1
|
Beletskiy A, Chesnokova E, Bal N. Insulin-Like Growth Factor 2 As a Possible Neuroprotective Agent and Memory Enhancer-Its Comparative Expression, Processing and Signaling in Mammalian CNS. Int J Mol Sci 2021; 22:ijms22041849. [PMID: 33673334 PMCID: PMC7918606 DOI: 10.3390/ijms22041849] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
A number of studies performed on rodents suggest that insulin-like growth factor 2 (IGF-2) or its analogs may possibly be used for treating some conditions like Alzheimer’s disease, Huntington’s disease, autistic spectrum disorders or aging-related cognitive impairment. Still, for translational research a comparative knowledge about the function of IGF-2 and related molecules in model organisms (rats and mice) and humans is necessary. There is a number of important differences in IGF-2 signaling between species. In the present review we emphasize species-specific patterns of IGF-2 expression in rodents, humans and some other mammals, using, among other sources, publicly available transcriptomic data. We provide a detailed description of Igf2 mRNA expression regulation and pre-pro-IGF-2 protein processing in different species. We also summarize the function of IGF-binding proteins. We describe three different receptors able to bind IGF-2 and discuss the role of IGF-2 signaling in learning and memory, as well as in neuroprotection. We hope that comprehensive understanding of similarities and differences in IGF-2 signaling between model organisms and humans will be useful for development of more effective medicines targeting IGF-2 receptors.
Collapse
|
2
|
Insulin-Like Growth Factor II Targets the mTOR Pathway to Reverse Autism-Like Phenotypes in Mice. J Neurosci 2017; 38:1015-1029. [PMID: 29217683 DOI: 10.1523/jneurosci.2010-17.2017] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/18/2017] [Accepted: 11/18/2017] [Indexed: 11/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disability characterized by impairments in social interaction and repetitive behavior, and is also associated with cognitive deficits. There is no current treatment that can ameliorate most of the ASD symptomatology; thus, identifying novel therapies is urgently needed. We used male BTBR T+Itpr3tf /J (BTBR) mice, a model that reproduces most of the core behavioral phenotypes of ASD, to test the effects of systemic administration of insulin-like growth factor II (IGF-II), a polypeptide that crosses the blood-brain barrier and acts as a cognitive enhancer. We show that systemic IGF-II treatments reverse the typical defects in social interaction, cognitive/executive functions, and repetitive behaviors reflective of ASD-like phenotypes. In BTBR mice, IGF-II, via IGF-II receptor, but not via IGF-I receptor, reverses the abnormal levels of the AMPK-mTOR-S6K pathway and of active translation at synapses. Thus, IGF-II may represent a novel potential therapy for ASD.SIGNIFICANCE STATEMENT Currently, there is no effective treatment for autism spectrum disorder (ASD), a developmental disability affecting a high number of children. Using a mouse model that expresses most of the key core as well as associated behavioral deficits of ASD, that are, social, cognitive, and repetitive behaviors, we report that a systemic administration of the polypeptide insulin-like growth factor II (IGF-II) reverses all these deficits. The effects of IGF-II occur via IGF-II receptors, and not IGF-I receptors, and target both basal and learning-dependent molecular abnormalities found in several ASD mice models, including those of identified genetic mutations. We suggest that IGF-II represents a potential novel therapeutic target for ASD.
Collapse
|
3
|
Martín-Montañez E, Millon C, Boraldi F, Garcia-Guirado F, Pedraza C, Lara E, Santin LJ, Pavia J, Garcia-Fernandez M. IGF-II promotes neuroprotection and neuroplasticity recovery in a long-lasting model of oxidative damage induced by glucocorticoids. Redox Biol 2017; 13:69-81. [PMID: 28575743 PMCID: PMC5454142 DOI: 10.1016/j.redox.2017.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/23/2017] [Indexed: 11/05/2022] Open
Abstract
Insulin-like growth factor-II (IGF-II) is a naturally occurring hormone that exerts neurotrophic and neuroprotective properties in a wide range of neurodegenerative diseases and ageing. Accumulating evidence suggests that the effects of IGF-II in the brain may be explained by its binding to the specific transmembrane receptor, IGFII/M6P receptor (IGF-IIR). However, relatively little is known regarding the role of IGF-II through IGF-IIR in neuroprotection. Here, using adult cortical neuronal cultures, we investigated whether IGF-II exhibits long-term antioxidant effects and neuroprotection at the synaptic level after oxidative damage induced by high and transient levels of corticosterone (CORT). Furthermore, the involvement of the IGF-IIR was also studied to elucidate its role in the neuroprotective actions of IGF-II. We found that neurons treated with IGF-II after CORT incubation showed reduced oxidative stress damage and recovered antioxidant status (normalized total antioxidant status, lipid hydroperoxides and NAD(P) H:quinone oxidoreductase activity). Similar results were obtained when mitochondria function was analysed (cytochrome c oxidase activity, mitochondrial membrane potential and subcellular mitochondrial distribution). Furthermore, neuronal impairment and degeneration were also assessed (synaptophysin and PSD-95 expression, presynaptic function and FluoroJade B® stain). IGF-II was also able to recover the long-lasting neuronal cell damage. Finally, the effects of IGF-II were not blocked by an IGF-IR antagonist, suggesting the involvement of IGF-IIR. Altogether these results suggest that, in or model, IGF-II through IGF-IIR is able to revert the oxidative damage induced by CORT. In accordance with the neuroprotective role of the IGF-II/IGF-IIR reported in our study, pharmacotherapy approaches targeting this pathway may be useful for the treatment of diseases associated with cognitive deficits (i.e., neurodegenerative disorders, depression, etc.).
