated with morphine (5 mg/kg, twice daily for 7 days, subcutaneously), until tolerance developed, and on day 8 received a single dose of THC (2.5 mg/kg), which significantly reduced mechanical allodynia. To evaluate the modulation of THC in the descending pain pathway, in vivo electrophysiological recordings of pronociceptive ON cells and antinociceptive OFF cells in the rostroventral medulla (RVM) were recorded after intra-PAG microinjection of THC (10 μg/μl). NP rats with morphine tolerance, compared to the control one, showed a tonic reduction of the spontaneous firing rate of ON cells by 44%, but the THC was able to further decrease it (a hallmark of many analgesic drugs acting at supraspinal level). On the other hand, the firing rate, of the antinociceptive OFF cells was increased after morphine tolerance by 133%, but the THC failed to further activate it. Altogether, these findings indicate that a single dose of THC produces antiallodynic effect in individuals with NP who are tolerant to morphine, acting mostly on the ON cells of the descending pain pathways, but not on OFF cells.
Collapse
Affiliation(s)
- Leora Pearl-Dowler
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Luca Posa
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Martha Lopez-Canul
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Alexandra Teggin
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Gamble MC, Williams BR, Singh N, Posa L, Freyberg Z, Logan RW, Puig S. Mu-opioid receptor and receptor tyrosine kinase crosstalk: Implications in mechanisms of opioid tolerance, reduced analgesia to neuropathic pain, dependence, and reward. Front Syst Neurosci 2022; 16:1059089. [PMID: 36532632 PMCID: PMC9751598 DOI: 10.3389/fnsys.2022.1059089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Despite the prevalence of opioid misuse, opioids remain the frontline treatment regimen for severe pain. However, opioid safety is hampered by side-effects such as analgesic tolerance, reduced analgesia to neuropathic pain, physical dependence, or reward. These side effects promote development of opioid use disorders and ultimately cause overdose deaths due to opioid-induced respiratory depression. The intertwined nature of signaling via μ-opioid receptors (MOR), the primary target of prescription opioids, with signaling pathways responsible for opioid side-effects presents important challenges. Therefore, a critical objective is to uncouple cellular and molecular mechanisms that selectively modulate analgesia from those that mediate side-effects. One such mechanism could be the transactivation of receptor tyrosine kinases (RTKs) via MOR. Notably, MOR-mediated side-effects can be uncoupled from analgesia signaling via targeting RTK family receptors, highlighting physiological relevance of MOR-RTKs crosstalk. This review focuses on the current state of knowledge surrounding the basic pharmacology of RTKs and bidirectional regulation of MOR signaling, as well as how MOR-RTK signaling may modulate undesirable effects of chronic opioid use, including opioid analgesic tolerance, reduced analgesia to neuropathic pain, physical dependence, and reward. Further research is needed to better understand RTK-MOR transactivation signaling pathways, and to determine if RTKs are a plausible therapeutic target for mitigating opioid side effects.
Collapse
Affiliation(s)
- Mackenzie C. Gamble
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Molecular and Translational Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin R. Williams
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Navsharan Singh
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Luca Posa
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Stephanie Puig
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
6
|
Martínez-Navarro M, Cabañero D, Wawrzczak-Bargiela A, Robe A, Gavériaux-Ruff C, Kieffer BL, Przewlocki R, Baños JE, Maldonado R. Mu and delta opioid receptors play opposite nociceptive and behavioural roles on nerve-injured mice. Br J Pharmacol 2020; 177:1187-1205. [PMID: 31655493 DOI: 10.1111/bph.14911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/01/2019] [Accepted: 10/12/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Mu and delta opioid receptors(MOP, DOP) contribution to the manifestations of pathological pain is not understood. We used genetic approaches to investigate the opioid mechanisms modulating neuropathic pain and its comorbid manifestations. EXPERIMENTAL APPROACH We generated conditional knockout mice with MOP or DOP deletion in sensoryNav1.8-positive neurons (Nav1.8), in GABAergic forebrain neurons (DLX5/6) orconstitutively (CMV). Mutant mice and wild-type littermates were subjected topartial sciatic nerve ligation (PSNL) or sham surgery and their nociception wascompared. Anxiety-, depressivelike behaviour and cognitive performance were also measured. Opioid receptor mRNA expression, microgliosis and astrocytosis were assessed in the dorsalroot ganglia (DRG) and/or the spinal cord (SC). KEY RESULTS Constitutive CMV-MOP knockouts after PSNL displayed reduced mechanical allodynia and enhanced heat hyperalgesia. This phenotype was accompanied by increased DOP expression in DRG and SC, and reduced microgliosis and astrocytosis in deep dorsal horn laminae. Conditional MOP knockouts and control mice developed similar hypersensitivity after PSNL, except for anenhanced heat hyperalgesia by DLX5/6-MOP male mice. Neuropathic pain-induced anxiety was aggravated in CMV-MOP and DLX5/6-MOP knockouts. Nerve-injured CMV-DOP mice showed increased mechanical allodynia, whereas Nav1.8-DOP and DLX5/8-DOP mice had partial nociceptive enhancement. CMV-DOP and DLX5/6-DOP mutants showed increased depressive-like behaviour after PSNL. CONCLUSIONS AND IMPLICATIONS MOP activity after nerve injury increased anxiety-like responses involving forebrain GABAergic neurons and enhanced mechanical pain sensitivity along with repression of DOP expression and spinal cord gliosis. In contrast, DOP shows a protective function limiting nociceptive and affective manifestations of neuropathic pain.
Collapse
Affiliation(s)
- Miriam Martínez-Navarro
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Cabañero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Agnieszka Wawrzczak-Bargiela
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Anne Robe
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, Strasbourg, France.,IGBMC, Université de Strasbourg, Illkirch, France.,Laboratory UMR7104, Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Unit U 1258, Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France
| | - Claire Gavériaux-Ruff
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, Strasbourg, France.,IGBMC, Université de Strasbourg, Illkirch, France.,Laboratory UMR7104, Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Unit U 1258, Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France
| | - Brigitte L Kieffer
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, Strasbourg, France.,IGBMC, Université de Strasbourg, Illkirch, France.,Laboratory UMR7104, Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Unit U 1258, Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France.,Faculty of Medicine, Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Josep E Baños
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Laboratory of Neuropharmacology, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
7
|
Liu DQ, Zhou YQ, Gao F. Targeting Cytokines for Morphine Tolerance: A Narrative Review. Curr Neuropharmacol 2019; 17:366-376. [PMID: 29189168 PMCID: PMC6482476 DOI: 10.2174/1570159x15666171128144441] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/06/2017] [Accepted: 11/23/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Despite its various side effects, morphine has been widely used in clinics for decades due to its powerful analgesic effect. Morphine tolerance is one of the major side effects, hindering its long-term usage for pain therapy. Currently, the thorough cellular and molecular mechanisms underlying morphine tolerance remain largely uncertain. METHODS We searched the PubMed database with Medical subject headings (MeSH) including 'morphine tolerance', 'cytokines', 'interleukin 1', 'interleukin 1 beta', 'interleukin 6', 'tumor necrosis factor alpha', 'interleukin 10', 'chemokines'. Manual searching was carried out by reviewing the reference lists of relevant studies obtained from the primary search. The searches covered the period from inception to November 1, 2017. RESULTS The expression levels of certain chemokines and pro-inflammatory cytokines were significantly increased in animal models of morphine tolerance. Cytokines and cytokine receptor antagonist showed potent effect of alleviating the development of morphine tolerance. CONCLUSION Cytokines play a fundamental role in the development of morphine tolerance. Therapeutics targeting cytokines may become alternative strategies for the management of morphine tolerance.
