1
|
Wang W, Choudhary A, Mu C, Scantlebury MH, Shearer J, Reimer RA. Protocol for nutritional intervention in neonatal rats using the "pup-in-a-cup" artificial rearing system. STAR Protoc 2024; 5:102919. [PMID: 38427567 PMCID: PMC10918325 DOI: 10.1016/j.xpro.2024.102919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 03/03/2024] Open
Abstract
Early-life nutrition fundamentally influences newborn development and health. Here, we present a protocol for nutritional intervention in neonatal rats using the "pup-in-a-cup" artificial rearing system. We describe steps for rat milk substitute preparation, cheek cannulation and maintenance, and nutritional manipulation during the suckling period. This protocol enables investigation into the role of nutritional factors in newborns by artificially rearing rats away from the mother with experimental diets starting at postnatal day 4 for up to 18 days. For complete details on the use and execution of this protocol, please refer to Wang et al.,1 Choudhary et al.,2 and Mu et al.3,4.
Collapse
Affiliation(s)
- Weilan Wang
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Anamika Choudhary
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Pediatrics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Chunlong Mu
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Morris H Scantlebury
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Pediatrics, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jane Shearer
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
2
|
Mandino F, Vujic S, Grandjean J, Lake EMR. Where do we stand on fMRI in awake mice? Cereb Cortex 2024; 34:bhad478. [PMID: 38100331 PMCID: PMC10793583 DOI: 10.1093/cercor/bhad478] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Imaging awake animals is quickly gaining traction in neuroscience as it offers a means to eliminate the confounding effects of anesthesia, difficulties of inter-species translation (when humans are typically imaged while awake), and the inability to investigate the full range of brain and behavioral states in unconscious animals. In this systematic review, we focus on the development of awake mouse blood oxygen level dependent functional magnetic resonance imaging (fMRI). Mice are widely used in research due to their fast-breeding cycle, genetic malleability, and low cost. Functional MRI yields whole-brain coverage and can be performed on both humans and animal models making it an ideal modality for comparing study findings across species. We provide an analysis of 30 articles (years 2011-2022) identified through a systematic literature search. Our conclusions include that head-posts are favorable, acclimation training for 10-14 d is likely ample under certain conditions, stress has been poorly characterized, and more standardization is needed to accelerate progress. For context, an overview of awake rat fMRI studies is also included. We make recommendations that will benefit a wide range of neuroscience applications.
Collapse
Affiliation(s)
- Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Stella Vujic
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Radboud University, Nijmegen, The Netherlands
- Department for Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, United States
| |
Collapse
|
3
|
Kimura Y, Nakazawa S, Nishigori K, Mori Y, Ichihara J, Yoshioka Y. Ultra-high-field pharmacological functional MRI of dopamine D1 receptor-related interventions in anesthetized rats. Pharmacol Res Perspect 2023; 11:e01055. [PMID: 36807574 PMCID: PMC9939738 DOI: 10.1002/prp2.1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 02/22/2023] Open
Abstract
The dopamine D1 receptor (D1R) is associated with schizophrenia, Parkinson's disease, and attention deficit hyperactivity disorder. Although the receptor is considered a therapeutic target for these diseases, its neurophysiological function has not been fully elucidated. Pharmacological functional MRI (phfMRI) has been used to evaluate regional brain hemodynamic changes induced by neurovascular coupling resulting from pharmacological interventions, thus phfMRI studies can be used to help understand the neurophysiological function of specific receptors. Herein, the blood oxygenation level-dependent (BOLD) signal changes associated with D1R action in anesthetized rats was investigated by using a preclinical ultra-high-field 11.7-T MRI scanner. PhfMRI was performed before and after administration of the D1-like receptor agonist (SKF82958), antagonist (SCH39166), or physiological saline subcutaneously. Compared to saline, the D1-agonist induced a BOLD signal increase in the striatum, thalamus, prefrontal cortex, and cerebellum. At the same time, the D1-antagonist reduced the BOLD signal in the striatum, thalamus, and cerebellum by evaluating temporal profiles. PhfMRI detected D1R-related BOLD signal changes in the brain regions associated with high expression of D1R. We also measured the early expression of c-fos at the mRNA level to evaluate the effects of SKF82958 and isoflurane anesthesia on neuronal activity. Regardless of the presence of isoflurane anesthesia, c-fos expression level was increased in the region where positive BOLD responses were observed with administration of SKF82958. These findings demonstrated that phfMRI could be used to identify the effects of direct D1 blockade on physiological brain functions and also for neurophysiological assessment of dopamine receptor functions in living animals.
Collapse
Affiliation(s)
- Yuka Kimura
- Drug Development Research LaboratoriesSumitomo Dainippon Pharma Co LtdOsakaJapan
- Graduate School of Science and Technology, Division of Information ScienceNara Institute of Science and Technology (NAIST)IkomaJapan
- Present address:
Platform Technology Research UnitSumitomo Pharma Co LtdOsakaJapan
| | - Shunsuke Nakazawa
- Drug Development Research LaboratoriesSumitomo Dainippon Pharma Co LtdOsakaJapan
- Present address:
Global Corporate StrategySumitomo Pharma Co LtdOsakaJapan
| | - Kantaro Nishigori
- Drug Development Research LaboratoriesSumitomo Dainippon Pharma Co LtdOsakaJapan
- Present address:
Platform Technology Research UnitSumitomo Pharma Co LtdOsakaJapan
| | - Yuki Mori
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications TechnologyOsaka UniversityOsakaJapan
- Biofunctional Imaging Laboratory, Immunology Frontier Research Center (IFReC)Osaka UniversityOsakaJapan
- Present address:
Center for Translational NeuromedicineUniversity of CopenhagenCopenhagen NDenmark
| | - Junji Ichihara
- Drug Development Research LaboratoriesSumitomo Dainippon Pharma Co LtdOsakaJapan
- Present address:
Bioscience Research LaboratorySumitomo Chemical Co LtdOsakaJapan
| | - Yoshichika Yoshioka
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications TechnologyOsaka UniversityOsakaJapan
- Biofunctional Imaging Laboratory, Immunology Frontier Research Center (IFReC)Osaka UniversityOsakaJapan
- Present address:
Graduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
| |
Collapse
|
4
|
Huang J, Zhang Y, Zhang Q, Wei L, Zhang X, Jin C, Yang J, Li Z, Liang S. The current status and trend of the functional magnetic resonance combined with stimulation in animals. Front Neurosci 2022; 16:963175. [PMID: 36213733 PMCID: PMC9540855 DOI: 10.3389/fnins.2022.963175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
As a non-radiative, non-invasive imaging technique, functional magnetic resonance imaging (fMRI) has excellent effects on studying the activation of blood oxygen levels and functional connectivity of the brain in human and animal models. Compared with resting-state fMRI, fMRI combined with stimulation could be used to assess the activation of specific brain regions and the connectivity of specific pathways and achieve better signal capture with a clear purpose and more significant results. Various fMRI methods and specific stimulation paradigms have been proposed to investigate brain activation in a specific state, such as electrical, mechanical, visual, olfactory, and direct brain stimulation. In this review, the studies on animal brain activation using fMRI combined with different stimulation methods were retrieved. The instruments, experimental parameters, anesthesia, and animal models in different stimulation conditions were summarized. The findings would provide a reference for studies on estimating specific brain activation using fMRI combined with stimulation.
Collapse
|
5
|
Forstenpointner J, Maallo AMS, Elman I, Holmes S, Freeman R, Baron R, Borsook D. The Solitary Nucleus Connectivity to Key Autonomic Regions in Humans MRI and Literature based Considerations. Eur J Neurosci 2022; 56:3938-3966. [PMID: 35545280 DOI: 10.1111/ejn.15691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
The nucleus tractus solitarius (NTS), is a key brainstem structure relaying interoceptive peripheral information to the interrelated brain centers for eliciting rapid autonomic responses and for shaping longer-term neuroendocrine and motor patterns. Structural and functional NTS' connectivity has been extensively investigated in laboratory animals. But there is limited information about NTS' connectome in humans. Using MRI, we examined diffusion and resting state data from 20 healthy participants in the Human Connectome Project. The regions within the brainstem (n=8), subcortical (n=6), cerebellar (n=2) and cortical (n=5) parts of the brain were selected via a systematic review of the literature and their white matter NTS connections were evaluated via probabilistic tractography along with functional and directional (i.e., Granger-causality) analyses. The underlying study confirms previous results from animal models and provides novel aspects on NTS integration in humans. Two key findings can be summarized: (i) the NTS predominantly processes afferent input and (ii) a lateralization towards a predominantly left-sided NTS processing. Our results lay the foundations for future investigations into the NTS' tripartite role comprised of interoreceptors' input integration, the resultant neurochemical outflow and cognitive/affective processing. The implications of these data add to the understanding of NTS' role in specific aspects of autonomic functions.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anne Margarette S Maallo
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Igor Elman
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Scott Holmes
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Department of Radiology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Tsurugizawa T. Translational Magnetic Resonance Imaging in Autism Spectrum Disorder From the Mouse Model to Human. Front Neurosci 2022; 16:872036. [PMID: 35585926 PMCID: PMC9108701 DOI: 10.3389/fnins.2022.872036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous syndrome characterized by behavioral features such as impaired social communication, repetitive behavior patterns, and a lack of interest in novel objects. A multimodal neuroimaging using magnetic resonance imaging (MRI) in patients with ASD shows highly heterogeneous abnormalities in function and structure in the brain associated with specific behavioral features. To elucidate the mechanism of ASD, several ASD mouse models have been generated, by focusing on some of the ASD risk genes. A specific behavioral feature of an ASD mouse model is caused by an altered gene expression or a modification of a gene product. Using these mouse models, a high field preclinical MRI enables us to non-invasively investigate the neuronal mechanism of the altered brain function associated with the behavior and ASD risk genes. Thus, MRI is a promising translational approach to bridge the gap between mice and humans. This review presents the evidence for multimodal MRI, including functional MRI (fMRI), diffusion tensor imaging (DTI), and volumetric analysis, in ASD mouse models and in patients with ASD and discusses the future directions for the translational study of ASD.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Engineering, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Tomokazu Tsurugizawa,
| |
Collapse
|
7
|
Russo G, Helluy X, Behroozi M, Manahan-Vaughan D. Gradual Restraint Habituation for Awake Functional Magnetic Resonance Imaging Combined With a Sparse Imaging Paradigm Reduces Motion Artifacts and Stress Levels in Rodents. Front Neurosci 2022; 15:805679. [PMID: 34992520 PMCID: PMC8724036 DOI: 10.3389/fnins.2021.805679] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Functional magnetic resonance imaging, as a non-invasive technique, offers unique opportunities to assess brain function and connectivity under a broad range of applications, ranging from passive sensory stimulation to high-level cognitive abilities, in awake animals. This approach is confounded, however, by the fact that physical restraint and loud unpredictable acoustic noise must inevitably accompany fMRI recordings. These factors induce marked stress in rodents, and stress-related elevations of corticosterone levels are known to alter information processing and cognition in the rodent. Here, we propose a habituation strategy that spans specific stages of adaptation to restraint, MRI noise, and confinement stress in awake rats and circumvents the need for surgical head restraint. This habituation protocol results in stress levels during awake fMRI that do not differ from pre-handling levels and enables stable image acquisition with very low motion artifacts. For this, rats were gradually trained over a period of three weeks and eighteen training sessions. Stress levels were assessed by analysis of fecal corticosterone metabolite levels and breathing rates. We observed significant drops in stress levels to below pre-handling levels at the end of the habituation procedure. During fMRI in awake rats, after the conclusion of habituation and using a non-invasive head-fixation device, breathing was stable and head motion artifacts were minimal. A task-based fMRI experiment, using acoustic stimulation, conducted 2 days after the end of habituation, resulted in precise whole brain mapping of BOLD signals in the brain, with clear delineation of the expected auditory-related structures. The active discrimination by the animals of the acoustic stimuli from the backdrop of scanner noise was corroborated by significant increases in BOLD signals in the thalamus and reticular formation. Taken together, these data show that effective habituation to awake fMRI can be achieved by gradual and incremental acclimatization to the experimental conditions. Subsequent BOLD recordings, even during superimposed acoustic stimulation, reflect low stress-levels, low motion and a corresponding high-quality image acquisition. Furthermore, BOLD signals obtained during fMRI indicate that effective habituation facilitates selective attention to sensory stimuli that can in turn support the discrimination of cognitive processes in the absence of stress confounds.