Collapse
Affiliation(s)
- E Martín-Montañez
- Department of Pharmacology and Paediatrics, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - C Millon
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - F Boraldi
- Department of Life Sciences, University of Modena e Reggio Emilia, Modena, Italy
| | - F Garcia-Guirado
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - C Pedraza
- Department of Psychobiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - E Lara
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - L J Santin
- Department of Psychobiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - J Pavia
- Department of Pharmacology and Paediatrics, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain.
| | - M Garcia-Fernandez
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain.
| |
Collapse
|
4
|
Wang Y, MacDonald RG, Thinakaran G, Kar S. Insulin-Like Growth Factor-II/Cation-Independent Mannose 6-Phosphate Receptor in Neurodegenerative Diseases. Mol Neurobiol 2017; 54:2636-2658. [PMID: 26993302 PMCID: PMC5901910 DOI: 10.1007/s12035-016-9849-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
The insulin-like growth factor II/mannose 6-phosphate (IGF-II/M6P) receptor is a multifunctional single transmembrane glycoprotein. Recent studies have advanced our understanding of the structure, ligand-binding properties, and trafficking of the IGF-II/M6P receptor. This receptor has been implicated in a variety of important cellular processes including growth and development, clearance of IGF-II, proteolytic activation of enzymes, and growth factor precursors, in addition to its well-known role in the delivery of lysosomal enzymes. The IGF-II/M6P receptor, distributed widely in the central nervous system, has additional roles in mediating neurotransmitter release and memory enhancement/consolidation, possibly through activating IGF-II-related intracellular signaling pathways. Recent studies suggest that overexpression of the IGF-II/M6P receptor may have an important role in regulating the levels of transcripts and proteins involved in the development of Alzheimer's disease (AD)-the prevalent cause of dementia affecting the elderly population in our society. It is reported that IGF-II/M6P receptor overexpression can increase the levels/processing of amyloid precursor protein leading to the generation of β-amyloid peptide, which is associated with degeneration of neurons and subsequent development of AD pathology. Given the significance of the receptor in mediating the transport and functioning of the lysosomal enzymes, it is being considered for therapeutic delivery of enzymes to the lysosomes to treat lysosomal storage disorders. Notwithstanding these results, additional studies are required to validate and fully characterize the function of the IGF-II/M6P receptor in the normal brain and its involvement in various neurodegenerative disorders including AD. It is also critical to understand the interaction between the IGF-II/M6P receptor and lysosomal enzymes in neurodegenerative processes, which may shed some light on developing approaches to detect and prevent neurodegeneration through the dysfunction of the receptor and the endosomal-lysosomal system.
Collapse
Affiliation(s)
- Y Wang
- Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2M8, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - R G MacDonald
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - G Thinakaran
- Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - S Kar
- Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2M8, Canada.
