1
|
Jafri S, Ghani M, Stickle N, Virtanen C, Hazrati LN, Visanji NP. Translational profiling reveals novel gene expression changes in the direct and indirect pathways in a mouse model of levodopa induced dyskinesia. Front Cell Neurosci 2025; 18:1477511. [PMID: 40144773 PMCID: PMC11936753 DOI: 10.3389/fncel.2024.1477511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/18/2024] [Indexed: 03/28/2025] Open
Abstract
Introduction The molecular mechanisms underlying L-dihydroxyphenylalanine (LDOPA) induced dyskinesia in Parkinson's disease are poorly understood. Here we employ two transgenic mouse lines, combining translating ribosomal affinity purification (TRAP) with bacterial artificial chromosome expression (Bac), to selectively isolate RNA from either DRD1A expressing striatonigral, or DRD2 expressing striatopallidal medium spiny neurons (MSNs) of the direct and indirect pathways respectively, to study changes in translational gene expression following repeated LDOPA treatment. Methods 6-OHDA lesioned DRD1A and DRD2 BacTRAP mice were treated with either saline or LDOPA bi-daily for 21 days over which time they developed abnormal involuntary movements reminiscent of dyskinesia. On day 22, all animals received LDOPA 40min prior to sacrifice. The striatum of the lesioned hemisphere was dissected and subject to TRAP. Extracted ribosomal RNA was amplified, purified, and gene expression was quantified using microarray. Results One hundred ninety-five significantly varying transcripts were identified among the four treatment groups. Pathway analysis revealed an overrepresentation of calcium signaling and long-term potentiation in the DRD1A expressing MSNs of the direct pathway, with significant involvement of long-term depression in the DRD2 expressing MSNs of the indirect pathway following chronic treatment with LDOPA. Several MAPK associated genes (NR4A1, GADD45G, STMN1, FOS, and DUSP1) differentiated the direct and indirect pathways following both acute and chronic LDOPA treatment. However, the MAPK pathway activator PAK1 was downregulated in the indirect pathway and upregulated in the direct pathway, strongly suggesting a role for PAK1 in regulating the opposing effects of LDOPA on these two pathways in dyskinesia. Discussion Future studies will assess the potential of targeting these genes and pathways to prevent the development of LDOPA-induced dyskinesia.
Collapse
Affiliation(s)
- Sabika Jafri
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Mahdi Ghani
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Krembil Discovery Tower, Toronto, ON, Canada
| | - Natalie Stickle
- University Health Network Microarray Centre, Toronto Medical Discovery Tower, Toronto, ON, Canada
| | - Carl Virtanen
- University Health Network Microarray Centre, Toronto Medical Discovery Tower, Toronto, ON, Canada
| | - Lili-Naz Hazrati
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Naomi P. Visanji
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Krembil Discovery Tower, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Biodegradable Nanoparticles Loaded with Levodopa and Curcumin for Treatment of Parkinson's Disease. Molecules 2022; 27:molecules27092811. [PMID: 35566173 PMCID: PMC9101601 DOI: 10.3390/molecules27092811] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder. Levodopa (L-DOPA) remains the gold-standard drug available for treating PD. Curcumin has many pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anti-amyloid, and antitumor properties. Copolymers composed of Poly (ethylene oxide) (PEO) and biodegradable polyesters such as Poly (ε-caprolactone) (PCL) can self-assemble into nanoparticles (NPs). This study describes the development of NH2–PEO–PCL diblock copolymer positively charged and modified by adding glutathione (GSH) on the outer surface, resulting in a synergistic delivery of L-DOPA curcumin that would be able to pass the blood–brain barrier. Methods: The NH2–PEO–PCL NPs suspensions were prepared by using a nanoprecipitation and solvent displacement method and coated with GSH. NPs were submitted to characterization assays. In order to ensure the bioavailability, Vero and PC12 cells were treated with various concentrations of the loaded and unloaded NPs to observe cytotoxicity. Results: NPs have successfully loaded L-DOPA and curcumin and were stable after freeze-drying, indicating advancing into in vitro toxicity testing. Vero and PC12 cells that were treated up to 72 h with various concentrations of L-DOPA and curcumin-loaded NP maintained high viability percentage, indicating that the NPs are biocompatible. Conclusions: NPs consisting of NH2–PEO–PCL were characterized as potential formulations for brain delivery of L-DOPA and curcumin. The results also indicate that the developed biodegradable nanomicelles that were blood compatible presented low cytotoxicity.