Collapse
Affiliation(s)
- Gabriele Russo
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Xavier Helluy
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Mehdi Behroozi
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
8
|
Wang X, Wu Y, Liu L, Bai H, Zhang Z, Zhao M, Ma T, Song X, Jia L, Lv L, Yu Y, Xu X, Chen H, Gao L. Xylazole inhibits NO-cGMP pathway in fetal rat nerve cells. J Vet Sci 2022; 23:e16. [PMID: 35088953 PMCID: PMC8799944 DOI: 10.4142/jvs.21188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
Background Xylazole (Xyl) is a veterinary anesthetic that is structurally and functionally similar to xylazine. However, the effects of Xyl in vitro remain unknown. Objectives This study aimed to investigate the anesthetic mechanism of Xyl using fetal rat nerve cells treated with Xyl. Methods Fetal rat nerve cells cultured for seven days were treated with 10, 20, 30, and 40 μg/ mL Xyl for 0, 5, 10, 15, 20, 25, 30, 45, 60, 90, and 120 min. Variations of amino acid neurotransmitters (AANTs), Nitric oxide-Cyclic GMP (NO-cGMP) signaling pathway, and ATPase were evaluated. Results Xyl decreased the levels of cGMP and NO in nerve cells. Furthermore, Xyl affected the AANT content and Na+-K+-ATPase and Ca2+-Mg2+-ATPase activity in nerve cells. These findings suggested that Xyl inhibited the NO-cGMP signaling pathway in nerve cells in vitro. Conclusions This study provided new evidence that the anesthetic and analgesic effects of Xyl are related to the inhibition of the NO-cGMP signaling pathway.
Collapse
Affiliation(s)
- Xinyu Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, Heilongjiang 150000, China
| | - Yue Wu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, Heilongjiang 150000, China
| | - Lin Liu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, Heilongjiang 150000, China
| | - Hui Bai
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, Heilongjiang 150000, China
| | - Zhiheng Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, Heilongjiang 150000, China
| | - Mingchao Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, Heilongjiang 150000, China
| | - Tianwen Ma
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, Heilongjiang 150000, China
| | - Xiaopeng Song
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, Heilongjiang 150000, China
| | - Lina Jia
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, Heilongjiang 150000, China
| | - Liangyu Lv
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, Heilongjiang 150000, China
| | - Yue Yu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, Heilongjiang 150000, China
| | - Xinyu Xu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, Heilongjiang 150000, China
| | - Hong Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, Heilongjiang 150000, China
| | - Li Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
9
|
Tsurugizawa T, Tamada K, Debacker C, Zalesky A, Takumi T. Cranioplastic Surgery and Acclimation Training for Awake Mouse fMRI. Bio Protoc 2021; 11:e3972. [PMID: 33889666 DOI: 10.21769/bioprotoc.3972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/02/2022] Open
Abstract
MRI is a promising tool for translational research to link brain function and structure in animal models of disease to patients with neuropsychiatric disorders. However, given that mouse functional MRI (fMRI) typically relies on anesthetics to suppress head motion and physiological noise, it has been difficult to directly compare brain fMRI in anesthetized mice with that in conscious patients. Here, we developed a new system to acquire fMRI in awake mice, which includes a head positioner and dedicated radio frequency coil. The system was used to investigate functional brain networks in conscious mice, with the goal of enabling future studies to bridge fMRI of disease model animals with human fMRI. Cranioplastic surgery was performed to affix the head mount and the cupped-hand handling method was performed to minimize stress during MRI scanning. Here we describe the new mouse fMRI system, cranioplastic surgery and acclimation protocol. Graphic abstract: Awake fMRI system to investigate the neuronal activity in awaked mice.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba-City, Ibaraki, Japan.,NeuroSpin/CEA-Saclay, Gif-sur-Yvette, France
| | - Kota Tamada
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, Japan.,RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Clement Debacker
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, Japan.,RIKEN Brain Science Institute, Wako, Saitama, Japan
| |
Collapse
|
10
|
Steiner AR, Rousseau-Blass F, Schroeter A, Hartnack S, Bettschart-Wolfensberger R. Systematic Review: Anesthetic Protocols and Management as Confounders in Rodent Blood Oxygen Level Dependent Functional Magnetic Resonance Imaging (BOLD fMRI)-Part B: Effects of Anesthetic Agents, Doses and Timing. Animals (Basel) 2021; 11:ani11010199. [PMID: 33467584 PMCID: PMC7830239 DOI: 10.3390/ani11010199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary To understand brain function in rats and mice functional magnetic resonance imaging of the brain is used. With this type of “brain scan” regional changes in blood flow and oxygen consumption are measured as an indirect surrogate for activity of brain regions. Animals are often anesthetized for the experiments to prevent stress and blurred images due to movement. However, anesthesia may alter the measurements, as blood flow within the brain is differently affected by different anesthetics, and anesthetics also directly affect brain function. Consequently, results obtained under one anesthetic protocol may not be comparable with those obtained under another, and/or not representative for awake animals and humans. We have systematically searched the existing literature for studies analyzing the effects of different anesthesia methods or studies that compared anesthetized and awake animals. Most studies reported that anesthetic agents, doses and timing had an effect on functional magnetic resonance imaging results. To obtain results which promote our understanding of brain function, it is therefore essential that a standard for anesthetic protocols for functional magnetic resonance is defined and their impact is well characterized. Abstract In rodent models the use of functional magnetic resonance imaging (fMRI) under anesthesia is common. The anesthetic protocol might influence fMRI readouts either directly or via changes in physiological parameters. As long as those factors cannot be objectively quantified, the scientific validity of fMRI in rodents is impaired. In the present systematic review, literature analyzing in rats and mice the influence of anesthesia regimes and concurrent physiological functions on blood oxygen level dependent (BOLD) fMRI results was investigated. Studies from four databases that were searched were selected following pre-defined criteria. Two separate articles publish the results; the herewith presented article includes the analyses of 83 studies. Most studies found differences in BOLD fMRI readouts with different anesthesia drugs and dose rates, time points of imaging or when awake status was compared to anesthetized animals. To obtain scientifically valid, reproducible results from rodent fMRI studies, stable levels of anesthesia with agents suitable for the model under investigation as well as known and objectively quantifiable effects on readouts are, thus, mandatory. Further studies should establish dose ranges for standardized anesthetic protocols and determine time windows for imaging during which influence of anesthesia on readout is objectively quantifiable.