Collapse
Affiliation(s)
| | | | - Feng Gao
- Address correspondence to this author at the Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China; Tel: +86 27 83662853; E-mail:
| |
Collapse
|
8
|
Martínez-Navarro M, Maldonado R, Baños JE. Why mu-opioid agonists have less analgesic efficacy in neuropathic pain? Eur J Pain 2018; 23:435-454. [PMID: 30318675 DOI: 10.1002/ejp.1328] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/06/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022]
Abstract
Injury to peripheral nerves often leads to abnormal pain states (hyperalgesia, allodynia and spontaneous pain), which can remain long after the injury heals. Although opioid agonists remain the gold standard for the treatment of moderate to severe pain, they show reduced efficacy against neuropathic pain. In addition to analgesia, opioid use is also associated with hyperalgesia and analgesia tolerance, whose underlying mechanisms share some commonalities with nerve injury-induced hypersensitivity. Here, we reviewed up-to-day research exploring the contribution of mu-opioid receptor (MOR) on the pathophysiology of neuropathic pain and on analgesic opioid actions under these conditions. We focused on the specific contributions of MOR populations at peripheral, spinal and supraspinal level. Moreover, evidences of neuroplastic changes that may underlie the low efficacy of MOR agonists under neuropathic pain conditions are reviewed and discussed. Sensitization processes leading to pain hypersensitivity, molecular changes in signalling pathways triggered by MOR and glial activation are some of these mechanisms elicited by both nerve injury and opioid exposure. Nerve injury-induced pain hypersensitivity might be masking the initial analgesic effects of opioid agonists, and alternatively, sustained opioid treatment to individuals already suffering from neuropathic pain could aggravate their pathophysiological state. Finally, some combined therapies that can increase opioid analgesic effectiveness in neuropathic pain treatment are highlighted. SIGNIFICANCE: This review provides evidence of the low benefit of opioid monotherapy in neuropathic pain and analyses the reasons of this reduced effectiveness. Opioid agonists along with drugs targeted to block the sensitization processes induced by MOR stimulation might result in a better management of neuropathic pain.
Collapse
Affiliation(s)
- Miriam Martínez-Navarro
- Department of Experimental and Health Sciences, Laboratory of Neuropharmacology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael Maldonado
- Department of Experimental and Health Sciences, Laboratory of Neuropharmacology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Josep-E Baños
- Department of Experimental and Health Sciences, Laboratory of Neuropharmacology, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
9
|
Chen YW, Shieh JP, Liu KS, Wang JJ, Hung CH. Naloxone prolongs cutaneous nociceptive block by lidocaine in rats. Fundam Clin Pharmacol 2017; 31:636-642. [PMID: 28677297 DOI: 10.1111/fcp.12302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/08/2017] [Accepted: 06/30/2017] [Indexed: 11/26/2022]
Abstract
We aimed to investigate the local anesthetic properties of naloxone alone or as an adjunct for the local anesthetic lidocaine. After the block of the cutaneous trunci muscle reflex (CTMR) with drugs delivery by subcutaneous infiltration, cutaneous nociceptive block was tested on the ratsꞌ backs. We demonstrated that naloxone, as well as lidocaine, elicited cutaneous analgesia dose-dependently. The relative potency in inducing cutaneous analgesia was lidocaine [22.6 (20.1 - 25.4) μmol/kg] > naloxone [43.2 (40.3 - 46.4) μmol/kg] (P < 0.05). On an equianesthetic basis [50% effective dose (ED50 ), ED25 , and ED75 ], naloxone displayed a greater duration of cutaneous analgesic action than lidocaine (P < 0.01). Coadministration of lidocaine (ED95 or ED50 ) and ineffective-dose naloxone (13.3 μmol/kg) intensifies sensory block (P < 0.01) with prolonged duration of action (P < 0.001) compared with lidocaine (ED95 or ED50 ) alone or naloxone (13.3 μmol/kg) alone on infiltrative cutaneous analgesia. The preclinical data showed that naloxone is less potent than lidocaine as an infiltrative anesthetic, but its analgesic duration was longer than that of lidocaine. Furthermore, naloxone prolongs lidocaine analgesia, acting synergistically for nociceptive block.
Collapse
Affiliation(s)
- Yu-Wen Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.,Department of Physical Therapy, College of Health Care, China Medical University, Taichung, Taiwan
| | - Ja-Ping Shieh
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan.,Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Kuo-Sheng Liu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Jhi-Joung Wang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
10
|
|
11
|
Esch T, Winkler J, Auwärter V, Gnann H, Huber R, Schmidt S. Neurobiological Aspects of Mindfulness in Pain Autoregulation: Unexpected Results from a Randomized-Controlled Trial and Possible Implications for Meditation Research. Front Hum Neurosci 2017; 10:674. [PMID: 28184192 PMCID: PMC5266722 DOI: 10.3389/fnhum.2016.00674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 01/22/2023] Open
Abstract
Background: Research has demonstrated that short meditation training may yield higher pain tolerance in acute experimental pain. Our study aimed at examining underlying mechanisms of this alleged effect. In addition, placebo research has shown that higher pain tolerance is mediated via endogenous neuromodulators: experimental inhibition of opioid receptors by naloxone antagonized this effect. We performed a trial to discern possible placebo from meditation-specific effects on pain tolerance and attention. Objectives: It was proposed that (i) meditation training will increase pain tolerance; (ii) naloxone will inhibit this effect; (iii) increased pain tolerance will correlate with improved attention performance and mindfulness. Methods: Randomized-controlled, partly blinded trial with 31 healthy meditation-naïve adults. Pain tolerance was assessed by the tourniquet test, attention performance was measured by Attention Network Test (ANT), self-perceived mindfulness by Freiburg Mindfulness Inventory. 16 participants received a 5-day meditation training, focusing on body/breath awareness; the control group (N = 15) received no intervention. Measures were taken before the intervention and on 3 consecutive days after the training, with all participants receiving either no infusion, naloxone infusion, or saline infusion (blinded). Blood samples were taken in order to determine serum morphine and morphine glucuronide levels by applying liquid chromatography-tandem mass spectrometry analysis. Results: The meditation group produced fewer errors in ANT. Paradoxically, increases in pain tolerance occurred in both groups (accentuated in control), and correlated with reported mindfulness. Naloxone showed a trend to decrease pain tolerance in both groups. Plasma analyses revealed sporadic morphine and/or morphine metabolite findings with no discernable pattern. Discussion: Main objectives could not be verified. Since underlying study goals had not been made explicit to participants, on purpose (framing effects toward a hypothesized mindfulness-pain tolerance correlation were thus avoided, trainees had not been instructed how to 'use' mindfulness, regarding pain), the question remains open whether lack of meditation effects on pain tolerance was due to these intended 'non-placebo' conditions, cultural effects, or other confounders, or on an unsuitable paradigm. Conclusion: Higher pain tolerance through meditation could not be confirmed.