Collapse
|
3
|
Ravinder D, Rampogu S, Dharmapuri G, Pasha A, Lee KW, Pawar SC. Inhibition of DDX3 and COX-2 by forskolin and evaluation of anti-proliferative, pro-apoptotic effects on cervical cancer cells: molecular modelling and in vitro approaches. Med Oncol 2022; 39:61. [PMID: 35478276 DOI: 10.1007/s12032-022-01658-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022]
Abstract
Several studies have reported up-regulation of both cyclooxygenase-2 (COX-2) and DEAD-box RNA helicase3 (DDX3) and have validated their oncogenic role in many cancers. Inhibition of COX-2 and DDX3 offers a potential pharmacological strategy for prevention of cancer progression. The COX-2 isoform is expressed in response to pro-inflammatory stimuli in premalignant lesions, including cervical tissues. This study elucidates the potential role of plant derived compound Forskolin (FSK) in plummeting the expression of COX-2 and DDX3 in cervical cancer. To establish this, the cervical cancer cells were treated with the FSK compound which induced a dose dependent significant inhibition of COX-2 and DDX3 expression. The FSK treatment also significantly induced apoptosis in cancer cells by modulating the expression of apoptotic markers like caspase-3, cleaved caspase-3, caspase-9, cleaved caspase-9, full length-poly ADP ribose polymerase (PARP), cleaved-poly ADP ribose polymerase (C-PARP) and Bcl2 in dose dependent manner. Further FSK significantly modulated the cell survival pathway Phosphatidylinositol 3-kinase (PI3-K)/Akt signalling pathway upon 24 h of incubation in cervical cancer cells. The molecular docking studies revealed that the FSK engaged the active sites of both the targets by interacting with key residues.
Collapse
Affiliation(s)
- Doneti Ravinder
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Shailima Rampogu
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Gangappa Dharmapuri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Akbar Pasha
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| | - Smita C Pawar
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
4
|
Lai CY, Lin CY, Wu CR, Tsai CH, Tsai CW. Carnosic Acid Alleviates Levodopa-Induced Dyskinesia and Cell Death in 6-Hydroxydopamine-lesioned Rats and in SH-SY5Y Cells. Front Pharmacol 2021; 12:703894. [PMID: 34434108 PMCID: PMC8381221 DOI: 10.3389/fphar.2021.703894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
The present study investigated the impact of carnosic acid (CA) from rosemary on the levodopa (L-dopa)-induced dyskinesia (LID) in rats treated with 6-hydroxydopamine (6-OHDA). To establish the model of LID, 6-OHDA-lesioned rats were injected intraperitoneally with 30 mg/kg L-dopa once a day for 36 days. Rats were daily administrated with 3 or 15 mg/kg CA by oral intubation prior to L-dopa injection for 4 days. Rats pretreated with CA had reduced L-dopa-induced abnormal involuntary movements (AIMs) and ALO scores (a sum of axial, limb, and orofacial scores). Moreover, the increases of dopamine D1-receptor, p-DARPP-32, ΔFosB, p-ERK1/2, and p-c-Jun ser63, along with the decrease in p-c-Jun ser73, induced by L-dopa in 6-OHDA-treated rats were significantly reversed by pretreatment with CA. In addition, we used the model of SH-SY5Y cells to further examine the neuroprotective mechanisms of CA on L-dopa-induced cytotoxicity. SH-SY5Y cells were treated with CA for 18 h, and then co-treated with 400 μM L-dopa for the indicated time points. The results showed that pretreatment of CA attenuated the cell death and nuclear condensation induced by L-dopa. By the immunoblots, the reduction of Bcl-2, p-c-Jun ser73, and parkin and the induction of cleaved caspase 3, cleaved Poly (ADP-ribose) polymerase, p-ERK1/2, p-c-Jun ser63, and ubiquitinated protein by L-dopa were improved in cells pretreated with CA. In conclusion, CA ameliorates the development of LID via regulating the D1R signaling and prevents L-dopa-induced apoptotic cell death through modulating the ERK1/2-c-Jun and inducing the parkin. This study suggested that CA can be used to alleviate the adverse effects of LID for PD patients.
Collapse
Affiliation(s)
- Chun-Yi Lai
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Yuan Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chi-Rei Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chon-Haw Tsai
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Hörmann P, Delcambre S, Hanke J, Geffers R, Leist M, Hiller K. Impairment of neuronal mitochondrial function by L-DOPA in the absence of oxygen-dependent auto-oxidation and oxidative cell damage. Cell Death Discov 2021; 7:151. [PMID: 34226525 PMCID: PMC8257685 DOI: 10.1038/s41420-021-00547-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
L-3,4-Dihydroxyphenylalanin (L-DOPA or levodopa) is currently the most used drug to treat symptoms of Parkinson's disease (PD). After crossing the blood-brain barrier, it is enzymatically converted to dopamine by neuronal cells and restores depleted endogenous neurotransmitter levels. L-DOPA is prone to auto-oxidation and reactive intermediates of its degradation including reactive oxygen species (ROS) have been implicated in cellular damage. In this study, we investigated how oxygen tension effects L-DOPA stability. We applied oxygen tensions comparable to those in the mammalian brain and demonstrated that 2% oxygen almost completely stopped its auto-oxidation. L-DOPA even exerted a ROS scavenging function. Further mechanistic analysis indicated that L-DOPA reprogrammed mitochondrial metabolism and reduced oxidative phosphorylation, depolarized the mitochondrial membrane, induced reductive glutamine metabolism, and depleted the NADH pool. These results shed new light on the cellular effects of L-DOPA and its neuro-toxicity under physiological oxygen levels that are very distinct to normoxic in vitro conditions.