Collapse
Affiliation(s)
- Aline R. Steiner
- Section of Anaesthesiology, Department of Clinical and Diagnostic Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Correspondence:
| | - Frédérik Rousseau-Blass
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Aileen Schroeter
- Institute for Biomedical Engineering, University and ETH Zurich, 8093 Zurich, Switzerland;
| | - Sonja Hartnack
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Regula Bettschart-Wolfensberger
- Section of Anaesthesiology, Department of Clinical and Diagnostic Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
11
|
Peng SL, Chen CM, Huang CY, Shih CT, Huang CW, Chiu SC, Shen WC. Effects of Hemodynamic Response Function Selection on Rat fMRI Statistical Analyses. Front Neurosci 2019; 13:400. [PMID: 31114471 PMCID: PMC6503084 DOI: 10.3389/fnins.2019.00400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 04/08/2019] [Indexed: 11/22/2022] Open
Abstract
The selection of the appropriate hemodynamic response function (HRF) for signal modeling in functional magnetic resonance imaging (fMRI) is important. Although the use of the boxcar-shaped hemodynamic response function (BHRF) and canonical hemodynamic response (CHRF) has gained increasing popularity in rodent fMRI studies, whether the selected HRF affects the results of rodent fMRI has not been fully elucidated. Here we investigated the signal change and t-statistic sensitivities of BHRF, CHRF, and impulse response function (IRF). The effect of HRF selection on different tasks was analyzed by using data collected from two groups of rats receiving either 3 mA whisker pad or 3 mA forepaw electrical stimulations (n = 10 for each group). Under whisker pad stimulation with large blood-oxygen-level dependent (BOLD) signal change (4.31 ± 0.42%), BHRF significantly underestimated signal changes (P < 0.001) and t-statistics (P < 0.001) compared with CHRF or IRF. CHRF and IRF did not provide significantly different t-statistics (P > 0.05). Under forepaw stimulation with small BOLD signal change (1.71 ± 0.34%), different HRFs provided insignificantly different t-statistics (P > 0.05). Therefore, the selected HRF can influence data analysis in rodent fMRI experiments with large BOLD responses but not in those with small BOLD responses.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Chun-Ming Chen
- Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| | - Chen-You Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Cheng-Ting Shih
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chiun-Wei Huang
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Wu-Chung Shen
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan.,Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
12
|
Stenroos P, Paasonen J, Salo RA, Jokivarsi K, Shatillo A, Tanila H, Gröhn O. Awake Rat Brain Functional Magnetic Resonance Imaging Using Standard Radio Frequency Coils and a 3D Printed Restraint Kit. Front Neurosci 2018; 12:548. [PMID: 30177870 PMCID: PMC6109636 DOI: 10.3389/fnins.2018.00548] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/20/2018] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a powerful noninvasive tool for studying spontaneous resting state functional connectivity (RSFC) in laboratory animals. Brain function can be significantly affected by generally used anesthetics, however, rendering the need for awake imaging. Only a few different awake animal habituation protocols have been presented, and there is a critical need for practical and improved low-stress techniques. Here we demonstrate a novel restraint approach for awake rat RSFC studies. Our custom-made 3D printed restraint kit is compatible with a standard Bruker Biospin MRI rat bed, rat brain receiver coil, and volume transmitter coil. We also implemented a progressive habituation protocol aiming to minimize the stress experienced by the rats, and compared RSFC between awake, lightly sedated, and isoflurane-anesthetized rats. Our results demonstrated that the 3D printed restraint kit was suitable for RSFC studies of awake rats. During the short 4-day habituation period, the plasma corticosterone concentration, movement, and heart rate, which were measured as stress indicators, decreased significantly, indicating adaptation to the restraint protocol. Additionally, 10 days after the awake MRI session, rats exhibited no signs of depression or anxiety based on open-field and sucrose preference behavioral tests. The RSFC data revealed significant changes in the thalamo-cortical and cortico-cortical networks between the awake, lightly sedated, and anesthetized groups, emphasizing the need for awake imaging. The present work demonstrates the feasibility of our custom-made 3D printed restraint kit. Using this kit, we found that isoflurane markedly affected brain connectivity compared with that in awake rats, and that the effect was less pronounced, but still significant, when light isoflurane sedation was used instead.
Collapse
Affiliation(s)
- Petteri Stenroos
- Kuopio Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Paasonen
- Kuopio Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raimo A Salo
- Kuopio Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kimmo Jokivarsi
- Kuopio Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Artem Shatillo
- Charles River Discovery Research Services Finland Oy, Kuopio, Finland
| | - Heikki Tanila
- Kuopio Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli Gröhn
- Kuopio Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
13
|
Kitamura A, Hojo Y, Ikeda M, Karakawa S, Kuwahara T, Kim J, Soma M, Kawato S, Tsurugizawa T. Ingested d-Aspartate Facilitates the Functional Connectivity and Modifies Dendritic Spine Morphology in Rat Hippocampus. Cereb Cortex 2018; 29:2499-2508. [DOI: 10.1093/cercor/bhy120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Akihiko Kitamura
- Institute for Innovation, Ajinomoto Co., Inc., Suzuki-cho 1-1, Kawasaki-ku, Kawasaki, Japan
| | - Yasushi Hojo
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Muneki Ikeda
- Department of Cognitive Neuroscience, Faculty of Pharma-Science, Teikyo University, Kaga 2-11-1, Itabashi, Tokyo, Japan
| | - Sachise Karakawa
- Institute for Innovation, Ajinomoto Co., Inc., Suzuki-cho 1-1, Kawasaki-ku, Kawasaki, Japan
| | - Tomomi Kuwahara
- Institute for Innovation, Ajinomoto Co., Inc., Suzuki-cho 1-1, Kawasaki-ku, Kawasaki, Japan
| | - Jonghyuk Kim
- Department of Cognitive Neuroscience, Faculty of Pharma-Science, Teikyo University, Kaga 2-11-1, Itabashi, Tokyo, Japan
| | - Mika Soma
- Department of Cognitive Neuroscience, Faculty of Pharma-Science, Teikyo University, Kaga 2-11-1, Itabashi, Tokyo, Japan
| | - Suguru Kawato
- Department of Cognitive Neuroscience, Faculty of Pharma-Science, Teikyo University, Kaga 2-11-1, Itabashi, Tokyo, Japan
| | | |
Collapse
|
14
|
Glutamatergic stimulation of the left dentate gyrus abolishes depressive-like behaviors in a rat learned helplessness paradigm. Neuroimage 2017; 159:207-213. [PMID: 28025131 DOI: 10.1016/j.neuroimage.2016.12.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Episodic experiences of stress have been identified as the leading cause of major depressive disorder (MDD). The occurrence of MDD is profoundly influenced by the individual's coping strategy, rather than the severity of the stress itself. Resting brain activity has been shown to alter in several mental disorders. However, the functional relationship between resting brain activity and coping strategies has not yet been studied. In the present study, we observed different patterns of resting brain activity in rats that had determined either positive (resilient to stress) or negative (vulnerable to stress) coping strategies, and examined whether modulation of the preset resting brain activity could influence the behavioral phenotype associated with negative coping strategy (i.e., depressive-like behaviors). METHODS We used a learned helplessness paradigm-a well-established model of MDD-to detect coping strategies. Differences in resting state brain activity between animals with positive and negative coping strategies were assessed using 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). Glutamatergic stimulation was used to modulate resting brain activity. RESULTS After exposure to repeated uncontrollable stress, seven of 23 rats exhibited positive coping strategies, while eight of 23 rats exhibited negative coping strategies. Increased resting brain activity was observed only in the left ventral dentate gyrus of the positive coping rats using FDG-PET. Furthermore, glutamatergic stimulation of the left dentate gyrus abolished depressive-like behaviors in rats with negative coping strategies. CONCLUSION Increased resting brain activity in the left ventral dentate gyrus helps animals to select positive coping strategies in response to future stress.
Collapse
|
15
|
Tsurugizawa T, Abe Y, Le Bihan D. Water apparent diffusion coefficient correlates with gamma oscillation of local field potentials in the rat brain nucleus accumbens following alcohol injection. J Cereb Blood Flow Metab 2017; 37:3193-3202. [PMID: 28058981 PMCID: PMC5584694 DOI: 10.1177/0271678x16685104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022]
Abstract
Ethanol is a vasoactive agent as well as psychoactive drug. The neurovascular response, coupled with neuronal activity, can be disturbed by alcohol intake. Hence, blood oxygenation level-dependent (BOLD) fMRI, which relies on neurovascular coupling, might not be reliable to reflect alcohol-induced neuronal responses. Recently, diffusion fMRI has been shown to be more sensitive to neural activity than BOLD fMRI even when neurovascular coupling is disrupted. Especially, the apparent diffusion coefficient (ADC) is sensitive to changes occurring in the cellular tissue structure upon activation. In the present study, we compared BOLD fMRI signals, ADC, and local field potentials (LFPs) in the nucleus accumbens (NAc) following injection of an ethanol solution (0.4 g/kg body weight) in rats under medetomidine anesthesia. An increase in the gamma oscillation power of LFP and an ADC decrease were observed 5 min after the injection of EtOH. The BOLD signals showed a negative slow drift, similar to mean arterial pressure with a peak approximately 10 min after the injection. These results confirm that DfMRI can be a better marker of the neuronal activity than BOLD fMRI, especially when the brain hemodynamic status is changed by vasoactive drugs such as ethanol.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- NeuroSpin, Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA Saclay, Gif-sur-Yvette, France
| | - Yoshifumi Abe
- NeuroSpin, Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA Saclay, Gif-sur-Yvette, France
| | - Denis Le Bihan
- NeuroSpin, Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Shim WH, Suh JY, Kim JK, Jeong J, Kim YR. Enhanced Thalamic Functional Connectivity with No fMRI Responses to Affected Forelimb Stimulation in Stroke-Recovered Rats. Front Neural Circuits 2017; 10:113. [PMID: 28119575 PMCID: PMC5222821 DOI: 10.3389/fncir.2016.00113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/21/2016] [Indexed: 01/21/2023] Open
Abstract
Neurological recovery after stroke has been extensively investigated to provide better understanding of neurobiological mechanism, therapy, and patient management. Recent advances in neuroimaging techniques, particularly functional MRI (fMRI), have widely contributed to unravel the relationship between the altered neural function and stroke-affected brain areas. As results of previous investigations, the plastic reorganization and/or gradual restoration of the hemodynamic fMRI responses to neural stimuli have been suggested as relevant mechanisms underlying the stroke recovery process. However, divergent study results and modality-dependent outcomes have clouded the proper interpretation of variable fMRI signals. Here, we performed both evoked and resting state fMRI (rs-fMRI) to clarify the link between the fMRI phenotypes and post-stroke functional recovery. The experiments were designed to examine the altered neural activity within the contra-lesional hemisphere and other undamaged brain regions using rat models with large unilateral stroke, which despite the severe injury, exhibited nearly full recovery at ∼6 months after stroke. Surprisingly, both blood oxygenation level-dependent and blood volume-weighted (CBVw) fMRI activities elicited by electrical stimulation of the stroke-affected forelimb were completely absent, failing to reveal the neural origin of the behavioral recovery. In contrast, the functional connectivity maps showed highly robust rs-fMRI activity concentrated in the contra-lesional ventromedial nucleus of thalamus (VM). The negative finding in the stimuli-induced fMRI study using the popular rat middle cerebral artery model denotes weak association between the fMRI hemodynamic responses and neurological improvement. The results strongly caution the indiscreet interpretation of stroke-affected fMRI signals and demonstrate rs-fMRI as a complementary tool for efficiently characterizing stroke recovery.