Collapse
Affiliation(s)
- Tobias Esch
- Division of Integrative Health Promotion, Coburg University of Applied SciencesCoburg, Germany; School of Medicine, Faculty of Health, Witten/Herdecke UniversityWitten, Germany; Institute for General Medicine, University Hospital Essen, University of Duisburg-EssenEssen, Germany
| | - Jeremy Winkler
- Department of Psychosomatic Medicine, Medical Center, Medical Faculty, University of Freiburg Freiburg, Germany
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Medical Faculty, University of Freiburg Freiburg, Germany
| | - Heike Gnann
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Medical Faculty, University of Freiburg Freiburg, Germany
| | - Roman Huber
- Center for Complementary Medicine, Medical Center, Medical Faculty, University of Freiburg Freiburg, Germany
| | - Stefan Schmidt
- Department of Psychosomatic Medicine, Medical Center, Medical Faculty, University of FreiburgFreiburg, Germany; Institute for Transcultural Health Studies, European University ViadrinaFrankfurt (Oder), Germany
| |
Collapse
|
12
|
Ultralow Dose of Naloxone as an Adjuvant to Intrathecal Morphine Infusion Improves Perceived Quality of Sleep but Fails to Alter Persistent Pain: A Randomized, Double-blind, Controlled Study. Clin J Pain 2016; 31:968-75. [PMID: 25629634 PMCID: PMC4894772 DOI: 10.1097/ajp.0000000000000200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Supplemental Digital Content is available in the text. Introduction: This randomized, cross-over, double-blind, controlled study of continuous intrathecal morphine administration in patients with severe, long-term pain addresses whether the supplementation of low doses of naloxone in this setting is associated with beneficial clinical effects. Methods: All of the study subjects (n=11) provided informed consent and were recruited from a subset of patients who were already undergoing long-term treatment with continuous intrathecal morphine because of difficult-to-treat pain. The patients were (in a randomized order) also given intrathecal naloxone (40 ng/24 h or 400 ng/24 h). As control, the patients’ ordinary dose of morphine without any additions was used. The pain (Numeric Rating Scale, NRS) during activity, perceived quality of sleep, level of activity, and quality of life as well as the levels of several proinflammatory and anti-inflammatory cytokines in the blood were assessed. The prestudy pain (NRS during activity) in the study group ranged from 3 to 10. Results: A total of 64% of the subjects reported improved quality of sleep during treatment with naloxone at a dose of 40 ng per 24 hours as compared with 9% with sham treatment (P=0.024). Although not statistically significant, pain was reduced by 2 NRS steps or more during supplemental treatment with naloxone in 36% of subjects when using the 40 ng per 24 hours dose and in 18% of the subjects when using naloxone 400 ng per 24 hours dose. The corresponding percentage among patients receiving unaltered treatment was 27%. Conclusions: To conclude, the addition of an ultralow dose of intrathecal naloxone (40 ng/24 h) to intrathecal morphine infusion in patients with severe, persistent pain improved perceived quality of sleep. We were not able to show any statistically significant effects of naloxone on pain relief, level of activity, or quality of life.
Collapse
|
13
|
Resveratrol reverses morphine-induced neuroinflammation in morphine-tolerant rats by reversal HDAC1 expression. J Formos Med Assoc 2016; 115:445-54. [DOI: 10.1016/j.jfma.2015.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 03/28/2015] [Accepted: 05/08/2015] [Indexed: 01/09/2023] Open
|
14
|
Abstract
OBJECTIVES The paradoxical development of chronic abdominal pain is an underrecognized side effect of opioid use. Narcotic bowel syndrome (NBS), occurring in a small proportion of chronic opioid users, consists of chronic or intermittent abdominal pain, which often increases in severity despite continued or escalating dosages of opioids prescribed to relieve pain. METHODS A PubMed search was conducted using terms such as "narcotic bowel syndrome" and "opioid hyperalgesia" through January 2014. RESULTS Abdominal pain is the defining symptom of NBS and is thought to be mediated by central nervous system dysfunction; it should be distinguished from the peripheral side effects of opioids, such as nausea, bloating, intermittent vomiting, abdominal distension, and constipation. This latter cluster of symptoms is called opioid bowel dysfunction, although it may co-occur with NBS. Hypothesized mechanisms of the central effects of opioids on nociception in NBS include spinal cord inflammation and dysfunction in opioid receptor activity and related neuroanatomical substrates. With continued use, ∼6% of patients taking narcotics chronically will develop NBS, with profound consequences in terms of daily function. The primary management paradigm for NBS is a structured opioid withdrawal program accompanied by centrally acting adjunctive therapy comprising antidepressants, benzodiazepines, and clonidine to target pain, anxiety, and depression, and prevent withdrawal effects, in addition to peripherally acting agents such as laxatives (e.g., osmotic laxatives and chloride channel activators) to control transient constipation. Such structured withdrawal programs have been prospectively evaluated in small clinical trials and have met with considerable success in the short term. CONCLUSIONS Because rates of NBS are likely to rise, integrated intensive pharmacotherapy and psychosocial interventions are needed to help patients with NBS go off and stay off opioids. These programs will likely also reduce comorbid psychopathology and lead to adequate pain control and improved quality of life.
Collapse
|
15
|
Block L. Glial dysfunction and persistent neuropathic postsurgical pain. Scand J Pain 2016; 10:74-81. [PMID: 28361776 DOI: 10.1016/j.sjpain.2015.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Acute pain in response to injury is an important mechanism that serves to protect living beings from harm. However, persistent pain remaining long after the injury has healed serves no useful purpose and is a disabling condition. Persistent postsurgical pain, which is pain that lasts more than 3 months after surgery, affects 10-50% of patients undergoing elective surgery. Many of these patients are affected by neuropathic pain which is characterised as a pain caused by lesion or disease in the somatosensory nervous system. When established, this type of pain is difficult to treat and new approaches for prevention and treatment are needed. A possible contributing mechanism for the transition from acute physiological pain to persistent pain involves low-grade inflammation in the central nervous system (CNS), glial dysfunction and subsequently an imbalance in the neuron-glial interaction that causes enhanced and prolonged pain transmission. AIM This topical review aims to highlight the contribution that inflammatory activated glial cell dysfunction may have for the development of persistent pain. METHOD Relevant literature was searched for in PubMed. RESULTS Immediately after an injury to a nerve ending in the periphery such as in surgery, the inflammatory cascade is activated and immunocompetent cells migrate to the site of injury. Macrophages infiltrate the injured nerve and cause an inflammatory reaction in the nerve cell. This reaction leads to microglia activation in the central nervous system and the release of pro-inflammatory cytokines that activate and alter astrocyte function. Once the astrocytes and microglia have become activated, they participate in the development, spread, and potentiation of low-grade neuroinflammation. The inflammatory activated glial cells exhibit cellular changes, and their communication to each other and to neurons is altered. This renders neurons more excitable and pain transmission is enhanced and prolonged. Astrocyte dysfunction can be experimentally restored using the combined actions of a μ-opioid receptor agonist, a μ-opioid receptor antagonist, and an anti-epileptic agent. To find these agents we searched the literature for substances with possible anti-inflammatory properties that are usually used for other purposes in medicine. Inflammatory induced glial cell dysfunction is restorable in vitro by a combination of endomorphine-1, ultralow doses of naloxone and levetiracetam. Restoring inflammatory-activated glial cells, thereby restoring astrocyte-neuron interaction has the potential to affect pain transmission in neurons. CONCLUSION Surgery causes inflammation at the site of injury. Peripheral nerve injury can cause low-grade inflammation in the CNS known as neuroinflammation. Low-grade neuroinflammation can cause an imbalance in the glial-neuron interaction and communication. This renders neurons more excitable and pain transmission is enhanced and prolonged. Astrocytic dysfunction can be restored in vitro by a combination of endomorphin-1, ultralow doses of naloxone and levetiracetam. This restoration is essential for the interaction between astrocytes and neurons and hence also for modulation of synaptic pain transmission. IMPLICATIONS Larger studies in clinical settings are needed before these findings can be applied in a clinical context. Potentially, by targeting inflammatory activated glial cells and not only neurons, a new arena for development of pharmacological agents for persistent pain is opened.