Collapse
Affiliation(s)
- Philipp Hörmann
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jasmin Hanke
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
6
|
Lecours C, St-Pierre MK, Picard K, Bordeleau M, Bourque M, Awogbindin IO, Benadjal A, Ibanez FG, Gagnon D, Cantin L, Parent M, Di Paolo T, Tremblay ME. Levodopa partially rescues microglial numerical, morphological, and phagolysosomal alterations in a monkey model of Parkinson's disease. Brain Behav Immun 2020; 90:81-96. [PMID: 32755645 DOI: 10.1016/j.bbi.2020.07.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative motor disorder. The mechanisms underlying the onset and progression of Levodopa (L-Dopa)-induced dyskinesia (LID) during PD treatment remain elusive. Emerging evidence implicates functional modification of microglia in the development of LID. Thus, understanding the link between microglia and the development of LID may provide the knowledge required to preserve or promote beneficial microglial functions, even during a prolonged L-Dopa treatment. To provide novel insights into microglial functional alterations in PD pathophysiology, we characterized their density, morphology, ultrastructure, and degradation activity in the sensorimotor functional territory of the putamen, using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) cynomolgus monkeys. A subset of MPTP monkeys was treated orally with L-Dopa and developed LID similar to PD patients. Using a combination of light, confocal and transmission electron microscopy, our quantitative analyses revealed alterations of microglial density, morphology and phagolysosomal activity following MPTP intoxication that were partially normalized with L-Dopa treatment. In particular, microglial density, cell body and arborization areas were increased in the MPTP monkeys, whereas L-Dopa-treated MPTP animals presented a microglial phenotype similar to the control animals. At the ultrastructural level, microglia did not differ between groups in their markers of cellular stress or aging. Nevertheless, microglia from the MPTP monkeys displayed reduced numbers of endosomes, compared with control animals, that remained lower after L-Dopa treatment. Microglia from MPTP monkeys treated with L-Dopa also had increased numbers of primary lysosomes compared with non-treated MPTP animals, while secondary and tertiary lysosomes remained unchanged. Moreover, a decrease microglial immunoreactivity for CD68, considered a marker of phagocytosis and lysosomal activity, was measured in the MPTP monkeys treated with L-Dopa, compared with non-treated MPTP animals. Taken together, these findings revealed significant changes in microglia during PD pathophysiology that were partially rescued by L-Dopa treatment. Albeit, this L-Dopa treatment conferred phagolysosomal insufficiency on microglia in the dyskinetic Parkinsonian monkeys.
Collapse
Affiliation(s)
- Cynthia Lecours
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Katherine Picard
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Maude Bordeleau
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Integrated Program of Neuroscience, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Melanie Bourque
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Ifeoluwa Oluleke Awogbindin
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Amin Benadjal
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Biologie Intégrative et Physiologie, Sorbonne Université, Paris VI, France
| | | | - Dave Gagnon
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada; CERVO Brain Research Center, Québec, QC, Canada
| | - Leo Cantin
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Martin Parent
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada; CERVO Brain Research Center, Québec, QC, Canada
| | - Therese Di Paolo
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Faculté de Pharmacie, Université Laval, Québec, QC, Canada.
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Cell death and mitochondrial dysfunction induced by the dietary non-proteinogenic amino acid L-azetidine-2-carboxylic acid (Aze). Amino Acids 2019; 51:1221-1232. [PMID: 31302779 DOI: 10.1007/s00726-019-02763-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
In addition to the 20 protein amino acids that are vital to human health, hundreds of naturally occurring amino acids, known as non-proteinogenic amino acids (NPAAs), exist and can enter the human food chain. Some NPAAs are toxic through their ability to mimic protein amino acids and this property is utilised by NPAA-containing plants to inhibit the growth of other plants or kill herbivores. The NPAA L-azetidine-2-carboxylic acid (Aze) enters the food chain through the use of sugar beet (Beta vulgaris) by-products as feed in the livestock industry and may also be found in sugar beet by-product fibre supplements. Aze mimics the protein amino acid L-proline and readily misincorporates into proteins. In light of this, we examined the toxicity of Aze to mammalian cells in vitro. We showed decreased viability in Aze-exposed cells with both apoptotic and necrotic cell death. This was accompanied by alterations in endosomal-lysosomal activity, changes to mitochondrial morphology and a significant decline in mitochondrial function. In summary, the results show that Aze exposure can lead to deleterious effects on human neuron-like cells and highlight the importance of monitoring human Aze consumption via the food chain.