Collapse
Affiliation(s)
- Woo H Shim
- Department of Radiology, ASAN Medical Center, University of Ulsan College of MedicineUlsan, South Korea; ASAN Institute for Life Sciences, ASAN Medical Center, University of Ulsan College of MedicineUlsan, South Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, BostonMA, USA
| | - Ji-Yeon Suh
- Department of Radiology, ASAN Medical Center, University of Ulsan College of MedicineUlsan, South Korea; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, BostonMA, USA
| | - Jeong K Kim
- Department of Radiology, ASAN Medical Center, University of Ulsan College of Medicine Ulsan, South Korea
| | - Jaeseung Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | - Young R Kim
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston MA, USA
| |
Collapse
|
17
|
Tsurugizawa T, Takahashi Y, Kato F. Distinct effects of isoflurane on basal BOLD signals in tissue/vascular microstructures in rats. Sci Rep 2016; 6:38977. [PMID: 27976678 PMCID: PMC5157011 DOI: 10.1038/srep38977] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/16/2016] [Indexed: 11/24/2022] Open
Abstract
Isoflurane is a well-known volatile anesthetic. However, it remains equivocal whether its effects on BOLD signal differ depending on the types of intracranial structures, such as capillaries and large blood vessels. We compared dose-dependent effect of isoflurane on the basal BOLD signals in distinct cerebral structures (tissue structure or large vessels) using high resolution T2*-images at 9.4 T MRI system in rat somatosensory cortex. The local field potential (LFP) in the somatosensory cortex and mean arterial pressure (MAP) were also investigated. Isoflurane induced inverted U-shaped dose-dependent change in BOLD signal in large vessels and tissue regions: BOLD signal under 2.0% and 2.5% isoflurane significantly increased from the maintenance dose (1.5%) and that under 3.0% was similar to maintenance dose. Remarkably, BOLD signal increase in tissue regions under 2.5% was significantly smaller than that in large vessels. The MAP decreased monotonically due to the dose of isoflurane and the LFP was strongly suppressed under high dose (2.5% and 3.0%). These results indicate that isoflurane-induced alteration of MAP and neuronal activity affected BOLD signal and, especially, BOLD signal in the tissue regions was more affected by the neuronal activity.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Department of Neuroscience, The Jikei University School of Medicine, 3-25-8, Minato-ku, Tokyo 105-8461, Japan.,Neurospin, Commissariat à l'Energie Atomique et aux Energies Alternatives, Bat 145, Point Courrier 156, Gif-sur-Yvette 91191, France
| | - Yukari Takahashi
- Department of Neuroscience, The Jikei University School of Medicine, 3-25-8, Minato-ku, Tokyo 105-8461, Japan
| | - Fusao Kato
- Department of Neuroscience, The Jikei University School of Medicine, 3-25-8, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
18
|
Yoshida K, Mimura Y, Ishihara R, Nishida H, Komaki Y, Minakuchi T, Tsurugizawa T, Mimura M, Okano H, Tanaka KF, Takata N. Physiological effects of a habituation procedure for functional MRI in awake mice using a cryogenic radiofrequency probe. J Neurosci Methods 2016; 274:38-48. [PMID: 27702586 DOI: 10.1016/j.jneumeth.2016.09.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Functional magnetic resonance imaging (fMRI) in mice is typically performed under anesthesia due to difficulties in holding the head of awake mice stably with a conventional three-point fixation method that uses a tooth-bar and earplugs. Although some studies have succeeded in fMRI in awake mice by attaching a head-post on the skull, this cannot be applied to fMRI using a high signal-to-noise ratio (SNR) cryogenic MRI-detector, CryoProbe, because it covers the head of a mouse closely. NEW METHOD We developed head-fixation implements for awake mice that are applicable to fMRI using CryoProbe. RESULTS A head-bar was surgically attached to the skull of a mouse that was then habituated to a mock fMRI-environment, two hours/day for eight days with physiological examinations of body-weight, fecal weight, electromyogram (EMG), and electrocardiogram. EMG power decreased with just one day of habituation, whereas heart rate decreased after at least seven days of habituation. Estimated head motions of awake mice during fMRI were significantly smaller than a voxel size. Unexpectedly, temporal SNR of fMRI signals for awake mice was higher than that for anesthetized mice held by a conventional method. Functional connectivity in the brain of both anesthetized and awake mice showed bilateral and unilateral networks. COMPARISON WITH EXISTING METHOD(S): fMRI using CryoProbe had been performed on anesthetized mice previously. Our method does not use anesthetics during habituation or fMRI. CONCLUSION Our method would be beneficial for translational research using fMRI in mice and humans because human fMRI is typically performed without anesthetics.
Collapse
Affiliation(s)
- Keitaro Yoshida
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yu Mimura
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Ryosuke Ishihara
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Hiroshi Nishida
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yuji Komaki
- Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki, Kanagawa 210-0821, Japan
| | - Tomohito Minakuchi
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Tomokazu Tsurugizawa
- NeuroSpin, Commissariat à l'Energie Atomique et aux Energies Alternatives, 91191 Gif-sur-Yvette, France
| | - Masaru Mimura
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Norio Takata
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki, Kanagawa 210-0821, Japan.
| |
Collapse
|
19
|
Lee W, Lee SD, Park MY, Foley L, Purcell-Estabrook E, Kim H, Fischer K, Maeng LS, Yoo SS. Image-Guided Focused Ultrasound-Mediated Regional Brain Stimulation in Sheep. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:459-470. [PMID: 26525652 DOI: 10.1016/j.ultrasmedbio.2015.10.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 09/17/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Non-invasive brain stimulation using focused ultrasound has largely been carried out in small animals. In the present study, we applied stimulatory focused ultrasound transcranially to the primary sensorimotor (SM1) and visual (V1) brain areas in sheep (Dorset, all female, n = 8), under the guidance of magnetic resonance imaging, and examined the electrophysiologic responses. By use of a 250-kHz focused ultrasound transducer, the area was sonicated in pulsed mode (tone-burst duration of 1 ms, duty cycle of 50%) for 300 ms. The acoustic intensity at the focal target was varied up to a spatial peak pulse-average intensity (Isppa) of 14.3 W/cm(2). Sonication of SM1 elicited electromyographic responses from the contralateral hind leg, whereas stimulation of V1 generated electroencephalographic potentials. These responses were detected only above a certain acoustic intensity, and the threshold intensity, as well as the degree of responses, varied among sheep. Post-sonication animal behavior was normal, but minor microhemorrhages were observed from the V1 areas exposed to highly repetitive sonication (every second for ≥500 times for electroencephalographic measurements, Isppa = 6.6-10.5 W/cm(2), mechanical index = 0.9-1.2). Our results suggest the potential translational utility of focused ultrasound as a new brain stimulation modality, yet also call for caution in the use of an excessive number of sonications.
Collapse
Affiliation(s)
- Wonhye Lee
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie D Lee
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Y Park
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lori Foley
- Invasive Cardiovascular Experimental Laboratory, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Erin Purcell-Estabrook
- Invasive Cardiovascular Experimental Laboratory, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hyungmin Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Center for Bionics, Korea Institute of Science and Technology, Seoul, Korea
| | - Krisztina Fischer
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lee-So Maeng
- Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Korea
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
20
|
Liang Z, Duan X, Su C, Voss L, Sleigh J, Li X. A Pharmacokinetics-Neural Mass Model (PK-NMM) for the Simulation of EEG Activity during Propofol Anesthesia. PLoS One 2015; 10:e0145959. [PMID: 26720495 PMCID: PMC4697853 DOI: 10.1371/journal.pone.0145959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/10/2015] [Indexed: 12/17/2022] Open
Abstract
Modeling the effects of anesthetic drugs on brain activity is very helpful in understanding anesthesia mechanisms. The aim of this study was to set up a combined model to relate actual drug levels to EEG dynamics and behavioral states during propofol-induced anesthesia. We proposed a new combined theoretical model based on a pharmacokinetics (PK) model and a neural mass model (NMM), which we termed PK-NMM--with the aim of simulating electroencephalogram (EEG) activity during propofol-induced general anesthesia. The PK model was used to derive propofol effect-site drug concentrations (C(eff)) based on the actual drug infusion regimen. The NMM model took C(eff) as the control parameter to produce simulated EEG-like (sEEG) data. For comparison, we used real prefrontal EEG (rEEG) data of nine volunteers undergoing propofol anesthesia from a previous experiment. To see how well the sEEG could describe the dynamic changes of neural activity during anesthesia, the rEEG data and the sEEG data were compared with respect to: power-frequency plots; nonlinear exponent (permutation entropy (PE)); and bispectral SynchFastSlow (SFS) parameters. We found that the PK-NMM model was able to reproduce anesthesia EEG-like signals based on the estimated drug concentration and patients' condition. The frequency spectrum indicated that the frequency power peak of the sEEG moved towards the low frequency band as anesthesia deepened. Different anesthetic states could be differentiated by the PE index. The correlation coefficient of PE was 0.80 ± 0.13 (mean ± standard deviation) between rEEG and sEEG for all subjects. Additionally, SFS could track the depth of anesthesia and the SFS of rEEG and sEEG were highly correlated with a correlation coefficient of 0.77 ± 0.13. The PK-NMM model could simulate EEG activity and might be a useful tool for understanding the action of propofol on brain activity.