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, T6G 2M8, Canada.
| |
Collapse
|
5
|
Åberg D, Johansson P, Isgaard J, Wallin A, Johansson JO, Andreasson U, Blennow K, Zetterberg H, Åberg ND, Svensson J. Increased Cerebrospinal Fluid Level of Insulin-like Growth Factor-II in Male Patients with Alzheimer's Disease. J Alzheimers Dis 2016; 48:637-46. [PMID: 26402100 DOI: 10.3233/jad-150351] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Insulin-like growth factor-II (IGF-II) is important for brain development. Although IGF-II is abundant also in adult life, little is known of the role of IGF-II in Alzheimer's disease (AD). OBJECTIVE AND METHODS This was a cross-sectional study of 60 consecutive patients under primary evaluation of cognitive impairment and 20 healthy controls. The patients had AD dementia or mild cognitive impairment (MCI) diagnosed with AD dementia upon follow-up (n = 32), stable MCI (SMCI, n = 13), or other dementias (n = 15). IGF-II, IGF-binding protein-1 (IGFBP-1), and IGFBP-2 were analyzed in serum and cerebrospinal fluid (CSF). RESULTS Levels of IGF-II, IGFBP-1, and IGFBP-2 were similar in all groups in the total study population. Gender-specific analyses showed that in men (n = 40), CSF IGF-II level was higher in AD compared to SMCI and controls (p < 0.01 and p < 0.05, respectively). Furthermore, CSF IGFBP-2 level was increased in AD men versus SMCI men (p < 0.01) and tended to be increased versus control men (p = 0.09). There were no between-group differences in women (n = 40). In the total study population (n = 80) as well as in men (n = 40), CSF levels of IGF-II and IGFBP-2 correlated positively with CSF levels of the AD biomarkers total-tau and phosphorylated tau protein. CONCLUSION In men, but not women, in the early stages of AD, CSF IGF-II level was elevated, and CSF IGFBP-2 level tended to be increased, compared to healthy controls.
Collapse
Affiliation(s)
- Daniel Åberg
- Department of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Johansson
- Department of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neuropsychiatry, Skaraborg Hospital, Falköping, Sweden
| | - Jörgen Isgaard
- Department of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, NSW, Australia
| | - Anders Wallin
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Jan-Ove Johansson
- Department of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Andreasson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,UCL Institute of Neurology, Queen Square, London, UK
| | - N David Åberg
- Department of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Svensson
- Department of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Endocrinology, Skaraborg Hospital, Skövde, Sweden
| |
Collapse
|
6
|
Stern SA, Chen DY, Alberini CM. The effect of insulin and insulin-like growth factors on hippocampus- and amygdala-dependent long-term memory formation. ACTA ACUST UNITED AC 2014; 21:556-63. [PMID: 25227250 PMCID: PMC4175499 DOI: 10.1101/lm.029348.112] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent work has reported that the insulin-like growth factor 2 (IGF2) promotes memory enhancement. Furthermore, impaired insulin or IGF1 functions have been suggested to play a role in the pathogenesis of neurodegeneration and cognitive impairments, hence implicating the insulin/IGF system as an important target for cognitive enhancement and/or the development of novel treatments against cognitive disorders. Here, we tested the effect of intracerebral injections of IGF1, IGF2, or insulin on memory consolidation and persistence in rats. We found that a bilateral injection of insulin into the dorsal hippocampus transiently enhances hippocampal-dependent memory and an injection of IGF1 has no effect. None of the three peptides injected into the amygdala affected memories critically engaging this region. Together with previous data on IGF2, these results indicate that IGF2 produces the most potent and persistent effect as a memory enhancer on hippocampal-dependent memories. We suggest that the memory-enhancing effects of insulin and IGF2 are likely mediated by distinct mechanisms.
Collapse
Affiliation(s)
- Sarah A Stern
- Center for Neural Science, New York University, New York, New York 10003, USA Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Dillon Y Chen
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Cristina M Alberini
- Center for Neural Science, New York University, New York, New York 10003, USA
| |
Collapse
|
7
|
Stern SA, Kohtz AS, Pollonini G, Alberini CM. Enhancement of memories by systemic administration of insulin-like growth factor II. Neuropsychopharmacology 2014; 39:2179-90. [PMID: 24642597 PMCID: PMC4104337 DOI: 10.1038/npp.2014.69] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/19/2014] [Accepted: 03/16/2014] [Indexed: 01/01/2023]
Abstract
To treat cognitive disorders in humans, new effective therapies that can be easily delivered systemically are needed. Previous studies showed that a bilateral injection of insulin-like growth factor II (IGF-II) into the dorsal hippocampus of rats or mice enhances fear memories and facilitates fear extinction. Here, we report that, in mice, systemic treatments with IGF-II given before training significantly enhance the retention and persistence of several types of working, short-term and long-term memories, including fear conditioning, object recognition, object placement, social recognition, and spatial reference memory. IGF-II-mediated memory enhancement does not alter memory flexibility or the ability for new learning and also occurs when IGF-II treatment is given in concert with memory retrieval. Thus IGF-II may represent a potentially important and effective treatment for enhancing human cognitive and executive functions.
