1
|
Patrone LGA, Karlen-Amarante M, Gargaglioni LH, Zoccal DB. Prenatal cannabinoid exposure affects central cardiorespiratory control in young male and female rats. J Appl Physiol (1985) 2025; 138:1201-1216. [PMID: 40235298 DOI: 10.1152/japplphysiol.00044.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/10/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025] Open
Abstract
Cannabis use among pregnant women is rising globally, mainly for recreational and medical reasons to relieve symptoms like nausea, vomiting, anxiety, and insomnia. This trend is reinforced by the misconception that its natural origin guarantees safety, along with government policies promoting legalization. However, exposure to cannabinoids in utero can impact normal offspring's neurodevelopment and induce malfunctioning of various physiological systems, including the cardiorespiratory function. The present study investigated whether prenatal cannabinoid exposure disrupts the generation and control of autonomic and respiratory activities in early adulthood. Using in situ preparations of juvenile male and female rats (27-28 days old) exposed to a synthetic cannabinoid (WIN 55,212-2; 0.5 mg/kg/day, n = 4-9) or vehicle (n = 3-10) during gestation, we analyzed the activity of nerves innervating respiratory muscles and blood vessels. We noticed that females receiving WIN prenatally exhibited a reduced excitatory drive (postinspiratory activity, post-I) to laryngeal muscles under resting conditions, suggesting impaired control of upper airway patency. Moreover, males and females exposed to WIN displayed reduced post-I and abdominal expiratory motor activities during stimulation of carotid body chemoreceptors (mimicking low-oxygen situations) or exposure to high carbon dioxide levels, indicating an inability to mount appropriate reflex respiratory motor responses during blood gas disturbances. In addition, WIN-treated males showed attenuated sympathoexcitatory responses to carotid body activation or hypercapnia, evidencing a limited capacity to promote sympathetic-mediated hemodynamic changes. Thus, manipulating the fetal endocannabinoid system impacts the development of networks controlling respiratory and autonomic functions, leading to negative, long-term consequences for ventilation and cardiovascular function.NEW & NOTEWORTHY Cannabis use among pregnant women is rising globally; however, the impact on offspring's homeostatic physiological systems is still uncertain. We found that prenatal cannabinoid exposure impairs respiratory motor control in early adulthood. We also identified that sympathetic control is limited in juvenile males exposed to cannabinoids prenatally. Cannabinoids during pregnancy disrupt offspring's central cardiorespiratory control, highlighting the need for caution regarding cannabis use during pregnancy and its postnatal implications.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, São Paulo State University (UNESP/FCAV), Jaboticabal, Brazil
| | - Marlusa Karlen-Amarante
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, São Paulo State University (UNESP/FCAV), Jaboticabal, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP/FOAR), Araraquara, Brazil
| |
Collapse
|
2
|
Patrone LGA, Frias AT, Fantinatti GT, Stabile AM, Klein W, Bícego KC, Gargaglioni LH. Long-term effects on cardiorespiratory and behavioral responses in male and female rats prenatally exposed to cannabinoid. Am J Physiol Lung Cell Mol Physiol 2024; 327:L341-L358. [PMID: 39012058 DOI: 10.1152/ajplung.00042.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Development of the respiratory system can be affected by the use of drugs during pregnancy, as the prenatal phase is highly sensitive to pharmacological interventions, resulting in long-term consequences. The deleterious effects of external cannabinoids during gestation may be related to negative interference in central nervous system formation, cardiorespiratory system function, and behavioral disorders. Nevertheless, the impact of external cannabinoids on cardiorespiratory network development, chemosensitivity, and its future consequences in adulthood is still unclear. We evaluated the effects of prenatal exposure to a synthetic cannabinoid (WIN 55,212-2, 0.5 mg·kg-1·day-1) on the cardiorespiratory control and panic-like behavior of male and female rats in adulthood. Exogenous cannabinoid exposure during pregnancy resulted in a sex-dependent difference in breathing control. Specifically, males showed increased chemosensitivity to CO2 and O2, whereas females exhibited decreased sensitivity. Altered cardiovascular control was evident, with prenatally treated males and females being more susceptible to hypertension and tachycardia under adverse environmental conditions. Moreover, WIN-treated males exhibited higher fragmentation of sleep episodes, whereas females displayed anxiolytic and panicolytic behavioral responses to CO2. However, no changes were observed in the mechanical component of the respiratory system, and there were no neuroanatomical alterations, such as changes in the expression of CB1 receptors in the brainstem or in the quantification of catecholaminergic and serotonergic neurons. These findings highlight that external interference in cannabinoid signaling during fetal development causes sex-specific, long-lasting effects for the cardiorespiratory system and behavioral responses in adulthood.NEW & NOTEWORTHY The surge in recreational cannabis use and cannabinoid-based medication prescription among pregnant women has been notable in recent years, fueled by the misconception that natural products are inherently safe. Significant gaps persist regarding the potential risks of maternal consumption of cannabinoids and the long-term effects on the cardiorespiratory system of their offspring, which may be determined by sex. Accordingly, this research aims to diminish this lack of information and raise a note of caution.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, Brazil