Collapse
Affiliation(s)
- Zhenhu Liang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Xuejing Duan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Cui Su
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Logan Voss
- Department of Anesthesia, Waikato Hospital, Hamilton, New Zealand
| | - Jamie Sleigh
- Department of Anesthesia, Waikato Hospital, Hamilton, New Zealand
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
21
|
Spain A, Howarth C, Khrapitchev AA, Sharp T, Sibson NR, Martin C. Neurovascular and neuroimaging effects of the hallucinogenic serotonin receptor agonist psilocin in the rat brain. Neuropharmacology 2015; 99:210-20. [PMID: 26192543 PMCID: PMC4655865 DOI: 10.1016/j.neuropharm.2015.07.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/22/2015] [Accepted: 07/16/2015] [Indexed: 12/28/2022]
Abstract
The development of pharmacological magnetic resonance imaging (phMRI) has presented the opportunity for investigation of the neurophysiological effects of drugs in vivo. Psilocin, a hallucinogen metabolised from psilocybin, was recently reported to evoke brain region-specific, phMRI signal changes in humans. The present study investigated the effects of psilocin in a rat model using phMRI and then probed the relationship between neuronal and haemodynamic responses using a multimodal measurement preparation. Psilocin (2 mg/kg or 0.03 mg/kg i.v.) or vehicle was administered to rats (N=6/group) during either phMRI scanning or concurrent imaging of cortical blood flow and recording of local field potentials. Compared to vehicle controls psilocin (2 mg/kg) evoked phMRI signal increases in a number of regions including olfactory and limbic areas and elements of the visual system. PhMRI signal decreases were seen in other regions including somatosensory and motor cortices. Investigation of neurovascular coupling revealed that whilst neuronal responses (local field potentials) to sensory stimuli were decreased in amplitude by psilocin administration, concurrently measured haemodynamic responses (cerebral blood flow) were enhanced. The present findings show that psilocin evoked region-specific changes in phMRI signals in the rat, confirming recent human data. However, the results also suggest that the haemodynamic signal changes underlying phMRI responses reflect changes in both neuronal activity and neurovascular coupling. This highlights the importance of understanding the neurovascular effects of pharmacological manipulations for interpreting haemodynamic neuroimaging data.
Collapse
Affiliation(s)
- Aisling Spain
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK; Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Clare Howarth
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK; Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Alexandre A Khrapitchev
- Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Nicola R Sibson
- Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Chris Martin
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK.
| |
Collapse
|
22
|
Lee W, Lee SD, Park MY, Foley L, Purcell-Estabrook E, Kim H, Yoo SS. Functional and diffusion tensor magnetic resonance imaging of the sheep brain. BMC Vet Res 2015; 11:262. [PMID: 26467856 PMCID: PMC4606502 DOI: 10.1186/s12917-015-0581-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 10/12/2015] [Indexed: 01/24/2023] Open
Abstract
Background An ovine model can cast great insight in translational neuroscientific research due to its large brain volume and distinct regional neuroanatomical structures. The present study examined the applicability of brain functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to sheep using a clinical MR scanner (3 tesla) with a head coil. The blood-oxygenation-level-dependent (BOLD) fMRI was performed on anesthetized sheep during the block-based presentation of external tactile and visual stimuli using gradient echo-planar-imaging (EPI) sequence. Results The individual as well as group-based data processing subsequently showed activation in the eloquent sensorimotor and visual areas. DTI was acquired using 26 differential magnetic gradient directions to derive directional fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values from the brain. White matter tractography was also applied to reveal the macrostructure of the corticospinal tracts and optic radiations. Conclusions Utilization of fMRI and DTI along with anatomical MRI in the sheep brain could shed light on a broader use of an ovine model in the field of translational neuroscientific research targeting the brain.
Collapse
Affiliation(s)
- Wonhye Lee
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Stephanie D Lee
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michael Y Park
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Lori Foley
- Invasive Cardiovascular Experimental Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Erin Purcell-Estabrook
- Invasive Cardiovascular Experimental Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Hyungmin Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Center for Bionics, Korea Institute of Science and Technology, Seoul, Korea.
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Bruijnzeel AW, Alexander JC, Perez PD, Bauzo-Rodriguez R, Hall G, Klausner R, Guerra V, Zeng H, Igari M, Febo M. Acute nicotine administration increases BOLD fMRI signal in brain regions involved in reward signaling and compulsive drug intake in rats. Int J Neuropsychopharmacol 2014; 18:pyu011. [PMID: 25552431 PMCID: PMC4368882 DOI: 10.1093/ijnp/pyu011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Acute nicotine administration potentiates brain reward function and enhances motor and cognitive function. These studies investigated which brain areas are being activated by a wide range of doses of nicotine, and if this is diminished by pretreatment with the nonselective nicotinic receptor antagonist mecamylamine. METHODS Drug-induced changes in brain activity were assessed by measuring changes in the blood oxygen level dependent (BOLD) signal using an 11.1-Tesla magnetic resonance scanner. In the first experiment, nicotine naïve rats were mildly anesthetized and the effect of nicotine (0.03-0.6 mg/kg) on the BOLD signal was investigated for 10 min. In the second experiment, the effect of mecamylamine on nicotine-induced brain activity was investigated. RESULTS A high dose of nicotine increased the BOLD signal in brain areas implicated in reward signaling, such as the nucleus accumbens shell and the prelimbic area. Nicotine also induced a dose-dependent increase in the BOLD signal in the striato-thalamo-orbitofrontal circuit, which plays a role in compulsive drug intake, and in the insular cortex, which contributes to nicotine craving and relapse. In addition, nicotine induced a large increase in the BOLD signal in motor and somatosensory cortices. Mecamylamine alone did not affect the BOLD signal in most brain areas, but induced a negative BOLD response in cortical areas, including insular, motor, and somatosensory cortices. Pretreatment with mecamylamine completely blocked the nicotine-induced increase in the BOLD signal. CONCLUSIONS These studies demonstrate that acute nicotine administration activates brain areas that play a role in reward signaling, compulsive behavior, and motor and cognitive function.
Collapse
Affiliation(s)
| | | | - Pablo D. Perez
- * These two authors equally contributed to the present work
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Tsurugizawa T, Uneyama H. Differences in BOLD responses to intragastrically infused glucose and saccharin in rats. Chem Senses 2014; 39:683-91. [PMID: 25179231 DOI: 10.1093/chemse/bju040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The postingestive effect is different between caloric and noncaloric sweeteners. The gut administration of glucose induces a preference for flavored water which is paired with the intragastric infusion of glucose. However, a comparison of the brain response to the gut glucose and saccharin stimuli still remains to be demonstrated. Here, using functional magnetic resonance imaging, we investigated the blood oxygenation level-dependent signal response to gut glucose and saccharin in the brain of conscious rats. Glucose induced a positive signal increase in the amygdala and nucleus accumben, both of which receive dopaminergic input from the ventral tegmental area. In contrast, saccharin administration did not activate these areas. Both glucose and saccharin increased the blood oxygenation level-dependent signal intensity in the insular cortex and the nucleus of the solitary tract. These results show that there were significant differences between postingestive glucose and saccharin-induced increases in the blood oxygenation level-dependent signal in rats. Together with previous findings, these results suggest distinct activation patterns in the brain for both glucose and saccharin, which is partially due to different changes of internal signals, including the blood glucose and insulin levels.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Institute for Innovation, Ajinomoto Co., Inc., Suzuki-cho 1-1, Kawasaki-ku, Kawasaki 210-8601, Japan Present address: CEA/DSV/I2BM/NeuroSpin, Bât 145, Point Courrier 156, 91191 Gif-sur-Yvette, France
| | - Hisayuki Uneyama
- Institute for Innovation, Ajinomoto Co., Inc., Suzuki-cho 1-1, Kawasaki-ku, Kawasaki 210-8601, Japan
| |
Collapse
|
25
|
Martin C. Contributions and complexities from the use of in vivo animal models to improve understanding of human neuroimaging signals. Front Neurosci 2014; 8:211. [PMID: 25191214 PMCID: PMC4137227 DOI: 10.3389/fnins.2014.00211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 07/01/2014] [Indexed: 01/18/2023] Open
Abstract
Many of the major advances in our understanding of how functional brain imaging signals relate to neuronal activity over the previous two decades have arisen from physiological research studies involving experimental animal models. This approach has been successful partly because it provides opportunities to measure both the hemodynamic changes that underpin many human functional brain imaging techniques and the neuronal activity about which we wish to make inferences. Although research into the coupling of neuronal and hemodynamic responses using animal models has provided a general validation of the correspondence of neuroimaging signals to specific types of neuronal activity, it is also highlighting the key complexities and uncertainties in estimating neural signals from hemodynamic markers. This review will detail how research in animal models is contributing to our rapidly evolving understanding of what human neuroimaging techniques tell us about neuronal activity. It will highlight emerging issues in the interpretation of neuroimaging data that arise from in vivo research studies, for example spatial and temporal constraints to neuroimaging signal interpretation, or the effects of disease and modulatory neurotransmitters upon neurovascular coupling. We will also give critical consideration to the limitations and possible complexities of translating data acquired in the typical animals models used in this area to the arena of human fMRI. These include the commonplace use of anesthesia in animal research studies and the fact that many neuropsychological questions that are being actively explored in humans have limited homologs within current animal models for neuroimaging research. Finally we will highlighting approaches, both in experimental animals models (e.g. imaging in conscious, behaving animals) and human studies (e.g. combined fMRI-EEG), that mitigate against these challenges.