Collapse
Affiliation(s)
- Linda Block
- Institute of Clinical Sciences at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Anesthesiology and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
16
|
Yi P, Pryzbylkowski P. Opioid Induced Hyperalgesia. PAIN MEDICINE 2015; 16 Suppl 1:S32-6. [DOI: 10.1111/pme.12914] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 08/13/2015] [Indexed: 11/28/2022]
|
17
|
Biased signalling: the instinctive skill of the cell in the selection of appropriate signalling pathways. Biochem J 2015; 470:155-67. [DOI: 10.1042/bj20150358] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GPCRs (G-protein-coupled receptors) are members of a family of proteins which are generally regarded as the largest group of therapeutic drug targets. Ligands of GPCRs do not usually activate all cellular signalling pathways linked to a particular seven-transmembrane receptor in a uniform manner. The fundamental idea behind this concept is that each ligand has its own ability, while interacting with the receptor, to activate different signalling pathways (or a particular set of signalling pathways) and it is this concept which is known as biased signalling. The importance of biased signalling is that it may selectively activate biological responses to favour therapeutically beneficial signalling pathways and to avoid adverse effects. There are two levels of biased signalling. First, bias can arise from the ability of GPCRs to couple to a subset of the available G-protein subtypes: Gαs, Gαq/11, Gαi/o or Gα12/13. These subtypes produce the diverse effects of GPCRs by targeting different effectors. Secondly, biased GPCRs may differentially activate G-proteins or β-arrestins. β-Arrestins are ubiquitously expressed and function to terminate or inhibit classic G-protein signalling and initiate distinct β-arrestin-mediated signalling processes. The interplay of G-protein and β-arrestin signalling largely determines the cellular consequences of the administration of GPCR-targeted drugs. In the present review, we highlight the particular functionalities of biased signalling and discuss its biological effects subsequent to GPCR activation. We consider that biased signalling is potentially allowing a choice between signalling through ‘beneficial’ pathways and the avoidance of ‘harmful’ ones.
Collapse
|
18
|
Affiliation(s)
- Elisabeth Hansson
- Department of Clinical Neuroscience and Rehabilitation , Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
19
|
Wu L, Dong YP, Sun L, Sun L. Low Concentration of Dezocine in Combination With Morphine Enhance the Postoperative Analgesia for Thoracotomy. J Cardiothorac Vasc Anesth 2014; 29:950-4. [PMID: 25543218 DOI: 10.1053/j.jvca.2014.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Indexed: 01/28/2023]
Abstract
OBJECTIVE When morphine and dezocine are mixed together, the clinical interactions with analgesic effects and adverse events remain unknown. The authors aimed to investigate the efficacy of low concentrations of dezocine in combination with morphine for postoperative pain. DESIGN A prospective, randomized, double-blinded clinical trial. SETTING Cancer Institute and Hospital, National Cancer Center, China. PARTICIPANTS Sixty patients undergoing thoracotomy were randomized into 3 groups to investigate the analgesic efficacy of different ratios of morphine and dezocine. INTERVENTIONS The morphine group (Group M) received morphine (1 mg/mL) alone for patient-controlled analgesia (PCA); the morphine+dezocine 1 group (Group MD1) received morphine (1 mg/mL) combined with dezocine (0.05 mg/mL) at a ratio of 20:1 for PCA; the morphine+dezocine 2 group (Group MD2) received morphine (1 mg/mL) combined with dezocine (0.1 mg/mL) at a ratio of 10:1 for PCA. Cumulative morphine consumption, verbal rating scores (VRS), and adverse events were evaluated throughout a 48-hour postoperative period. MEASUREMENTS AND MAIN RESULTS Cumulative morphine requirements were (1) statistically higher in Group M than in Group MD2 at 24 and 48 hours after surgery and (2) statistically higher in Group M than Group MD1 at 48 hours after surgery. Postoperative VRS for evaluating pain were similar among the 3 groups. The incidence of postoperative nausea and pruritus was statistically higher in Group M than in Groups MD1 and MD2. The incidence of dizziness was not significantly different among groups. CONCLUSIONS The combination of morphine and dezocine at the concentrations [morphine (mg/mL)]/[dezocine (mg/mL)] of 1/0.05 (ratio 20:1) and 1/0.1 (ratio 10:1) may enhance postoperative analgesia after thoracotomy.
Collapse
Affiliation(s)
- LinXin Wu
- Department of Anesthesiology, Cancer Institute and Hospital, National Cancer Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yan Peng Dong
- Department of Anesthesiology, Cancer Institute and Hospital, National Cancer Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liang Sun
- Department of Anesthesiology, Cancer Institute and Hospital, National Cancer Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li Sun
- Department of Anesthesiology, Cancer Institute and Hospital, National Cancer Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
20
|
Cherng CH, Lee KC, Chien CC, Chou KY, Cheng YC, Hsin ST, Lee SO, Shen CH, Tsai RY, Wong CS. Baicalin ameliorates neuropathic pain by suppressing HDAC1 expression in the spinal cord of spinal nerve ligation rats. J Formos Med Assoc 2014; 113:513-20. [DOI: 10.1016/j.jfma.2013.04.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 03/18/2013] [Accepted: 04/04/2013] [Indexed: 12/30/2022] Open
|
21
|
Actin filament reorganization in astrocyte networks is a key functional step in neuroinflammation resulting in persistent pain: novel findings on network restoration. Neurochem Res 2014; 40:372-9. [PMID: 24952067 DOI: 10.1007/s11064-014-1363-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
Abstract
In recent years, the importance of glial cell activation in the generation and maintenance of long-term pain has been investigated. One novel mechanism underlying long-lasting pain is injury-induced inflammation in the periphery, followed by microglial activation in the dorsal horn of the spinal cord, which results in local neuroinflammation. An increase in neuronal excitability may follow, with intense signaling along the pain tracts to the thalamus and the parietal cortex along with other cortical regions for the identification and recognition of the injury. If the local neuroinflammation develops into a pathological state, then the astrocytes become activated. Previous studies in which lipopolysaccharide (LPS) was used to induce inflammation have shown that in a dysfunctional astrocyte network, the actin cytoskeleton is reorganized from the normally occurring F-actin stress fibers into the more diffusible, disorganized, ring-form globular G-actin. In addition, Ca(2+) signaling systems are altered, Na(+)- and glutamate transporters are downregulated, and pro-inflammatory cytokines, particularly IL-1β, are released in dysfunctional astrocyte networks. In a series of experiments, we have demonstrated that these LPS-induced changes in astrocyte function can be restored by stimulation of Gi/o and inhibition of Gs with a combination of a μ-receptor agonist and ultralow concentrations of a μ-receptor antagonist and by inhibition of cytokine release, particularly IL-1β, by the antiepileptic drug levetiracetam. These findings could be of clinical significance and indicate a novel treatment for long-term pain.