| | - Alana T Frias
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, Brazil
| | - Gabriel T Fantinatti
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, Brazil
| | - Angelita M Stabile
- Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Wilfried Klein
- Department of Biology, School of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, Brazil
| |
Collapse
|
3
|
Cáceres D, Ochoa M, González-Ortiz M, Bravo K, Eugenín J. Effects of Prenatal Cannabinoids Exposure upon Placenta and Development of Respiratory Neural Circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:199-232. [PMID: 37466775 DOI: 10.1007/978-3-031-32554-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cannabis use has risen dangerously during pregnancy in the face of incipient therapeutic use and a growing perception of safety. The main psychoactive compound of the Cannabis sativa plant is the phytocannabinoid delta-9-tetrahydrocannabinol (A-9 THC), and its status as a teratogen is controversial. THC and its endogenous analogues, anandamide (AEA) and 2-AG, exert their actions through specific receptors (eCBr) that activate intracellular signaling pathways. CB1r and CB2r, also called classic cannabinoid receptors, together with their endogenous ligands and the enzymes that synthesize and degrade them, constitute the endocannabinoid system. This system is distributed ubiquitously in various central and peripheral tissues. Although the endocannabinoid system's most studied role is controlling the release of neurotransmitters in the central nervous system, the study of long-term exposure to cannabinoids on fetal development is not well known and is vital for understanding environmental or pathological embryo-fetal or postnatal conditions. Prenatal exposure to cannabinoids in animal models has induced changes in placental and embryo-fetal organs. Particularly, cannabinoids could influence both neural and nonneural tissues and induce embryo-fetal pathological conditions in critical processes such as neural respiratory control. This review aims at the acute and chronic effects of prenatal exposure to cannabinoids on placental function and the embryo-fetal neurodevelopment of the respiratory pattern. The information provided here will serve as a theoretical framework to critically evaluate the teratogen effects of the consumption of cannabis during pregnancy.
Collapse
Affiliation(s)
- Daniela Cáceres
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Martín Ochoa
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Karina Bravo
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Facultad de Ingeniería, Universidad Autónoma de Chile, Providencia, Chile
| | - Jaime Eugenín
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Wiese BM, Alvarez Reyes A, Vanderah TW, Largent-Milnes TM. The endocannabinoid system and breathing. Front Neurosci 2023; 17:1126004. [PMID: 37144090 PMCID: PMC10153446 DOI: 10.3389/fnins.2023.1126004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/16/2023] [Indexed: 05/06/2023] Open
Abstract
Recent changes in cannabis accessibility have provided adjunct therapies for patients across numerous disease states and highlights the urgency in understanding how cannabinoids and the endocannabinoid (EC) system interact with other physiological structures. The EC system plays a critical and modulatory role in respiratory homeostasis and pulmonary functionality. Respiratory control begins in the brainstem without peripheral input, and coordinates the preBötzinger complex, a component of the ventral respiratory group that interacts with the dorsal respiratory group to synchronize burstlet activity and drive inspiration. An additional rhythm generator: the retrotrapezoid nucleus/parafacial respiratory group drives active expiration during conditions of exercise or high CO2. Combined with the feedback information from the periphery: through chemo- and baroreceptors including the carotid bodies, the cranial nerves, stretch of the diaphragm and intercostal muscles, lung tissue, and immune cells, and the cranial nerves, our respiratory system can fine tune motor outputs that ensure we have the oxygen necessary to survive and can expel the CO2 waste we produce, and every aspect of this process can be influenced by the EC system. The expansion in cannabis access and potential therapeutic benefits, it is essential that investigations continue to uncover the underpinnings and mechanistic workings of the EC system. It is imperative to understand the impact cannabis, and exogenous cannabinoids have on these physiological systems, and how some of these compounds can mitigate respiratory depression when combined with opioids or other medicinal therapies. This review highlights the respiratory system from the perspective of central versus peripheral respiratory functionality and how these behaviors can be influenced by the EC system. This review will summarize the literature available on organic and synthetic cannabinoids in breathing and how that has shaped our understanding of the role of the EC system in respiratory homeostasis. Finally, we look at some potential future therapeutic applications the EC system has to offer for the treatment of respiratory diseases and a possible role in expanding the safety profile of opioid therapies while preventing future opioid overdose fatalities that result from respiratory arrest or persistent apnea.