Collapse
Affiliation(s)
- Chris Martin
- Department of Psychology, The University of Sheffield Sheffield, UK
| |
Collapse
|
26
|
Lai HY, Albaugh DL, Kao YCJ, Younce JR, Shih YYI. Robust deep brain stimulation functional MRI procedures in rats and mice using an MR-compatible tungsten microwire electrode. Magn Reson Med 2014; 73:1246-51. [DOI: 10.1002/mrm.25239] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/14/2014] [Accepted: 03/11/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Hsin-Yi Lai
- Department of Neurology; University of North Carolina; Chapel Hill North Carolina USA
- Biomedical Research Imaging Center; University of North Carolina; Chapel Hill North Carolina USA
| | - Daniel L. Albaugh
- Department of Neurology; University of North Carolina; Chapel Hill North Carolina USA
- Biomedical Research Imaging Center; University of North Carolina; Chapel Hill North Carolina USA
- Curriculum in Neurobiology; University of North Carolina; Chapel Hill North Carolina USA
| | - Yu-Chieh Jill Kao
- Department of Neurology; University of North Carolina; Chapel Hill North Carolina USA
- Biomedical Research Imaging Center; University of North Carolina; Chapel Hill North Carolina USA
| | - John R. Younce
- Department of Neurology; University of North Carolina; Chapel Hill North Carolina USA
- Biomedical Research Imaging Center; University of North Carolina; Chapel Hill North Carolina USA
- School of Medicine; University of North Carolina; Chapel Hill North Carolina USA
| | - Yen-Yu Ian Shih
- Department of Neurology; University of North Carolina; Chapel Hill North Carolina USA
- Biomedical Research Imaging Center; University of North Carolina; Chapel Hill North Carolina USA
- Curriculum in Neurobiology; University of North Carolina; Chapel Hill North Carolina USA
- Department of Biomedical Engineering; University of North Carolina; Chapel Hill North Carolina USA
| |
Collapse
|
27
|
Uematsu A, Kitamura A, Iwatsuki K, Uneyama H, Tsurugizawa T. Correlation Between Activation of the Prelimbic Cortex, Basolateral Amygdala, and Agranular Insular Cortex During Taste Memory Formation. Cereb Cortex 2014; 25:2719-28. [PMID: 24735672 DOI: 10.1093/cercor/bhu069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Conditioned taste aversion (CTA) is a well-established learning paradigm, whereby animals associate tastes with subsequent visceral illness. The prelimbic cortex (PL) has been shown to be involved in the association of events separated by time. However, the nature of PL activity and its functional network in the whole brain during CTA learning remain unknown. Here, using awake functional magnetic resonance imaging and fiber tracking, we analyzed functional brain connectivity during the association of tastes and visceral illness. The blood oxygen level-dependent (BOLD) signal significantly increased in the PL after tastant and lithium chloride (LiCl) infusions. The BOLD signal in the PL significantly correlated with those in the amygdala and agranular insular cortex (IC), which we found were also structurally connected to the PL by fiber tracking. To precisely examine these data, we then performed double immunofluorescence with a neuronal activity marker (c-Fos) and an inhibitory neuron marker (GAD67) combined with a fluorescent retrograde tracer in the PL. During CTA learning, we found an increase in the activity of excitatory neurons in the basolateral amygdala (BLA) or agranular IC that project to the PL. Taken together, these findings clearly identify a role of synchronized PL, agranular IC, and BLA activity in CTA learning.
Collapse
Affiliation(s)
- Akira Uematsu
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan Current address: Laboratory for Neural Circuitry of Memory, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Akihiko Kitamura
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
| | - Ken Iwatsuki
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan Current address: Department of Nutritional Science and Food Safety, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hisayuki Uneyama
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
| | - Tomokazu Tsurugizawa
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
| |
Collapse
|
28
|
Tsurugizawa T, Nogusa Y, Ando Y, Uneyama H. Different TRPV1-mediated brain responses to intragastric infusion of capsaicin and capsiate. Eur J Neurosci 2013; 38:3628-35. [PMID: 24102723 DOI: 10.1111/ejn.12365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/24/2013] [Accepted: 08/25/2013] [Indexed: 12/20/2022]
Abstract
Capsaicin and capsiate, which is an analogue of capsaicin, are agonists of capsaicin-binding transient potential vanilloid 1 (TRPV1) receptors. However, their physiological effects are different. Capsaicin induces thermogenesis and nociception, while the different kinetics of capsiate result in thermogenesis without nociception in the oral cavity. In the present study, using functional magnetic resonance imaging, we compared the brain activation after intragastric infusion of non-nociceptive levels of capsaicin and capsiate in wild-type and TRPV1-knockout (KO) mice. Capsaicin activated several brain regions, such as the periaqueductal grey (PAG), thalamic nuclei and hypothalamus, including the medial preoptic area (mPOA) and ventromedial hypothalamus (VMH). Most of these areas were not activated in TRPV1-KO mice. Capsiate activated several regions, including the thalamic nuclei, mPOA and VMH but not PAG in wild-type mice. Most of the activated areas were not activated by intragastric capsiate infusion in TRPV1-KO mice. These results demonstrate that TRPV1 is critical for the induction of activation in the hypothalamus by capsaicin and capsiate, and these distinct brain activations could help to explain the individual physiological reactions of capsaicin and capsiate.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Institute for Innovation, Ajinomoto Co., Inc., Suzuki-cho 1-1, Kawasaki-ku, Kawasaki, 210-8601, Japan
| | | | | | | |
Collapse
|
29
|
Chin Y, Kishi M, Sekino M, Nakajo F, Abe Y, Terazono Y, Hiroyuki O, Kato F, Koizumi S, Gachet C, Hisatsune T. Involvement of glial P2Y₁ receptors in cognitive deficit after focal cerebral stroke in a rodent model. J Neuroinflammation 2013; 10:95. [PMID: 23890321 PMCID: PMC3733849 DOI: 10.1186/1742-2094-10-95] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/19/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Neuroinflammation is associated with many conditions that lead to dementia, such as cerebrovascular disorders or Alzheimer's disease. However, the specific role of neuroinflammation in the progression of cognitive deficits remains unclear. To understand the molecular mechanisms underlying these events we used a rodent model of focal cerebral stroke, which causes deficits in hippocampus-dependent cognitive function. METHODS Cerebral stroke was induced by middle cerebral artery occlusion (MCAO). Hippocampus-dependent cognitive function was evaluated by a contextual fear conditioning test. The glial neuroinflammatory responses were investigated by immunohistochemical evaluation and diffusion tensor MRI (DTI). We used knockout mice for P2Y₁ (P2Y₁KO), a glial ADP/ATP receptor that induces the release of proinflammatory cytokines, to examine the links among P2Y₁-mediated signaling, the neuroinflammatory response, and cognitive function. RESULTS Declines in cognitive function and glial neuroinflammatory response were observed after MCAO in both rats and mice. Changes in the hippocampal tissue were detected by DTI as the mean diffusivity (MD) value, which corresponded with the cognitive decline at 4 days, 1 week, 3 weeks, and 2 months after MCAO. Interestingly, the P2Y₁KO mice with MCAO showed a decline in sensory-motor function, but not in cognition. Furthermore, the P2Y₁KO mice showed neither a hippocampal glial neuroinflammatory response (as assessed by immunohistochemistry) nor a change in hippocampal MD value after MCAO. In addition, wild-type mice treated with a P2Y₁-specific antagonist immediately after reperfusion did not show cognitive decline. CONCLUSION Our findings indicate that glial P2Y₁ receptors are involved in the hippocampal inflammatory response. The findings from this study may contribute to the development of a therapeutic strategy for brain infarction, targeting the P2Y₁ receptor.
Collapse
Affiliation(s)
- Yo Chin
- Department of Integrated Biosciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Water diffusion in brain cortex closely tracks underlying neuronal activity. Proc Natl Acad Sci U S A 2013; 110:11636-41. [PMID: 23801756 DOI: 10.1073/pnas.1303178110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuronal activity results in a local increase in blood flow. This concept serves as the basis for functional MRI. Still, this approach remains indirect and may fail in situations interfering with the neurovascular coupling mechanisms (drugs, anesthesia). Here we establish that water molecular diffusion is directly modulated by underlying neuronal activity using a rat forepaw stimulation model under different conditions of neuronal stimulation and neurovascular coupling. Under nitroprusside infusion, a neurovascular-coupling inhibitor, the diffusion response and local field potentials were maintained, whereas the hemodynamic response was abolished. As diffusion MRI reflects interactions of water molecules with obstacles (e.g., cell membranes), the observed changes point to a dynamic modulation of the neural tissue structure upon activation, which remains to be investigated. These findings represent a significant shift in concept from the current electrochemical and neurovascular coupling principles used for brain imaging, and open unique avenues to investigate mechanisms underlying brain function.
Collapse
|
31
|
Xu B, Zheng H, Patel KP. Relative contributions of the thalamus and the paraventricular nucleus of the hypothalamus to the cardiac sympathetic afferent reflex. Am J Physiol Regul Integr Comp Physiol 2013; 305:R50-9. [PMID: 23616108 DOI: 10.1152/ajpregu.00004.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cardiac sympathetic afferent reflex (CSAR) is induced by stimulating the cardiac sympathetic afferents, which evokes increases in sympathetic outflow and arterial pressure. In the present study, we attempted to identify the contribution of thalamic and hypothalamic nuclei involved in the CSAR. First, we observed that there was an increase in the number of c-Fos-labeled cells in the paraventricular nucleus (PVN) (190 ± 18 vs. 101 ± 15; P < 0.05), the paraventricular nucleus of the thalamus (PVT) (239 ± 23 vs. 151 ± 15; P < 0.05), and the mediodorsal thalamic nucleus (MD) (92 ± 9 vs. 63 ± 6; P < 0.05) following epicardial application of bradykinin (BK) compared with the control group (P < 0.05). Second, using extracellular single-unit recording, we found 25% of spontaneously active neurons in the thalamus were stimulated by epicardial application of BK or capsaicin in intact rats. However, 24% of spontaneously active neurons in the thalamus were still stimulated by epicardial application of BK or capsaicin despite vagotomy and sinoaortic denervation. None of the neurons in the thalamus responded to baroreflex changes in arterial pressure, induced by intravenous injection of phenylephrine or sodium nitroprusside. The CSAR was inhibited by microinjection of muscimol or lidocaine into the PVN. However, it was not inhibited or blocked by microinjection of muscimol or lidocaine into the thalamus. Taken together, these data suggest that the thalamus, while activated, is not critical for autonomic adjustments in response to activation of the CSAR. On the other hand, the PVN is critically involved in the central pathway of the CSAR.