Collapse
|
22
|
Zhao J, Gao B, Zhang Y, Zheng B, Liu H, Cao JL. Effects of intrathecal opioids combined with low-dose naloxone on motilin and its receptor in a rat model of postoperative pain. Life Sci 2014; 103:88-94. [DOI: 10.1016/j.lfs.2014.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/12/2014] [Accepted: 03/31/2014] [Indexed: 12/28/2022]
|
23
|
Yang CP, Cherng CH, Wu CT, Huang HY, Tao PL, Lee SO, Wong CS. Intrathecal ultra-low dose naloxone enhances the antihyperalgesic effects of morphine and attenuates tumor necrosis factor-α and tumor necrosis factor-α receptor 1 expression in the dorsal horn of rats with partial sciatic nerve transection. Anesth Analg 2014; 117:1493-502. [PMID: 24257399 DOI: 10.1213/ane.0000000000000020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Glutamate homeostasis and microglia activation play an important role in the development and maintenance of neuropathic pain. We designed this investigation to examine whether ultra-low dose naloxone administered alone or in combination with morphine could alter the concentration of the excitatory amino acids (EAAs) glutamate and aspartate, as well as the expression of tumor necrosis factor-α (TNF-α) and its receptors (TNFR1 and TNFR2) in the spinal cord dorsal horn of rats with partial sciatic nerve transection (PST). METHODS Male Wistar rats underwent intrathecal catheter implantation for drug delivery and were divided in 7 groups: sham-operated + saline (sham), PST + saline (S), PST + 15 ng naloxone (n), PST + 15 µg naloxone (N), PST + 10 µg morphine (M), PST + 15 ng naloxone + 10 µg morphine (Mn), PST + 15 µg naloxone + 10 µg morphine (MN). Thermal withdrawal latency and mechanical withdrawal threshold, TNF-α and TNFR expression in the spinal cord and dorsal root ganglia, and EAAs glutamate and aspartate concentration in cerebrospinal fluid dialysates were measured. RESULTS Ten days after PST, rats developed hyperalgesia (P < 0.0001) and allodynia (P < 0.0001), and increased TNF-α (P < 0.0001) and TNFR1 expression (P = 0.0009) were measured in the ipsilateral spinal cord dorsal horn. The antihyperalgesic and antiallodynic effects of morphine (10 μg) were abolished by high-dose naloxone (15 μg; P = 0.0031) but enhanced by ultra-low dose naloxone (15 ng; P = 0.0015), and this was associated with a reduction of TNF-α (P < 0.0001) and TNFR1 (P = 0.0009) expression in the spinal cord dorsal horn and EAAs concentration (glutamate: P = 0.0001; aspartate: P = 0.004) in cerebrospinal fluid dialysate. Analysis of variance (ANOVA) or Student t test with Bonferroni correction were used for statistical analysis. CONCLUSIONS Ultra-low dose naloxone enhances the antihyperalgesia and antiallodynia effects of morphine in PST rats, possibly by reducing TNF-α and TNFR1 expression, and EAAs concentrations in the spinal dorsal horn. Ultra-low dose naloxone may be a useful adjuvant for increasing the analgesic effect of morphine in neuropathic pain conditions.
Collapse
Affiliation(s)
- Chih-Ping Yang
- From the *Division of Anesthesiology, Armed Forces Taoyuan General Hospital, Taoyuan; †Tri-Service General Hospital, ‡Department of Anesthesiology, and §Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei; ‖Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Miaoli County; and ¶Department of Anesthesiology, Cathy General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
24
|
Chou KY, Tsai RY, Tsai WY, Wu CT, Yeh CC, Cherng CH, Wong CS. Ultra-low dose (+)-naloxone restores the thermal threshold of morphine tolerant rats. J Formos Med Assoc 2013; 112:795-800. [DOI: 10.1016/j.jfma.2013.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 12/19/2022] Open
|
25
|
Forshammar J, Jörneberg P, Björklund U, Westerlund A, Lundborg C, Biber B, Hansson E. Anti-inflammatory substances can influence some glial cell types but not others. Brain Res 2013; 1539:34-40. [DOI: 10.1016/j.brainres.2013.09.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/16/2013] [Accepted: 09/23/2013] [Indexed: 01/22/2023]
|
26
|
Block L, Björklund U, Westerlund A, Jörneberg P, Biber B, Hansson E. A new concept affecting restoration of inflammation-reactive astrocytes. Neuroscience 2013; 250:536-45. [DOI: 10.1016/j.neuroscience.2013.07.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 01/30/2023]
|
27
|
Wang D, Chen T, Zhou X, Couture R, Hong Y. Activation of Mas oncogene-related gene (Mrg) C receptors enhances morphine-induced analgesia through modulation of coupling of μ-opioid receptor to Gi-protein in rat spinal dorsal horn. Neuroscience 2013; 253:455-64. [PMID: 24042038 DOI: 10.1016/j.neuroscience.2013.08.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/29/2013] [Accepted: 08/31/2013] [Indexed: 12/21/2022]
Abstract
Mas oncogene-related gene (Mrg) G protein-coupled receptors are exclusively expressed in small-sized neurons in trigeminal and dorsal root ganglia (DRG) in mammals. The present study investigated the effect of MrgC receptor activation on morphine analgesic potency and addressed its possible mechanisms. Intrathecal (i.t.) administration of the specific MrgC receptor agonist bovine adrenal medulla 8-22 (BAM8-22, 3 nmol) increased morphine-induced analgesia and shifted the morphine dose-response curve to the left in rats. Acute morphine (5 μg) reduced the coupling of μ-opioid receptors (MORs) to Gi-, but not Gs-, protein in the spinal dorsal horn. The i.t. BAM8-22 (3 nmol) prevented this change of G-protein repertoire while the inactive MrgC receptor agonist BAM8-18 (3 nmol, i.t.) failed to do so. A double labeling study showed the co-localization of MrgC and MORs in DRG neurons. The i.t. BAM8-22 also increased the coupling of MORs to Gi-protein and recruited Gi-protein from cytoplasm to the cell membrane in the spinal dorsal horn. Application of BAM8-22 (10nM) in the cultured ganglion explants for 30 min increased Gi-protein mRNA, but not Gs-protein mRNA. The present study demonstrated that acute administration of morphine inhibited the repertoire of MOR/Gi-protein coupling in the spinal dorsal horn in vivo. The findings highlight a novel mechanism by which the activation of MrgC receptors can modulate the coupling of MORs with Gi-protein to enhance morphine-induced analgesia. Hence, adjunct treatment of MrgC agonist BAM8-22 may be of therapeutic value to relieve pain.