Collapse
|
8
|
Park HJ, Kang JK, Lee MK. 1- O-Hexyl-2,3,5-Trimethylhydroquinone Ameliorates l-DOPA-Induced Cytotoxicity in PC12 Cells. Molecules 2019; 24:molecules24050867. [PMID: 30823626 PMCID: PMC6429301 DOI: 10.3390/molecules24050867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/18/2022] Open
Abstract
1-O-Hexyl-2,3,5-trimethylhydroquinone (HTHQ) has previously been found to have effective anti-oxidant and anti-lipid-peroxidative activity. We aimed to elucidate whether HTHQ can prevent dopaminergic neuronal cell death by investigating the effect on l-DOPA-induced cytotoxicity in PC12 cells. HTHQ protected from both l-DOPA-induced cell death and superoxide dismutase activity reduction. When assessing the effect of HTHQ on oxidative stress-related signaling pathways, HTHQ inhibited l-DOPA-induced phosphorylation of sustained extracellular signal-regulated kinases (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK1/2). HTHQ also normalized l-DOPA-reduced Bcl-2-associated death protein (Bad) phosphorylation and Bcl-2-associated X protein (Bax) expression, promoting cell survival. Taken together, HTHQ exhibits protective effects against l-DOPA-induced cell death through modulation of the ERK1/2-p38MAPK-JNK1/2-Bad-Bax signaling pathway in PC12 cells. These results suggest that HTHQ may show ameliorative effects against oxidative stress-induced dopaminergic neuronal cell death, although further studies in animal models of Parkinson’s disease are required to confirm this.
Collapse
Affiliation(s)
- Hyun Jin Park
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyung 1-ro, Osong, Heungduk-gu, Cheongju 28160, Korea.
| | - Jong Koo Kang
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju 28644, Korea.
| | - Myung Koo Lee
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyung 1-ro, Osong, Heungduk-gu, Cheongju 28160, Korea.
| |
Collapse
|
9
|
|
10
|
Gurturk Z, Tezcaner A, Dalgic AD, Korkmaz S, Keskin D. Maltodextrin modified liposomes for drug delivery through the blood-brain barrier. MEDCHEMCOMM 2017; 8:1337-1345. [PMID: 30108846 DOI: 10.1039/c7md00045f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/05/2017] [Indexed: 11/21/2022]
Abstract
Central nervous system acting drugs, when administered intravenously, cannot show their effect in the brain due to the difficulty in crossing the blood-brain barrier (BBB). Levodopa is one of those drugs that are used to treat Parkinson's disease. In this study, a new liposomal levodopa delivery system that is modified with maltodextrin was developed in order to target and enhance transport through the BBB. An antioxidant, glutathione, was co-loaded in liposomes as a supportive agent and its effect on liposome stability and delivery was investigated. Glutathione co-loading had a positive effect on the viabilities of 3T3 and SH-SY5Y cells. Maltodextrin targeted liposomes showed high in vitro levodopa passage in the parallel artificial membrane permeability assay and had superior binding to MDCK cells. Results suggest that maltodextrin modification of liposomes is an effective way of targeting the BBB and the developed liposomal formulation would improve brain delivery of central nervous system agents.
Collapse
Affiliation(s)
- Zeynep Gurturk
- Department of Biotechnology , Middle East Technical University , Ankara , 06800 , Turkey .
| | - Aysen Tezcaner
- Department of Biotechnology , Middle East Technical University , Ankara , 06800 , Turkey . .,Department of Engineering Sciences , Middle East Technical University , Ankara , 06800 , Turkey.,BIOMATEN , Center of Excellence in Biomaterials and Tissue Engineering , Middle East Technical University , Ankara , 06800 , Turkey
| | - Ali Deniz Dalgic
- Department of Engineering Sciences , Middle East Technical University , Ankara , 06800 , Turkey
| | - Seval Korkmaz
- Ali Raif Pharmaceutical Corporation , Istanbul , 34555 , Turkey
| | - Dilek Keskin
- Department of Biotechnology , Middle East Technical University , Ankara , 06800 , Turkey . .,Department of Engineering Sciences , Middle East Technical University , Ankara , 06800 , Turkey.,BIOMATEN , Center of Excellence in Biomaterials and Tissue Engineering , Middle East Technical University , Ankara , 06800 , Turkey
| |
Collapse
|
11
|
Kim KS, Zhao TT, Shin KS, Park HJ, Cho YJ, Lee KE, Kim SH, Lee MK. Gynostemma pentaphyllum Ethanolic Extract Protects Against Memory Deficits in an MPTP-Lesioned Mouse Model of Parkinson's Disease Treated with L-DOPA. J Med Food 2017; 20:11-18. [DOI: 10.1089/jmf.2016.3764] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Kyung Sook Kim
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Ting Ting Zhao
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Keon Sung Shin
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyun Jin Park
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
- Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Yoon Jeong Cho
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyung Eun Lee
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Seung Hwan Kim
- Department of Social Physical Education, Songwon University, Gwangju, Republic of Korea
| | - Myung Koo Lee