Collapse
Affiliation(s)
- Sarah A Stern
- Center for Neural Science, New York University, New York, NY, USA,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amy S Kohtz
- Center for Neural Science, New York University, New York, NY, USA,Graduate Program in Psychology, University at Albany—SUNY, Albany, NY, USA
| | | | - Cristina M Alberini
- Center for Neural Science, New York University, New York, NY, USA,Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA, Tel: +1 212 998 7721, Fax: +1 212 995 4011, E-mail:
| |
Collapse
|
8
|
Martin-Montañez E, Pavia J, Santin LJ, Boraldi F, Estivill-Torrus G, Aguirre JA, Garcia-Fernandez M. Involvement of IGF-II receptors in the antioxidant and neuroprotective effects of IGF-II on adult cortical neuronal cultures. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:1041-1051. [PMID: 24667322 DOI: 10.1016/j.bbadis.2014.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 01/26/2023]
Abstract
Insulin-like growth factor-II (IGF-II) is a naturally occurring peptide that exerts known pleiotropic effects ranging from metabolic modulation to cellular development, growth and survival. IGF-II triggers its actions by binding to and activating IGF (IGF-I and IGF-II) receptors. In this study, we assessed the neuroprotective effect of IGF-II on corticosterone-induced oxidative damage in adult cortical neuronal cultures and the role of IGF-II receptors in this effect. We provide evidence that treatment with IGF-II alleviates the glucocorticoid-induced toxicity to neuronal cultures, and this neuroprotective effect occurred due to a decrease in reactive oxygen species (ROS) production and a return of the antioxidant status to normal levels. IGF-II acts via not only the regulation of synthesis and/or activity of antioxidant enzymes, especially manganese superoxide dismutase, but also the restoration of mitochondrial cytochrome c oxidase activity and mitochondrial membrane potential. Although the antioxidant effect of IGF-I receptor activation has been widely reported, the involvement of the IGF-II receptor in these processes has not been clearly defined. The present report is the first evidence describing the involvement of IGF-II receptors in redox homeostasis. IGF-II may therefore contribute to the mechanisms of neuroprotection by acting as an antioxidant, reducing the neurodegeneration induced by oxidative insults. These results open the field to new pharmacological approaches to the treatment of diseases involving imbalanced redox homeostasis. In this study, we demonstrated that the antioxidant effect of IGF-II is at least partially mediated by IGF-II receptors.
Collapse
Affiliation(s)
- Elisa Martin-Montañez
- Department of Pharmacology and Paediatrics, Malaga University, Biomedical Research Institute of Malaga (IBIMA), E-29071 Malaga, Spain
| | - José Pavia
- Department of Pharmacology and Paediatrics, Malaga University, Biomedical Research Institute of Malaga (IBIMA), E-29071 Malaga, Spain; Clinical Neurosciences Unit, Research Laboratory and Microscopy Unit, Biomedical Research Institute of Malaga (IBIMA), Regional University Hospital of Malaga, E-29010 Málaga, Spain
| | - Luis J Santin
- Department of Psychobiology, Malaga University, Biomedical Research Institute of Malaga (IBIMA), E-29071 Malaga, Spain
| | - Federica Boraldi
- Department of Life Sciences, University of Modena e Reggio Emilia, I-41010 Modena, Italy
| | - Guillermo Estivill-Torrus
- Clinical Neurosciences Unit, Research Laboratory and Microscopy Unit, Biomedical Research Institute of Malaga (IBIMA), Regional University Hospital of Malaga, E-29010 Málaga, Spain
| | - José A Aguirre
- Department of Human Physiology, Malaga University, Biomedical Research Institute of Malaga (IBIMA), E-29071 Malaga, Spain
| | - Maria Garcia-Fernandez
- Department of Human Physiology, Malaga University, Biomedical Research Institute of Malaga (IBIMA), E-29071 Malaga, Spain.