Collapse
Affiliation(s)
- D Wang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian 350108, People's Republic of China
| | | | | | | | | |
Collapse
|
28
|
Abstract
INTRODUCTION Opioid receptor antagonists are well known for their ability to attenuate or reverse the effects of opioid agonists. This property has made them useful in mitigating opioid side effects, overdose and abuse. Paradoxically, opioid antagonists have been reported to produce analgesia or enhance analgesia of opioid agonists. The authors review the current state of the clinical use of opioid antagonists as analgesics. AREAS COVERED Published clinical trials, case reports and other sources were reviewed to determine the effectiveness and safety of opioid antagonists for use in relieving pain. The results are summarized. Postulated mechanisms for how opioid antagonists might exert an analgesic effect are also briefly summarized. EXPERT OPINION Since the comprehensive review by Leavitt in 2009, few new studies on the use of opioid antagonists for pain have been published. The few clinical trials generally consist of small populations. However, there does appear to be a trend of effectiveness of low doses (higher doses antagonize opioid agonist effects). How opioid antagonists can elicit an analgesic effect is still unclear, but a number of possibilities have been suggested. Although the data do not yet support recommendation of widespread application of this off-label use of opioid antagonists, further study appears worthwhile.
Collapse
|
29
|
Davis M, Goforth HW, Gamier P. Oxycodone combined with opioid receptor antagonists: efficacy and safety. Expert Opin Drug Saf 2013; 12:389-402. [PMID: 23534906 DOI: 10.1517/14740338.2013.783564] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION A mu receptor antagonist combined with oxycodone (OXY) may improve pain control, reduce physical tolerance and withdrawal, minimizing opioid-related bowel dysfunction and act as an abuse deterrent. AREAS COVERED The authors cover the use of OXY plus ultra-low-dose naltrexone for analgesia and the use of sustained-release OXY plus sustained-release naloxone to reduce the opioid bowel syndrome. The authors briefly describe the use of sustained-release OXY and naltrexone pellets as a drug abuse deterrent formulation. Combinations of ultra-low-dose naltrexone plus OXY have been in separate trials involved in patients with chronic pain from osteoarthritis and idiopathic low back pain. High attrition and marginal differences between ultra-low-dose naltrexone plus OXY and OXY led to discontinuation of development. Prolonged-release (PR) naloxone combined with PR OXY demonstrates a consistent reduction in opioid-related bowel dysfunction in multiple randomized controlled trials. However, gastrointestinal side effects, including diarrhea, were increased in several trials with the combination compared with PR OXY alone. Analgesia appeared to be maintained although non-inferiority to PR OXY is not formally established. There were flaws to trial design and safety monitoring. Naltrexone has been combined with OXY in individual pellets encased in a capsule. This combination has been reported in a Phase II trial and is presently undergoing Phase III studies. EXPERT OPINION Due to the lack of efficacy the combination of altered low-dose naltrexone with oxycodone should cease in development. The combination of sustained release oxycodone plus naloxone reduces constipation with a consistent benefit. Safety has been suboptimally evaluated which is a concern. Although the drug is commercially available in several countries, ongoing safety monitoring particularly high doses would be important.
Collapse
Affiliation(s)
- Mellar Davis
- Taussig Cancer Institute, Cleveland Clinic, Harry R. Horvitz Center for Palliative Medicine, Department of Solid Tumor Oncology, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
30
|
Chaijale NN, Aloyo VJ, Simansky KJ. The stereoisomer (+)-naloxone potentiates G-protein coupling and feeding associated with stimulation of mu opioid receptors in the parabrachial nucleus. J Psychopharmacol 2013; 27:302-11. [PMID: 23348755 DOI: 10.1177/0269881112472561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Classically, opioids produce their effects by activating Gi-proteins that inhibit adenylate cyclase activity. Previous studies proposed that mu-opioid receptors can also stimulate adenylate cyclase due to an initial transient coupling to Gs-proteins. Treatment with ultra-low doses of the nonselective opioid antagonist (-)-naloxone or its inactive enantiomer (+)-naloxone blocks this excitatory effect and enhances Gi-coupling. Previously we reported that infusion of the mu-opioid receptor agonist [D-Ala2, N-Me-Phe4, Glycinol5]-Enkephalin (DAMGO) into the mu-opioid receptor expressing lateral parabrachial nucleus increases feeding. Pretreatment with (-)-naloxone blocks this effect. We used this parabrachial circuit as a model to assess cellular actions of ultra-low doses of (-)-naloxone and (+)-naloxone in modifying the effects of DAMGO. Our results showed that an ultra-low concentration of (-)-naloxone (0.001 nM) and several concentrations of (+)-naloxone (0.01-10 nM) enhanced DAMGO-stimulated guanosine-5'-0-(γ-thio)-triphosphate incorporation in parabrachial sections in vitro. Further, we analyzed the relevance of these effects in vivo. In the present study, we show that (+)-naloxone can potentiate DAMGO-induced feeding at doses at which (-)-naloxone was an antagonist. These results implicated (+)-naloxone as a novel tool for studying mu-opioid receptor functions and suggest that (+)-naloxone may have therapeutic value to enhance clinical actions of opiate drugs.
Collapse
Affiliation(s)
- Nayla N Chaijale
- Drexel University College of Medicine, Department of Pharmacology and Physiology, Philadelphia, PA 19102, USA
| | | | | |
Collapse
|
31
|
Hu LG, Pan JH, Li J, Kang F, Jiang L. Effects of different doses of sufentanil and remifentanil combined with propofol in target-controlled infusion on stress reaction in elderly patients. Exp Ther Med 2013; 5:807-812. [PMID: 23407772 PMCID: PMC3570228 DOI: 10.3892/etm.2013.900] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/10/2013] [Indexed: 02/07/2023] Open
Abstract
The current study aimed to observe the effects of sufentanil and remifentanil combined with propofol in target-controlled infusion (TCI) on perioperative stress reaction in elderly patients. A total of 80 elderly patients requiring general anesthesia were recruited. They were divided into four groups (each n=20) according to different target concentrations of remifentanil and sufentanil. These target concentrations were: 4 ng/ml remifentanil + 0.2 ng/ml sufentanil for group I; 3 ng/ml remifentanil + 0.3 ng/ml sufentanil for group II; 2 ng/ml remifentanil + 0.5 ng/ml sufentanil for anesthesia induction and post-intubation 3 ng/ml remifentanil + 0.2 ng/ml sufentanil for anesthesia maintenance for group III; and 5 ng/ml remifentanil for anesthesia induction and post-intubation 4 ng/ml remifentanil for anesthesia maintenance for group IV. Norepinephrine (NE), epinephrine (E) and angiotensin II (Ang II) levels in plasma were measured prior to the induction of anesthesia, as well as at several different time-points following surgery. The numbers of intraoperative severe hemodynamic fluctuation, postoperative eye-opening and extubation time, and post-extubation restlessness and pain scores were recorded. Group IV had a larger circulation fluctuation control number and higher levels of NE, E and Ang II at 3 h after surgery than any other group (P<0.01). Although group IV had shorter postoperative eye-opening and extubation times compared with the other groups (P<0.05), it also had higher restlessness and pain scores (P<0.01). The combined use of sufentanil and remifentanil stabilizes perioperative hemodynamics and reduces stress hormone levels.