Collapse
Affiliation(s)
- Beth M. Wiese
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Angelica Alvarez Reyes
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
- College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Todd W. Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Tally M. Largent-Milnes
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
- *Correspondence: Tally M. Largent-Milnes,
| |
Collapse
|
5
|
Batista LA, Cabral LM, Moreira TS, Takakura AC. Inhibition of anandamide hydrolysis does not rescue respiratory abnormalities observed in an animal model of Parkinson's disease. Exp Physiol 2021; 107:161-174. [PMID: 34907627 DOI: 10.1113/ep089249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/08/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The respiratory frequency to hypercapnia is attenuated in an animal model of Parkinson's disease (PD): what is the therapeutic potential of inhibition of anandamide hydrolysis for this respiratory deficit? What is the main finding and its importance? In an animal model of PD there is an increased variability in resting respiratory frequency and an impaired tachypnoeic response to hypercapnia, which is accompanied by diminished expression of Phox2b immunoreactivity in the retrotrapezoid nucleus (RTN). Inhibition of anandamide hydrolysis also impaired the response to hypercapnia and decreased the number of Phox2b immunoreactive cells in the RTN. This strategy does not reverse the respiratory deficits observed in an animal model of PD. ABSTRACT Parkinson's disease (PD) is characterized by severe classic motor symptoms along with various non-classic symptoms. Among the non-classic symptoms, respiratory dysfunctions are increasingly recognized as contributory factors to complications in PD. The endocannabinoid system has been proposed as a target to treat PD and other neurodegenerative disorders. Since symptom management of PD is mainly focused on the classic motor symptoms, in this work we aimed to test the hypothesis that increasing the actions of the endocannabinoid anandamide by inhibiting its hydrolysis with URB597 reverses the respiratory deficits observed in an animal model of PD. Results show that bilateral injection of 6-hydroxydopamine hydrochloride (6-OHDA) in the dorsal striatum leads to neurodegeneration of the substantia nigra, accompanied by reduced expression of Phox2b in the retrotrapezoid nucleus (RTN), an increase in resting respiratory frequency variability and an impaired tachypnoeic response to hypercapnia. URB597 treatment in control animals was associated with an impaired tachypnoeic response to hypercapnia and a reduced expression of Phox2b in the RTN, whereas treatment of 6-OHDA-lesioned animals with URB597 was not able to reverse the deficits observed. These results suggest that targeting anandamide may not be a suitable strategy to treat PD since this treatment mimics the respiratory deficits observed in the 6-OHDA model of PD.
Collapse
Affiliation(s)
- Luara A Batista
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, Brazil
| | - Laís M Cabral
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, Brazil
| |
Collapse
|
6
|
Calik MW, Carley DW. Effects of Cannabinoid Agonists and Antagonists on Sleep and Breathing in Sprague-Dawley Rats. Sleep 2018; 40:3926048. [PMID: 28934522 DOI: 10.1093/sleep/zsx112] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Study Objectives There are no pharmacological treatments for obstructive sleep apnea syndrome, but dronabinol showed promise in a small pilot study. In anesthetized rats, dronabinol attenuates reflex apnea via activation of cannabinoid (CB) receptors located on vagal afferents; an effect blocked by cannabinoid type 1 (CB1) and/or type 2 (CB2) receptor antagonists. Here, using a natural model of central sleep apnea, we examine the effects of dronabinol, alone and in combination with selective antagonists in conscious rats chronically instrumented to stage sleep and measure cessation of breathing. Methods Adult male Sprague-Dawley rats were anesthetized and implanted with bilateral stainless steel screws into the skull for electroencephalogram recording and bilateral wire electrodes into the nuchal muscles for electromyogram recording. Each animal was recorded by polysomnography on multiple occasions separated by at least 3 days. The study was a fully nested, repeated measures crossover design, such that each rat was recorded following each of 8 intraperitoneal injections: vehicle; vehicle and CB1 antagonist (AM 251); vehicle and CB2 antagonist (AM 630); vehicle and CB1/CB2 antagonist; dronabinol; dronabinol and CB1 antagonist; dronabinol and CB2 antagonist; and dronabinol and CB1/CB2 antagonist. Results Dronabinol decreased the percent time spent in rapid eye movement (REM) sleep. CB receptor antagonists did not reverse this effect. Dronabinol also decreased apneas during sleep, and this apnea suppression was reversed by CB1 or CB1/CB2 receptor antagonism. Conclusions Dronabinol's effects on apneas were dependent on CB1 receptor activation, while dronabinol's effects on REM sleep were CB receptor-independent.