Collapse
Affiliation(s)
- Bo Xu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | |
Collapse
|
32
|
Thanos PK, Robison L, Nestler EJ, Kim R, Michaelides M, Lobo MK, Volkow ND. Mapping brain metabolic connectivity in awake rats with μPET and optogenetic stimulation. J Neurosci 2013; 33:6343-9. [PMID: 23575833 PMCID: PMC3666931 DOI: 10.1523/jneurosci.4997-12.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/23/2012] [Accepted: 02/18/2013] [Indexed: 12/28/2022] Open
Abstract
Positron emission tomography (PET) with [(18)F]2-fluoro-2-deoxy-D-glucose was used to measure changes in regional brain glucose metabolism (BGluM) in response to optogenetic stimulation (using the excitatory channelrhodopsin-2) of the nucleus accumbens (NAc) in awake rats. We demonstrated not only increases in BGluM that correlated with c-Fos expression in the region of stimulation, but also BGluM increases in the ipsilateral striatum, periaqueductal gray, and somatosensory cortex, and in contralateral amygdala, ventral pallidum, globus pallidus, and hippocampus, as well as decreases in BGluM in regions of the default mode network (retrosplenial cortex and cingulate gyrus) and secondary motor cortex. Additional exploration of c-Fos expression in regions found to be activated by PET results found corroborating evidence, with increased c-Fos expression in the ipsilateral somatosensory cortex, contralateral amygdala and globus pallidus, and bilateral periaqueductal gray. These findings are consistent with optogenetic excitation of the area of stimulation (NAc), as well as with stimulatory and inhibitory effects on downstream regions. They also confirm the utility of PET imaging to monitor connectivity in the awake rodent brain.
Collapse
Affiliation(s)
- Panayotis K. Thanos
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Medical Department, Brookhaven National Laboratory, Upton, New York 11973
- Department of Psychology, Stony Brook University, Stony Brook New York 11794
| | - Lisa Robison
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852
- Department of Psychology, Stony Brook University, Stony Brook New York 11794
| | - Eric J. Nestler
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| | - Ronald Kim
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Medical Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Michael Michaelides
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| | - Mary-Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852
| |
Collapse
|
33
|
Suzuki H, Sumiyoshi A, Kawashima R, Shimokawa H. Different brain activation under left and right ventricular stimulation: an fMRI study in anesthetized rats. PLoS One 2013; 8:e56990. [PMID: 23451129 PMCID: PMC3579932 DOI: 10.1371/journal.pone.0056990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/16/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Myocardial ischemia in the anterior wall of the left ventricule (LV) and in the inferior wall and/or right ventricle (RV) shows different manifestations that can be explained by the different innervations of cardiac afferent nerves. However, it remains unclear whether information from different areas of the heart, such as the LV and RV, are differently processed in the brain. In this study, we investigated the brain regions that process information from the LV or RV using cardiac electrical stimulation and functional magnetic resonance imaging (fMRI) in anesthetized rats because the combination of these two approaches cannot be used in humans. METHODOLOGY/PRINCIPAL FINDINGS An electrical stimulation catheter was inserted into the LV or RV (n = 12 each). Brain fMRI scans were recorded during LV or RV stimulation (9 Hz and 0.3 ms width) over 10 blocks consisting of alternating periods of 2 mA for 30 sec followed by 0.2 mA for 60 sec. The validity of fMRI signals was confirmed by first and second-level analyses and temporal profiles. Increases in fMRI signals were observed in the anterior cingulate cortex and the right somatosensory cortex under LV stimulation. In contrast, RV stimulation activated the right somatosensory cortex, which was identified more anteriorly compared with LV stimulation but did not activate the anterior cingulate cortex. CONCLUSION/SIGNIFICANCE This study provides the first evidence for differences in brain activation under LV and RV stimulation. These different brain processes may be associated with different clinical manifestations between anterior wall and inferoposterior wall and/or RV myocardial ischemia.
Collapse
Affiliation(s)
- Hideaki Suzuki
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | |
Collapse
|
34
|
Liu M, Weng C, Xie H, Qin W. Binocular form deprivation influences the visual cortex. Neural Regen Res 2012; 7:2713-8. [PMID: 25337118 PMCID: PMC4200740 DOI: 10.3969/j.issn.1673-5374.2012.34.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/09/2012] [Indexed: 11/18/2022] Open
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors are considered to play a crucial role in synaptic plasticity in the developing visual cortex. In this study, we established a rat model of binocular form deprivation by suturing the rat binocular eyelids before eye-opening at postnatal day 14. During development, the decay time of excitatory postsynaptic currents mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors of normal rats became longer after eye-opening; however, the decay time did not change significantly in binocular form deprivation rats. The peak value in the normal group became gradually larger with age, but there was no significant change in the binocular form deprivation group. These findings indicate that binocular form deprivation influences the properties of excitatory postsynaptic currents mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in the rat visual cortex around the end of the critical period, indicating that form stimulation is associated with the experience-dependent modification of neuronal synapses in the visual cortex.
Collapse
Affiliation(s)
- Mingming Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University of Chinese PLA, Chongqing 400038, China
| | - Chuanhuang Weng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University of Chinese PLA, Chongqing 400038, China
| | - Hanping Xie
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University of Chinese PLA, Chongqing 400038, China
| | - Wei Qin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University of Chinese PLA, Chongqing 400038, China
| |
Collapse
|
35
|
Functional magnetic resonance imaging of sound pressure level encoding in the rat central auditory system. Neuroimage 2012; 65:119-26. [PMID: 23041525 DOI: 10.1016/j.neuroimage.2012.09.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 01/23/2023] Open
Abstract
Intensity is an important physical property of a sound wave and is customarily reported as sound pressure level (SPL). Invasive techniques such as electrical recordings, which typically examine one brain region at a time, have been used to study neuronal encoding of SPL throughout the central auditory system. Non-invasive functional magnetic resonance imaging (fMRI) with large field of view can simultaneously examine multiple auditory structures. We applied fMRI to measure the hemodynamic responses in the rat brain during sound stimulation at seven SPLs over a 72 dB range. This study used a sparse temporal sampling paradigm to reduce the adverse effects of scanner noise. Hemodynamic responses were measured from the central nucleus of the inferior colliculus (CIC), external cortex of the inferior colliculus (ECIC), lateral lemniscus (LL), medial geniculate body (MGB), and auditory cortex (AC). BOLD signal changes generally increase significantly (p<0.001) with SPL and the dependence is monotonic in CIC, ECIC, and LL. The ECIC has higher BOLD signal change than CIC and LL at high SPLs. The difference between BOLD signal changes at high and low SPLs is less in the MGB and AC. This suggests that the SPL dependences of the LL and IC are different from those in the MGB and AC and the SPL dependence of the CIC is different from that of the ECIC. These observations are likely related to earlier observations that neurons with firing rates that increase monotonically with SPL are dominant in the CIC, ECIC, and LL while non-monotonic neurons are dominant in the MGB and AC. Further, the IC's SPL dependence measured in this study is very similar to that measured in our earlier study using the continuous imaging method. Therefore, sparse temporal sampling may not be a prerequisite in auditory fMRI studies of the IC.
Collapse
|
36
|
Abe Y, Sekino M, Terazono Y, Ohsaki H, Fukazawa Y, Sakai S, Yawo H, Hisatsune T. Opto-fMRI analysis for exploring the neuronal connectivity of the hippocampal formation in rats. Neurosci Res 2012; 74:248-55. [PMID: 22982343 DOI: 10.1016/j.neures.2012.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 08/21/2012] [Accepted: 08/28/2012] [Indexed: 02/08/2023]
Abstract
In recent years, optical stimulation of neurons that bear a light-gated cation channel, "Optogenetics", has opened a new avenue for exploring neuronal connectivity of the nervous system. In this study, we applied a technique, "Opto-fMRI", which combined optogenetics with blood oxygenation level-dependent (BOLD) functional MRI (fMRI), for examining the neuronal connectivity of the hippocampal formation in rats. Although the hippocampal formation is very important for memory formation and retrieval, there is little information on its neuronal connectivity, especially on its longitudinal axis of connection. For this purpose, we utilized a transgenic rat strain, expressing the light-gated cation channel channelrhodopsin-2 (ChR2) under the regulation of the Thy1.2 promoter which permits the expression of the integrated gene in neurons. After optical stimulation targeting the dentate gyrus of the transgenic rat, we detected BOLD response of not only the dentate gyrus (DG) but also at the CA3 area. In addition, we detected the longitudinal-axis activation of the hippocampus after optical stimulation. Our study suggests that Opto-fMRI could be a tool for exploring the neuronal connectivity of the hippocampal formation, to understand the neural basis of memory formation and retrieval.
Collapse
Affiliation(s)
- Yoshifumi Abe
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Reversible brain response to an intragastric load of l-lysine under l-lysine depletion in conscious rats. Br J Nutr 2012; 109:1323-9. [DOI: 10.1017/s0007114512003078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
l-Lysine (Lys) is an essential amino acid and plays an important role in anxiogenic behaviour in both human subjects and rodents. Previous studies have shown the existence of neural plasticity between the Lys-deficient state and the normal state. Lys deficiency causes an increase in noradrenaline release from the hypothalamus and serotonin release from the amygdala in rats. However, no studies have used functional MRI (fMRI) to compare the brain response to ingested Lys in normal, Lys-deficient and Lys-recovered states. Therefore, in the present study, using acclimation training, we performed fMRI on conscious rats to investigate the brain response to an intragastric load of Lys. The brain responses to intragastric administration of Lys (3 mmol/kg body weight) were investigated in six rats intermittently in three states: normal, Lys-deficient and recovered state. First, in the normal state, an intragastric load of Lys activated several brain regions, including the raphe pallidus nucleus, prelimbic cortex and the ventral/lateral orbital cortex. Then, after 6 d of Lys deprivation from the normal state, an intragastric load of Lys activated the ventral tegmental area, raphe pallidus nucleus and hippocampus, as well as several hypothalamic areas. After recovering from the Lys-deficient state, brain activation was similar to that in the normal state. These results indicate that neural plasticity in the prefrontal cortex, hypothalamic area and limbic system is related to the internal Lys state and that this plasticity could have important roles in the control of Lys intake.