Collapse
Affiliation(s)
- Li-Guo Hu
- Department of Anesthesiology, The Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | | | | | | | | |
Collapse
|
32
|
Valdez-Morales E, Guerrero-Alba R, Ochoa-Cortes F, Benson J, Spreadbury I, Hurlbut D, Miranda-Morales M, Lomax AE, Vanner S. Release of endogenous opioids during a chronic IBD model suppresses the excitability of colonic DRG neurons. Neurogastroenterol Motil 2013; 25:39-46.e4. [PMID: 22963585 DOI: 10.1111/nmo.12008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Endogenous opioids are implicated in pain-regulation in chronic inflammatory bowel disease (IBD). We sought to examine whether endogenous opioids suppress the excitability of colonic nociceptive dorsal root ganglia (DRG) neurons during chronic IBD, and if so, whether modulation of underlying voltage-gated K(+) currents was involved. METHODS The effects of chronic dextran sulfate sodium (DSS) colitis on afferent signaling in mice was studied using patch clamp recordings. Colonic DRG neurons were identified using Fast Blue retrograde labeling and recordings obtained from small DRG neurons (<40 pF). KEY RESULTS In current-clamp recordings, the rheobase of neurons was increased 47% (P < 0.01) and action potential discharge at twice rheobase decreased 23% (P < 0.05) following incubation in colonic supernatants from chronic DSS mice. β-endorphin increased 14-fold, and tissue opioid immunoreactivity and expression in CD4+ cells observed by flow cytometry increased in chronic DSS colons. Incubation of naïve neurons in the μ-opioid receptor agonist D-Ala(2), N- MePhe(4), Gly-ol (DAMGO) (10 nM) partially recapitulated the effects of supernatants from DSS mice on rheobase. Supernatant effects were blocked by the μ-opioid receptor antagonist naloxone. In voltage clamp, chronic DSS supernatants and DAMGO increased I(A) K(+) currents. CONCLUSIONS & INFERENCES The release of endogenous opioids during chronic inflammation in mice suppresses the excitability of nociceptive DRG neurons. Targeting immune cells may provide a novel means of modulating IBD pain.
Collapse
Affiliation(s)
- E Valdez-Morales
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tsai RY, Shen CH, Feng YP, Chien CC, Lee SO, Tsai WY, Lin YS, Wong CS. Ultra-low-dose naloxone enhances the antinociceptive effect of morphine in PTX-treated rats: regulation on global histone methylation. ACTA ACUST UNITED AC 2012; 50:106-11. [PMID: 23026169 DOI: 10.1016/j.aat.2012.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/10/2012] [Accepted: 05/15/2012] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Epigenetic reprogramming may have a possible role in neuropathic pain development; the present study examined the global patterns of lysine histone modification. In this serial study we analyzed the levels of histone 3 lysine 4 monomethylation, histone 3 lysine 4 dimethylation, and histone 3 lysine 9 trimethylation in pertussis toxin (PTX)-induced thermal hyperalgesic rat spinal cords. METHODS Male Wistar rats implanted with an intrathecal catheter received a single intrathecal PTX (1 μg in 5 μl saline) injection. Four days later, they were randomly assigned to receive either a single injection of saline, or ultra-low-dose naloxone (15 ng in 5 μl saline), followed by morphine (10 μg in 5 μl saline) injection 30 minutes later. RESULTS The results showed that PTX injection induced thermal hyperalgesia and significant increase of global histone methylation in the spinal cords. Intrathecal morphine alone did not affect the thermal hyperalgesia and global histone methylation. In contrast, intrathecal administration of ultra-low-dose naloxone plus morphine significantly attenuated the PTX-induced thermal hyperalgesia and down-regulated the global histone methylation. CONCLUSION The results suggest that ultra-low-dose naloxone might be clinical valuable for neuropathic pain management via regulating global histone modification.
Collapse
Affiliation(s)
- Ru-Yin Tsai
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ultra-low dose naloxone restores the antinocicepitve effect of morphine in PTX-treated rats: Association of IL-10 upregulation in the spinal cord. Life Sci 2012; 91:213-20. [DOI: 10.1016/j.lfs.2012.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 05/10/2012] [Accepted: 07/06/2012] [Indexed: 12/30/2022]
|
35
|
Opioid system and Alzheimer's disease. Neuromolecular Med 2012; 14:91-111. [PMID: 22527793 DOI: 10.1007/s12017-012-8180-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/04/2012] [Indexed: 12/15/2022]
Abstract
The opioid system may be involved in the pathogenesis of AD, including cognitive impairment, hyperphosphorylated tau, Aβ production, and neuroinflammation. Opioid receptors influence the regulation of neurotransmitters such as acetylcholine, norepinephrine, GABA, glutamate, and serotonin which have been implicated in the pathogenesis of AD. Opioid system has a close relation with Aβ generation since dysfunction of opioid receptors retards the endocytosis and degradation of BACE1 and γ-secretase and upregulates BACE1 and γ-secretase, and subsequently, the production of Aβ. Conversely, activation of opioid receptors increases the endocytosis of BACE1 and γ-secretase and downregulates BACE1 and γ-secretase, limiting the production of Aβ. The dysfunction of opioid system (opioid receptors and opioid peptides) may contribute to hyperphosphorylation of tau and neuroinflammation, and accounts for the degeneration of cholinergic neurons and cognitive impairment. Thus, the opioid system is potentially related to AD pathology and may be a very attractive drug target for novel pharmacotherapies of AD.