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
- Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
12
|
Effects of (−)-sesamin on motor and memory deficits in an MPTP-lesioned mouse model of Parkinson’s disease treated with l-DOPA. Neuroscience 2016; 339:644-654. [DOI: 10.1016/j.neuroscience.2016.10.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 01/22/2023]
|
13
|
L-DOPA modulates cell viability through the ERK-c-Jun system in PC12 and dopaminergic neuronal cells. Neuropharmacology 2016; 101:87-97. [DOI: 10.1016/j.neuropharm.2015.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/25/2015] [Accepted: 09/03/2015] [Indexed: 01/20/2023]
|
14
|
Jia JJ, Zeng XS, Yang LH, Bai J. The epinephrine increases tyrosine hydroxylase expression through upregulating thioredoxin-1 in PC12 cells. Biochimie 2015; 115:52-58. [PMID: 25957836 DOI: 10.1016/j.biochi.2015.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/27/2015] [Indexed: 11/20/2022]
Abstract
Epinephrine is a stress hormone which is sharply increased in response to acute stress and is continuously elevated during persistent stress. Thioredoxin-1 (Trx-1) is a redox regulating protein and is induced under various stresses. Our previous study has shown that epinephrine induces the expression of Trx-1. Tyrosine hydroxylase (TH) is the major rate-limiting enzyme in catecholamine biosynthesis in response to stress. However, how TH is regulated by epinephrine is still unknown. In the present study, we found that epinephrine increased the expression of TH in a dose- and time-dependent manner in PC12 cells, which was inhibited by propranolol (β-adrenergic receptor inhibitor), but not by phenoxybenzamine (α-adrenergic receptor inhibitor). The increase of TH was also inhibited by SQ22536 (adenylyl cyclase inhibitor), H-89(PKA inhibitor) and LY294002 (phosphatidylinositol 3 kinase inhibitor). More importantly, overexpression of Trx-1 significantly enhanced the expression of TH, while Trx-1 siRNA suppressed TH expression induced by epinephrine. These results suggest that Trx-1 is involved in TH expression induced by epinephrine in PC12 cells.
Collapse
Affiliation(s)
- Jin-Jing Jia
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Xian-Si Zeng
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Li-Hua Yang
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
15
|
Hu HJ, Zhou SH, Liu QM. Treatment of pheochromocytoma blockade of MAPK pathway inhibition in the NF-κB pathway and bFGF — Effect of statins on pheochromocytoma patients. Int J Cardiol 2015; 182:161-2. [DOI: 10.1016/j.ijcard.2015.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 01/02/2015] [Indexed: 02/06/2023]
|
16
|
Magalingam KB, Radhakrishnan A, Ramdas P, Haleagrahara N. Quercetin Glycosides Induced Neuroprotection by Changes in the Gene Expression in a Cellular Model of Parkinson’s Disease. J Mol Neurosci 2014; 55:609-17. [DOI: 10.1007/s12031-014-0400-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022]
|
17
|
Park KH, Park HJ, Shin KS, Lee MK. Multiple treatments with L-3,4-dihydroxyphenylalanine modulate dopamine biosynthesis and neurotoxicity through the protein kinase A-transient extracellular signal-regulated kinase and exchange protein activation by cyclic AMP-sustained extracellular signal-regulated kinase signaling pathways. J Neurosci Res 2014; 92:1746-56. [PMID: 25044243 DOI: 10.1002/jnr.23450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 06/02/2014] [Indexed: 02/06/2023]
Abstract
Multiple treatments with L-3,4-dihydroxyphenylalanine (L-DOPA; 20 µM) induce neurite-like outgrowth and reduce dopamine biosynthesis in rat adrenal pheochromocytoma (PC) 12 cells. We therefore investigated the effects of multiple treatments with L-DOPA (MT-LD) on cell survival and death over a duration of 6 days by using PC12 cells and embryonic rat midbrain primary cell cultures. MT-LD (10 and 20 µM) decreased cell viability, and both types of cells advanced to the differentiation process at 4-6 days. MT-LD induced cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) phosphorylation and exchange protein activation by cAMP (Epac) expression at 1-3 days, which led to transient extracellular signal-regulated kinase (ERK1/2) phosphorylation in both cells. In these states, MT-LD activated cAMP-response element binding protein (CREB; Ser133) and tyrosine hydroxylase (Ser40) phosphorylation in PC12 cells, which led to an increase in intracellular dopamine levels. In contrast, MT-LD induced prolonged Epac expression at 4-5 days in both cells, which led to sustained ERK1/2 phosphorylation. In these states, the dopamine levels were decreased in PC12 cells. In addition, MT-LD induced c-Jun N-terminal kinase1/2 phosphorylation and cleaved caspase-3 expression at 4-6 days in both cells. These results suggest that MT-LD maintains cell survival via PKA-transient ERK1/2 activation, which stimulates dopamine biosynthesis. In contrast, at the later time period, MT-LD induces differentiation via both prolonged Epac and sustained ERK1/2 activation, which subsequently leads to the cell death process. Our data demonstrate that L-DOPA can cause neurotoxicity by modulating the Epac-ERK pathways in neuronal and PC12 cells.