Collapse
|
38
|
Tsurugizawa T, Uematsu A, Uneyama H, Torii K. Functional brain mapping of conscious rats during reward anticipation. J Neurosci Methods 2012; 206:132-7. [DOI: 10.1016/j.jneumeth.2012.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/09/2012] [Accepted: 02/14/2012] [Indexed: 11/24/2022]
|
39
|
Uneyama H. Nutritional and physiological significance of luminal glutamate-sensing in the gastrointestinal functions. YAKUGAKU ZASSHI 2012; 131:1699-709. [PMID: 22129863 DOI: 10.1248/yakushi.131.1699] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence indicates that free amino acids are nutrients as well as acting as chemical transmitters within the gastrointestinal tract. Gut glutamate research is the most advanced among 20 amino acids. Free glutamate carries the umami taste sensation on the tongue and a visceral sensation in the gut, especially the stomach. In the field of taste physiology, the physiological meaning of the glutamate-derived chemical sense, the umami taste, has been proposed to be a marker of protein intake. Experimental evidence in gut glutamate physiology strongly supports this hypothesis. Free glutamate is sensed by the abdominal vagus and regulates gastrointestinal functions such as secretion and emptying to accelerate protein digestion. Clinical application of glutamate has also just begun to treat gastrointestinal disorders such as dyspepsia, ulcer, dry mouth and functional dyspepsia. In this review, we introduce recent advances in gut glutamate research and consider the possible contribution of glutamate to health.
Collapse
Affiliation(s)
- Hisayuki Uneyama
- Umami Wellness Research Group, Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Japan.
| |
Collapse
|
40
|
Torii K, Uematsu A, Tsurugizawa T. Brain Response to the Luminal Nutrient Stimulation. CHEMOSENS PERCEPT 2012. [DOI: 10.1007/s12078-011-9113-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Autio JA, Kershaw J, Shibata S, Obata T, Kanno I, Aoki I. High b -value diffusion-weighted fMRI in a rat forepaw electrostimulation model at 7 T. Neuroimage 2011; 57:140-148. [DOI: 10.1016/j.neuroimage.2011.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 03/15/2011] [Accepted: 04/02/2011] [Indexed: 11/27/2022] Open
|
42
|
Evaluation of the ‘liking’ and ‘wanting’ properties of umami compound in rats. Physiol Behav 2011; 102:553-8. [DOI: 10.1016/j.physbeh.2011.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 01/13/2023]
|
43
|
Desai M, Kahn I, Knoblich U, Bernstein J, Atallah H, Yang A, Kopell N, Buckner RL, Graybiel AM, Moore CI, Boyden ES. Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 2010; 105:1393-405. [PMID: 21160013 DOI: 10.1152/jn.00828.2010] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Behaviors and brain disorders involve neural circuits that are widely distributed in the brain. The ability to map the functional connectivity of distributed circuits, and to assess how this connectivity evolves over time, will be facilitated by methods for characterizing the network impact of activating a specific subcircuit, cell type, or projection pathway. We describe here an approach using high-resolution blood oxygenation level-dependent (BOLD) functional MRI (fMRI) of the awake mouse brain-to measure the distributed BOLD response evoked by optical activation of a local, defined cell class expressing the light-gated ion channel channelrhodopsin-2 (ChR2). The utility of this opto-fMRI approach was explored by identifying known cortical and subcortical targets of pyramidal cells of the primary somatosensory cortex (SI) and by analyzing how the set of regions recruited by optogenetically driven SI activity differs between the awake and anesthetized states. Results showed positive BOLD responses in a distributed network that included secondary somatosensory cortex (SII), primary motor cortex (MI), caudoputamen (CP), and contralateral SI (c-SI). Measures in awake compared with anesthetized mice (0.7% isoflurane) showed significantly increased BOLD response in the local region (SI) and indirectly stimulated regions (SII, MI, CP, and c-SI), as well as increased BOLD signal temporal correlations between pairs of regions. These collective results suggest opto-fMRI can provide a controlled means for characterizing the distributed network downstream of a defined cell class in the awake brain. Opto-fMRI may find use in examining causal links between defined circuit elements in diverse behaviors and pathologies.
Collapse
Affiliation(s)
- M Desai
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
CNS animal fMRI in pain and analgesia. Neurosci Biobehav Rev 2010; 35:1125-43. [PMID: 21126534 DOI: 10.1016/j.neubiorev.2010.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 11/22/2022]
Abstract
Animal imaging of brain systems offers exciting opportunities to better understand the neurobiology of pain and analgesia. Overall functional studies have lagged behind human studies as a result of technical issues including the use of anesthesia. Now that many of these issues have been overcome including the possibility of imaging awake animals, there are new opportunities to study whole brain systems neurobiology of acute and chronic pain as well as analgesic effects on brain systems de novo (using pharmacological MRI) or testing in animal models of pain. Understanding brain networks in these areas may provide new insights into translational science, and use neural networks as a "language of translation" between preclinical to clinical models. In this review we evaluate the role of functional and anatomical imaging in furthering our understanding in pain and analgesia.
Collapse
|
45
|
Tsurugizawa T, Uematsu A, Uneyama H, Torii K. Different BOLD responses to intragastric load of L-glutamate and inosine monophosphate in conscious rats. Chem Senses 2010; 36:169-76. [PMID: 20956735 DOI: 10.1093/chemse/bjq107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, we compared the blood oxygen level-dependent (BOLD) signal changes between intragastric load of monosodium L-glutamate (MSG) and inosine monophosphate (IMP), which elicit the umami taste. An intragastric load of 30 mM IMP or 60 mM MSG induced a BOLD signal increase in several brain regions, including the nucleus of the solitary tract (NTS), lateral hypothalamus (LH), and insular cortex. Only MSG increased the BOLD signal in the amygdala (AMG). The time course of the BOLD signal changes in the NTS and the LH in the IMP group was different from that of the MSG group. We further compared the brain regions correlated with the BOLD signal change in the NTS between MSG and IMP groups. The BOLD responses in the hippocampus and the orbital cortex were associated with activation of the NTS in both MSG and IMP groups, but the association in the AMG and the pyriform was only in MSG group. These results indicate that gut stimulation with MSG and IMP evoked BOLD responses in distinct regions with different temporal patterns and that the mechanism of perception of L-glutamate and IMP in the gastrointestinal tract differed from that in the taste-sensing system.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Institute of Life Sciences, Ajinomoto Co., Inc., Suzuki-cho 1-1, Kawasaki-ku, Kawasaki 210-8601, Japan
| | | | | | | |
Collapse
|
46
|
Tsurugizawa T, Uematsu A, Uneyama H, Torii K. The role of the GABAergic and dopaminergic systems in the brain response to an intragastric load of alcohol in conscious rats. Neuroscience 2010; 171:451-60. [PMID: 20849934 DOI: 10.1016/j.neuroscience.2010.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
The brain's response to ethanol intake has been extensively investigated using electrophysiological recordings, brain lesion techniques, and c-Fos immunoreactivity. However, few studies have investigated this phenomenon using functional magnetic resonance imaging (fMRI). In the present study, we used fMRI to investigate the blood oxygenation level-dependent (BOLD) signal response to an intragastric (IG) load of ethanol in conscious, ethanol-naive rats. An intragastrically infused 10% ethanol solution induced a significant decrease in the intensity of the BOLD signal in several regions of the brain, including the bilateral amygdala (AMG), nucleus accumbens (NAc), hippocampus, ventral pallidum, insular cortex, and cingulate cortex, and an increase in the BOLD signal in the ventral tegmental area (VTA) and hypothalamic regions. Treatment with bicuculline, which is an antagonist of the gamma-aminobutyric acid A (GABA(A)) receptor, increased the BOLD signal intensity in the regions that had shown decreases in the BOLD signal after the IG infusion of 10% ethanol solution, but it did not affect the BOLD signal increase in the hypothalamus. Treatment with SCH39166, which is an antagonist of D1-like receptors, eliminated the increase in the BOLD signal intensity in the hypothalamic areas but did not affect the BOLD signal decrease following the 10% ethanol infusion. These results indicate that an IG load of ethanol caused both a GABA(A) receptor-mediated BOLD decrease in the limbic system and the cortex and a D1-like receptor-mediated BOLD increase in the hypothalamic regions in ethanol-naive rats.
Collapse
Affiliation(s)
- T Tsurugizawa
- Institute of Life Sciences, Ajinomoto Co., Inc., Suzuki-cho 1-1 Kawasaki-ku, Kawasaki 210-8601, Japan
| | | | | | | |
Collapse
|
47
|
Carleton A, Accolla R, Simon SA. Coding in the mammalian gustatory system. Trends Neurosci 2010; 33:326-34. [PMID: 20493563 DOI: 10.1016/j.tins.2010.04.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 03/29/2010] [Accepted: 04/13/2010] [Indexed: 01/17/2023]
Abstract
To understand gustatory physiology and associated dysfunctions it is important to know how oral taste stimuli are encoded both in the periphery and in taste-related brain centres. The identification of distinct taste receptors, together with electrophysiological recordings and behavioral assessments in response to taste stimuli, suggest that information about distinct taste modalities (e.g. sweet versus bitter) are transmitted from the periphery to the brain via segregated pathways. By contrast, gustatory neurons throughout the brain are more broadly tuned, indicating that ensembles of neurons encode taste qualities. Recent evidence reviewed here suggests that the coding of gustatory stimuli is not immutable, but is dependant on a variety of factors including appetite-regulating molecules and associative learning.
Collapse
Affiliation(s)
- Alan Carleton
- Department of Neurosciences, Medical Faculty, University of Geneva, 1 rue Michel-Servet, 1211 Genève 4, Switzerland.
| | | | | |
Collapse
|