Collapse
|
36
|
Aira Z, Buesa I, Del Caño GG, Salgueiro M, Mendiable N, Mingo J, Aguilera L, Bilbao J, Azkue JJ. Selective impairment of spinal mu-opioid receptor mechanism by plasticity of serotonergic facilitation mediated by 5-HT2A and 5-HT2B receptors. Pain 2012; 153:1418-1425. [PMID: 22520172 DOI: 10.1016/j.pain.2012.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/19/2012] [Accepted: 03/14/2012] [Indexed: 01/11/2023]
Abstract
Opioid analgesia is compromised by intracellular mediators such as protein kinase C (PKC). The phosphatidylinositol hydrolysis-coupled serotonin receptor 5-HT2 is ideally suited to promote PKC activation. We test the hypothesis that 5-HT2A and 5-HT2B receptors, which have been previously shown to become pro-excitatory after spinal nerve ligation (SNL), can negatively influence the ability of opioids to depress spinal excitation evoked by noxious input. Spinal superfusion with (100 nM) mu-opioid receptor (MOR)-agonist DAMGO significantly depressed C fiber-evoked spinal field potentials. Simultaneous administration of subclinical 5-HT2AR antagonist 4F 4PP (100 nM) or 5-HT2BR antagonist SB 204741 (100 nM) significantly reduced the IC50 value for DAMGO in nerve-ligated rats (97.56 nM ± 1.51 and 1.20 nM ± 1.28 respectively, relative to 104 nM ± 1.08 at the baseline condition), but not in sham-operated rats. Both antagonists failed to alter depression induced by delta-opioid receptor (DOR)-agonist D-ala2-deltorphin II after SNL as well as in the sham condition. Western blot analysis of dorsal horn homogenates revealed bilateral upregulation of 5-HT2AR and 5-HT2BR protein band densities after SNL. As assessed from double immunofluorescence labeling for confocal laser scanning microscopy, scarce dorsal horn cell processes showed co-localization color overlay for 5-HT2AR/MOR, 5-HT2BR/MOR, 5-HT2AR/DOR, or 5-HT2BR/DOR in sham-operated rats. Intensity correlation-based analyses showed significant increases in 5-HT2AR/MOR and 5-HT2BR/MOR co-localizations after SNL. These results indicate that plasticity of spinal serotonergic neurotransmission can selectively reduce spinal MOR mechanisms via 5-HT2A and 5-HT2B receptors, including upregulation of the latter and increased expression in dorsal horn neurons containing MOR.
Collapse
Affiliation(s)
- Zigor Aira
- Department of Neurosciences, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain Department of Neurosciences, School of Pharmacy, University of the Basque Country, Vitoria-Gasteiz, Spain Department of Surgery, Radiology and Physical Medicine, University of the Basque Country, Bilbao, Spain Department of Preventive Medicine and Public Health, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Seyedabadi M, Ostad SN, Albert PR, Dehpour AR, Rahimian R, Ghazi-Khansari M, Ghahremani MH. Ser/ Thr residues at α3/β5 loop of Gαs are important in morphine-induced adenylyl cyclase sensitization but not mitogen-activated protein kinase phosphorylation. FEBS J 2012; 279:650-60. [PMID: 22177524 DOI: 10.1111/j.1742-4658.2011.08459.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The signaling switch of β2-adrenergic and μ(1) -opioid receptors from stimulatory G-protein (G(αs) ) to inhibitory G-protein (G(αi) ) (and vice versa) influences adenylyl cyclase (AC) and extracellular-regulated kinase (ERK)1/2 activation. Post-translational modifications, including dephosphorylation of G(αs) , enhance opioid receptor coupling to G(αs) . In the present study, we substituted the Ser/Thr residues of G(αs) at the α3/β5 and α4/β6 loops aiming to study the role of G(αs) lacking Ser/Thr phosphorylation with respect to AC sensitization and mitogen-activated protein kinase activation. Isoproterenol increased the cAMP concentration (EC(50) = 22.8 ± 3.4 μm) in G(αs) -transfected S49 cyc- cells but not in nontransfected cells. However, there was no significant difference between the G(αs) -wild-type (wt) and mutants. Morphine (10 μm) inhibited AC activity more efficiently in cyc- compared to G(αs) -wt introduced cells (P < 0.05); however, we did not find a notable difference between G(αs) -wt and mutants. Interestingly, G(αs) -wt transfected cells showed more sensitization with respect to AC after chronic morphine compared to nontransfected cells (101 ± 12% versus 34 ± 6%; P < 0.001); μ1-opioid receptor interacted with G(αs) , and both co-immunoprecipitated after chronic morphine exposure. Furthermore, mutation of T270A and S272A (P < 0.01), as well as T270A, S272A and S261A (P < 0.05), in α3/β5, resulted in a higher level of AC supersensitization. ERK1/2 phosphorylation was rapidly induced by isoproterenol (by 9.5 ± 2.4-fold) and morphine (22 ± 2.2-fold) in G(αs) -transfected cells; mutations of α3/β5 and α4/β6 did not affect the pattern or extent of mitogen-activated protein kinase activation. The findings of the present study show that G(αs) interacts with the μ1-opioid receptor, and the Ser/Thr mutation to Ala at the α3/β5 loop of G(αs) enhances morphine-induced AC sensitization. In addition, G(αs) was required for the rapid phosphorylation of ERK1/2 by isoproterenol but not morphine.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran
| | | | | | | | | | | | | |
Collapse
|
38
|
Block L, Forshammar J, Westerlund A, Björklund U, Lundborg C, Biber B, Hansson E. Naloxone in ultralow concentration restores endomorphin-1-evoked Ca²⁺ signaling in lipopolysaccharide pretreated astrocytes. Neuroscience 2012; 205:1-9. [PMID: 22245502 DOI: 10.1016/j.neuroscience.2011.12.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/28/2011] [Indexed: 12/19/2022]
Abstract
Long-term pain is a disabling condition that affects thousands of people. Pain may be sustained for a long time even after the physiological trigger has resolved. Possible mechanisms for this phenomenon include low-grade inflammation in the CNS. Astrocytes respond to inflammatory stimuli and may play an important role as modulators of the inflammatory response in the nervous system. This study aimed first to assess how astrocytes in a primary culture behave when exposed to the endogenous μ-opioid receptor agonist endomorphin-1 (EM-1), in a concentration-dependent manner, concerning intracellular Ca²⁺ responses. EM-1 stimulated the μ-opioid receptor from 10⁻¹⁵ M up to 10⁻⁴ M with increasing intensity, usually reflected as one peak at low concentrations and two peaks at higher concentrations. Naloxone, pertussis toxin (PTX), or the μ-opioid receptor antagonists CTOP did not totally block the EM-1-evoked Ca²⁺ responses. However, a combination of ultralow concentration naloxone (10⁻¹² M) and PTX (100 ng/ml) totally blocked the EM-1-evoked Ca²⁺ responses. This suggests that ultralow (picomolar) concentrations of naloxone should block the μ-opioid receptor coupled G(s) protein, and that PTX should block the μ-opioid receptor coupled G(i/o) protein. The second aim was to investigate exposure of astrocytes with the inflammatory agent lipopolysaccharide (LPS). After 4 h of LPS incubation, the EM-1-evoked Ca²⁺ transients were attenuated, and after 24 h of LPS incubation, the EM-1-evoked Ca²⁺ transients were oscillated. To restore the EM-1-evoked Ca²⁺ transients, naloxone was assessed as a proposed anti-inflammatory substance. In ultralow picomolar concentration, naloxone demonstrated the ability to restore the Ca²⁺ transients.
Collapse
Affiliation(s)
- L Block
- Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, SE 41345 Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
39
|
The mechanisms of ultra-low dose opioid agonist-antagonist. J Formos Med Assoc 2011; 110:666; author reply 667. [DOI: 10.1016/j.jfma.2011.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 05/14/2011] [Accepted: 05/16/2011] [Indexed: 11/19/2022] Open
|
40
|
Davis MP. Opioid tolerance and hyperalgesia: basic mechanisms and management in review. PROGRESS IN PALLIATIVE CARE 2011. [DOI: 10.1179/174329111x13045147380537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
41
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|