Collapse
Affiliation(s)
- Keun Hong Park
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, Cheongju, Republic of Korea
| | | | | | | |
Collapse
|
18
|
Guanosine Protects Glial Cells Against 6-Hydroxydopamine Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 837:23-33. [DOI: 10.1007/5584_2014_73] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Park HJ, Park KH, Shin KS, Lee MK. The roles of cyclic AMP-ERK-Bad signaling pathways on 6-hydroxydopamine-induced cell survival and death in PC12 cells. Toxicol In Vitro 2013; 27:2233-41. [PMID: 24055892 DOI: 10.1016/j.tiv.2013.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/17/2013] [Accepted: 09/11/2013] [Indexed: 01/07/2023]
Abstract
The roles of cyclic AMP (cAMP)-ERK1/2-Bad signaling pathways in 6-hydroxydopamine (6-OHDA)-induced cell survival and death were investigated. In PC12 cells, 6-OHDA (10-100μM) concentration-dependently increased the intracellular levels of cAMP mediated by the Ca(2+)-CaMKII-adenylyl cyclase system. 6-OHDA at the non-toxic level (10μM) induced transient ERK1/2 phosphorylation and BadSer112 phosphorylation, which maintained cell survival. In contrast, the high levels of cAMP induced by toxic levels (50 and 100μM) of 6-OHDA induced sustained ERK1/2 phosphorylaton and BadSer155 phosphorylation. The cells then moved to cell death process through Bcl2 phosphorylation and caspase-3 activation. BadSer155 phosphorylation by 6-OHDA was inhibited by PKA (H89) and MEK (U0126) inhibitors, indicating that it was mediated via the cAMP-PKA-sustained ERK1/2 system. In SK-N-BE(2)C cells, the non-toxic level of 6-OHDA also showed transient ERK1/2 phosphorylation and BadSer112 phosphorylation, and toxic levels of 6-OHDA exhibited sustained ERK1/2 phosphorylation and BadSer155 phosphorylation. These results suggest that ERK1/2 phosphorylation by 6-OHDA shows biphasic functions on cell survival and death in PC12 cells. It is, therefore, proposed that the cAMP-ERK1/2-Bad signaling pathways incurred by toxic levels of 6-OHDA play a role in dopamine neuron death of animal models of Parkinson's disease.
Collapse
Affiliation(s)
- Hyun Jin Park
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, 52, Naesudong-ro, Heungduk-gu, Cheongju 361-763, Republic of Korea
| | | | | | | |
Collapse
|
20
|
Jia JJ, Zeng XS, Li Y, Ma S, Bai J. Ephedrine induced thioredoxin-1 expression through β-adrenergic receptor/cyclic AMP/protein kinase A/dopamine- and cyclic AMP-regulated phosphoprotein signaling pathway. Cell Signal 2013; 25:1194-1201. [PMID: 23416460 DOI: 10.1016/j.cellsig.2013.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/08/2013] [Indexed: 01/04/2023]
Abstract
Ephedrine (Eph) is one of alkaloids that has been isolated from the ancient herb ephedra (ma huang) and is used as the treatment of asthma, hypotension and fatigue. However, its molecular mechanism remains unknown. Thioredoxin-1 (Trx-1) is a redox regulating protein, which has various biological activities, including regulating transcription factor DNA binding activity and neuroprotection. In this study, we found that Eph induced Trx-1 expression, which was inhibited by propranolol (β-adrenergic receptor inhibitor), but not by phenoxybenzamine (α-adrenergic receptor inhibitor) in rat pheochromocytoma PC12 cells. Moreover, the increase of Trx-1 expression was inhibited by SQ22536 (adenylyl cyclase inhibitor) and H-89 (protein kinase A inhibitor). Interestingly, the effect of Eph on dopamine- and cyclic AMP-regulated phosphoprotein (DARPP-32) was similar to Trx-1. Thus, the relationship between Trx-1 and DARPP-32 was further studied. The DARPP-32 siRNA significantly reduced Trx-1 expression, but Trx-1 siRNA did not exchange DARPP-32. These results suggested that Eph induced the Trx-1 expression through β-adrenergic receptor/cyclic AMP/PKA/DARPP-32 signaling pathway. Furthermore, Eph induced PKA-mediated cyclic AMP response element-binding protein (CREB) phosphorylation. Down-regulation of DARPP-32 expression decreased phosphorylated CREB. In addition, Eph had a significant effect on the viability of the rat pheochromocytoma PC12 cells through β-adrenergic receptors. Trx-1 may play an important role in the actions of Eph.