| |
Collapse
|
9
|
Estrada JA, Contreras I, Pliego-Rivero FB, Otero GA. Molecular mechanisms of cognitive impairment in iron deficiency: alterations in brain-derived neurotrophic factor and insulin-like growth factor expression and function in the central nervous system. Nutr Neurosci 2013; 17:193-206. [PMID: 24074845 DOI: 10.1179/1476830513y.0000000084] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The present review examines the relationship between iron deficiency and central nervous system (CNS) development and cognitive impairment, focusing on the cellular and molecular mechanisms related to the expression and function of growth factors, particularly the insulin-like growth factors I and II (IGF-I/II) and brain-derived neurotrophic factor (BDNF), in the CNS. METHODS Nutritional deficiencies are important determinants in human cognitive impairment. Among these, iron deficiency has the highest prevalence worldwide. Although this ailment is known to induce psychomotor deficits during development, the precise molecular and cellular mechanisms underlying these alterations have not been properly elucidated. This review summarizes the available information on the effect of iron deficiency on the expression and function of growth factors in the CNS, with an emphasis on IGF-I/II and BDNF. RESULTS AND DISCUSSION Recent studies have shown that specific growth factors, such as IGF-I/II and BDNF, have an essential role in cognition, particularly in processes involving learning and memory, by the activation of intracellular-signaling pathways involved in cell proliferation, differentiation, and survival. It is known that nutritional deficiencies promote reductions in systemic and CNS concentrations of growth factors, and that altered expression of these molecules and their receptors in the CNS leads to psychomotor and developmental deficits. Iron deficiency may induce these deficits by decreasing the expression and function of IGF-I/II and BDNF in specific areas of the brain.
Collapse
|
10
|
Cline BH, Steinbusch HWM, Malin D, Revishchin AV, Pavlova GV, Cespuglio R, Strekalova T. The neuronal insulin sensitizer dicholine succinate reduces stress-induced depressive traits and memory deficit: possible role of insulin-like growth factor 2. BMC Neurosci 2012; 13:110. [PMID: 22989159 PMCID: PMC3564824 DOI: 10.1186/1471-2202-13-110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 09/14/2012] [Indexed: 12/16/2022] Open
Abstract
Background A number of epidemiological studies have established a link between insulin resistance and the prevalence of depression. The occurrence of depression was found to precede the onset of diabetes and was hypothesized to be associated with inherited inter-related insufficiency of the peripheral and central insulin receptors. Recently, dicholine succinate, a sensitizer of the neuronal insulin receptor, was shown to stimulate insulin-dependent H2O2 production of the mitochondrial respiratory chain leading to an enhancement of insulin receptor autophosphorylation in neurons. As such, this mechanism can be a novel target for the elevation of insulin signaling. Results Administration of DS (25 mg/kg/day, intraperitoneal) in CD1 mice for 7 days prior to the onset of stress procedure, diminished manifestations of anhedonia defined in a sucrose test and behavioral despair in the forced swim test. Treatment with dicholine succinate reduced the anxiety scores of stressed mice in the dark/light box paradigm, precluded stress-induced decreases of long-term contextual memory in the step-down avoidance test and hippocampal gene expression of IGF2. Conclusions Our data suggest that dicholine succinate has an antidepressant-like effect, which might be mediated via the up-regulation of hippocampal expression of IGF2, and implicate the neuronal insulin receptor in the pathogenesis of stress-induced depressive syndrome.
Collapse
Affiliation(s)
- Brandon H Cline
- Interdisciplinary Center for Neurosciences, Heidelberg University, and Institute for Neuroanatomy, University Clinic Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
O’Kusky J, Ye P. Neurodevelopmental effects of insulin-like growth factor signaling. Front Neuroendocrinol 2012; 33:230-51. [PMID: 22710100 PMCID: PMC3677055 DOI: 10.1016/j.yfrne.2012.06.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/09/2012] [Accepted: 06/07/2012] [Indexed: 11/28/2022]
Abstract
Insulin-like growth factor (IGF) signaling greatly impacts the development and growth of the central nervous system (CNS). IGF-I and IGF-II, two ligands of the IGF system, exert a wide variety of actions both during development and in adulthood, promoting the survival and proliferation of neural cells. The IGFs also influence the growth and maturation of neural cells, augmenting dendritic growth and spine formation, axon outgrowth, synaptogenesis, and myelination. Specific IGF actions, however, likely depend on cell type, developmental stage, and local microenvironmental milieu within the brain. Emerging research also indicates that alterations in IGF signaling likely contribute to the pathogenesis of some neurological disorders. This review summarizes experimental studies and shed light on the critical roles of IGF signaling, as well as its mechanisms, during CNS development.
Collapse
Affiliation(s)
- John O’Kusky
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V5Z 1M9
| | - Ping Ye
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
12
|
The molecular basis of IGF-II/IGF2R recognition: a combined molecular dynamics simulation, free-energy calculation and computational alanine scanning study. J Mol Model 2011; 18:1421-30. [DOI: 10.1007/s00894-011-1159-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/21/2011] [Indexed: 01/05/2023]
|