Collapse
Affiliation(s)
- Jin-Jing Jia
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | | | | | | | | |
Collapse
|
21
|
Zhang M, Lee HJ, Park KH, Park HJ, Choi HS, Lim SC, Lee MK. Modulatory effects of sesamin on dopamine biosynthesis and l-DOPA-induced cytotoxicity in PC12 cells. Neuropharmacology 2012; 62:2219-26. [DOI: 10.1016/j.neuropharm.2012.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
|
22
|
Park KH, Park HJ, Shin KS, Choi HS, Kai M, Lee MK. Modulation of PC12 cell viability by forskolin-induced cyclic AMP levels through ERK and JNK pathways: an implication for L-DOPA-induced cytotoxicity in nigrostriatal dopamine neurons. Toxicol Sci 2012; 128:247-57. [PMID: 22539619 DOI: 10.1093/toxsci/kfs139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The intracellular levels of cyclic AMP (cAMP) increase in response to cytotoxic concentrations of L-DOPA in PC12 cells, and forskolin that induces intracellular cAMP levels either protects PC12 cells from L-DOPA-induced cytotoxicity or enhances cytotoxicity in a concentration-dependent manner. This study investigated the effects of cAMP induced by forskolin on cell viability of PC12 cells, relevant to L-DOPA-induced cytotoxicity in Parkinson's disease therapy. The low levels of forskolin (0.01 and 0.1 μM)-induced cAMP increased dopamine biosynthesis and tyrosine hydroxylase (TH) phosphorylation, and induced transient phosphorylation of ERK1/2 within 1 h. However, at the high levels of forskolin (1.0 and 10 μM)-induced cAMP, dopamine biosynthesis and TH phosphorylation did not increase, but rapid differentiation in neurite-like formation was observed with a steady state. The high levels of forskolin-induced cAMP also induced sustained increase in ERK1/2 phosphorylation within 0.25-6 h and then led to apoptosis, which was apparently mediated by JNK1/2 and caspase-3 activation. Multiple treatment of PC12 cells with nontoxic L-DOPA (20 μM) for 4-6 days induced neurite-like formation and decreased intracellular dopamine levels by reducing TH phosphorylation. These results suggest that the low levels of forskolin-induced cAMP increased dopamine biosynthesis in cell survival via transient ERK1/2 phosphorylation. In contrast, the high levels of forskolin-induced cAMP induced differentiation via sustained ERK1/2 phosphorylation and then led to apoptosis. Taken together, the intracellular levels of cAMP play a dual role in cell survival and death through the ERK1/2 and JNK1/2 pathways in PC12 cells.
Collapse
Affiliation(s)
- Keun Hong Park
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, Cheongju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Peterson LJ, Flood PM. Oxidative stress and microglial cells in Parkinson's disease. Mediators Inflamm 2012; 2012:401264. [PMID: 22544998 PMCID: PMC3321615 DOI: 10.1155/2012/401264] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/03/2012] [Accepted: 01/09/2012] [Indexed: 12/22/2022] Open
Abstract
Significant evidence has now been accumulated that microglial cells play a central role in the degeneration of DA neurons in animal models of PD. The oxidative stress response by microglial cells, most notably the activity of the enzyme NADPH oxidase, appears to play a central role in the pathology of PD. This oxidative stress response occurs in microglia through the activation of the ERK signaling pathway by proinflammatory stimuli, leading to the phosphorylation and translocation of the p47(phox) and p67(phox) cytosolic subunits, the activation of membrane-bound PHOX, and the production of ROS. Therapeutic anti-inflammatories which prevent DA neurodegeneration in PD, including anti-inflammatory cytokines, morphinan compounds, NADPH oxidase inhibitors, NF-κB inhibitors, and β2-AR agonists, all function to inhibit the activation of the PHOX in microglial cells. These observations suggest a central role for the oxidative stress response in microglial cells as a mediator or regulator of DA neurodegeneration in PD.
Collapse
Affiliation(s)
- Lynda J. Peterson
- North Carolina Oral Health Institute, The University of North Carolina at Chapel Hill, CB#7454, Chapel Hill, NC 27599-7454, USA
| | - Patrick M. Flood
- North Carolina Oral Health Institute, The University of North Carolina at Chapel Hill, CB#7454, Chapel Hill, NC 27599-7454, USA
| |
Collapse
|
24
|
Maruoka H, Sasaya H, Sugihara K, Shimoke K, Ikeuchi T. Low-molecular-weight compounds having neurotrophic activity in cultured PC12 cells and neurons. J Biochem 2011; 150:473-5. [PMID: 21908547 DOI: 10.1093/jb/mvr113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent reports have indicated that some low-molecular-weight compounds mimic neurotrophic factors inducing neurite outgrowth and neuroprotection. Carnosic acid (CA) promotes neurite outgrowth through the activation of Nrf2 in PC12 cells. CA also protects neurons via the keap/Nrf2 transcriptional pathway from oxidative stress. Forskolin-induced neurite outgrowth is mediated by activation of the PKA signalling pathway and this PKA-mediated neurite outgrowth is achieved by the expression of nur77 in PC12 cells. In addition, forskolin at its low concentration is closely related to the cAMP-induced protective function against L-DOPA-induced cytotoxicity in PC12 cells. A HDAC inhibitor trichostatin A (TSA) increases neurite length via p53 acetylation in rat cultured cerebellar granule neurons and in cerebral cortical neurons, and also protects neurons against glutathione depletion-induced oxidative stress. Recently, it was revealed that Nrf2 and p53 bind to CBP/p300 directly, and Nur77 is acetylated in vivo and in vitro by CBP/p300. Acetylation of Nrf2, p53 and Nur77 by CBP/p300 may constitute a novel similar regulatory mechanism for low-molecular-weight compounds with neurotrophic activities.
Collapse
Affiliation(s)
- Hiroki Maruoka
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Materials and Bioengineering and Strategic Research Base, Kansai University, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
25
|
Lipski J, Nistico R, Berretta N, Guatteo E, Bernardi G, Mercuri NB. L-DOPA: a scapegoat for accelerated neurodegeneration in Parkinson's disease? Prog Neurobiol 2011; 94:389-407. [PMID: 21723913 DOI: 10.1016/j.pneurobio.2011.06.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 12/21/2022]
Abstract
There is consensus that amelioration of the motor symptoms of Parkinson's disease is most effective with L-DOPA (levodopa). However, this necessary therapeutic step is biased by an enduring belief that L-DOPA is toxic to the remaining substantia nigra dopaminergic neurons by itself, or by specific metabolites such as dopamine. The concept of L-DOPA toxicity originated from pre-clinical studies conducted mainly in cell culture, demonstrating that L-DOPA or its derivatives damage dopaminergic neurons due to oxidative stress and other mechanisms. However, the in vitro data remain controversial as some studies showed neuroprotective, rather than toxic action of the drug. The relevance of this debate needs to be considered in the context of the studies conducted on animals and in clinical trials that do not provide convincing evidence for L-DOPA toxicity in vivo. This review presents the current views on the pathophysiology of Parkinson's disease, focusing on mitochondrial dysfunction and oxidative/proteolytic stress, the factors that can be affected by L-DOPA or its metabolites. We then critically discuss the evidence supporting the two opposing views on the effects of L-DOPA in vitro, as well as the animal and human data. We also address the problem of inadequate experimental models used in these studies. L-DOPA remains the symptomatic 'hero' of Parkinson's disease. Whether it contributes to degeneration of nigral dopaminergic neurons, or is a 'scapegoat' for explaining undesirable or unexpected effects of the treatment, remains a hotly debated topic.
Collapse
Affiliation(s)
- Janusz Lipski
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd., Auckland 1142, New Zealand.
| | | | | | | | | | | |
Collapse
|
26
|
Paris I, Muñoz P, Huenchuguala S, Couve E, Sanders LH, Greenamyre JT, Caviedes P, Segura-Aguilar J. Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line. Toxicol Sci 2011; 121:376-88. [PMID: 21427056 DOI: 10.1093/toxsci/kfr060] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aminochrome, the precursor of neuromelanin, has been proposed to be involved in the neurodegeneration neuromelanin-containing dopaminergic neurons in Parkinson's disease. We aimed to study the mechanism of aminochrome-dependent cell death in a cell line derived from rat substantia nigra. We found that aminochrome (50μM), in the presence of NAD(P)H-quinone oxidoreductase, EC 1.6.99.2 (DT)-diaphorase inhibitor dicoumarol (DIC) (100μM), induces significant cell death (62 ± 3%; p < 0.01), increase in caspase-3 activation (p < 0.001), release of cytochrome C, disruption of mitochondrial membrane potential (p < 0.01), damage of mitochondrial DNA, damage of mitochondria determined with transmission electron microscopy, a dramatic morphological change characterized as cell shrinkage, and significant increase in number of autophagic vacuoles. To determine the role of autophagy on aminochrome-induced cell death, we incubated the cells in the presence of vinblastine and rapamycin. Interestingly, 10μM vinblastine induces a 5.9-fold (p < 0.001) and twofold (p < 0.01) significant increase in cell death when the cells were incubated with 30μM aminochrome in the absence and presence of DIC, respectively, whereas 10μM rapamycin preincubated 24 h before addition of 50μM aminochrome in the absence and the presence of 100μM DIC induces a significant decrease (p < 0.001) in cell death. In conclusion, autophagy seems to be an important protective mechanism against two different aminochrome-induced cell deaths that initially showed apoptotic features. The cell death induced by aminochrome when DT-diaphorase is inhibited requires activation of mitochondrial pathway, whereas the cell death induced by aminochrome alone requires inhibition of autophagy-dependent degrading of damaged organelles and recycling through lysosomes.
Collapse
Affiliation(s)
- Irmgard Paris
- Program of Molecular and Clinical Pharmacology, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | | | | | | | | | | | | | | |
Collapse
|