Collapse
MESH Headings
- Animals
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoid Receptor Agonists/therapeutic use
- Cannabinoid Receptor Antagonists/pharmacology
- Cannabinoid Receptor Antagonists/therapeutic use
- Disease Models, Animal
- Dronabinol/pharmacology
- Dronabinol/therapeutic use
- Electroencephalography
- Electromyography
- Indoles/pharmacology
- Male
- Piperidines/pharmacology
- Polysomnography
- Pyrazoles/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Respiration/drug effects
- Sleep/drug effects
- Sleep Apnea, Central/drug therapy
- Sleep Apnea, Central/physiopathology
- Sleep, REM/drug effects
- Vagus Nerve/physiology
Collapse
Affiliation(s)
- Michael W Calik
- Center for Narcolepsy, Sleep and Health Research, University of Illinois at Chicago, Chicago, IL
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, IL
| | - David W Carley
- Center for Narcolepsy, Sleep and Health Research, University of Illinois at Chicago, Chicago, IL
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, IL
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
7
|
Rousseau JP, Caravagna C. Electrophysiology on Isolated Brainstem-spinal Cord Preparations from Newborn Rodents Allows Neural Respiratory Network Output Recording. J Vis Exp 2015. [PMID: 26649567 DOI: 10.3791/53071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
While it is well known that the central respiratory drive is located in the brainstem, several aspects of its basic function, development, and response to stimuli remain to be fully understood. To overcome the difficulty of accessing the brainstem in the whole animal, isolation of the brainstem and part of the spinal cord is performed. This preparation is maintained in artificial cerebro-spinal fluid where gases, concentrations, and temperature are controlled and monitored. The output signal from the respiratory network is recorded by a suction electrode placed on the fourth ventral root. In this manner, stimuli can be directly applied onto the brainstem, and the effect can be recorded directly. The signal recorded is linked to the inspiratory signal sent to the diaphragm via the phrenic nerve, and can be described as bursts (around 8 bursts per minute). Analysis of these bursts (frequency, amplitude, length, and area under the curve) allows precise characterization of the stimulus effect on the respiratory network. The main limitation of this method is the viability of the preparation beyond the early post-natal stages. Thus, this method greatly focuses on the study of the whole network without the peripheral inputs in the newborn rat.
Collapse
|
8
|
Sadhasivam S, Zhang X, Chidambaran V, Mavi J, Pilipenko V, Mersha TB, Meller J, Kaufman KM, Martin LJ, McAuliffe J. Novel associations between FAAH genetic variants and postoperative central opioid-related adverse effects. THE PHARMACOGENOMICS JOURNAL 2015; 15:436-42. [PMID: 25558980 PMCID: PMC4492912 DOI: 10.1038/tpj.2014.79] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/15/2014] [Accepted: 11/07/2014] [Indexed: 01/01/2023]
Abstract
Opioid effects are potentiated by cannabinoid agonists including anandamide, an endocannabinoid. Inter-individual variability in responses to opioids is a major clinical problem. Multiple deaths and anoxic brain injuries occur every year because of opioid-induced respiratory depression (RD) in surgical patients and drug abusers of opioids and cannabinoids. This study aimed to determine specific associations between genetic variants of fatty acid amide hydrolase (FAAH) and postoperative central opioid adverse effects in children undergoing tonsillectomy. This is a prospective genotype-blinded observational study in which 259 healthy children between 6 and 15 years of age who received standard perioperative care with a standard anesthetic and an intraoperative dose of morphine were enrolled. Associations between frequent polymorphisms of FAAH and central postoperative opioid adverse effects including, RD, postoperative nausea and vomiting (PONV) and prolonged stay in Post Anesthesia Recovery Room (postoperative anesthesia care unit, PACU) due to RD and PONV were analyzed. Five specific FAAH single nucleotide polymorphisms (SNPs) had significant associations with more than twofold increased risk for refractory PONV (adjusted P<0.0018), and nominal associations (P<0.05) with RD and prolonged PACU stay in white children undergoing tonsillectomy. The FAAH SNP, rs324420, is a missense mutation with altered FAAH function and it is linked with other FAAH SNPs associated with PONV and RD in our cohort; association between PONV and rs324420 was confirmed in our extended cohort with additional 66 white children. Specific FAAH polymorphisms are associated with refractory PONV, opioid-related RD, and prolonged PACU stay due to opioid adverse effects in white children undergoing tonsillectomy.
Collapse
Affiliation(s)
- Senthilkumar Sadhasivam
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Xue Zhang
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Vidya Chidambaran
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jagroop Mavi
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Valentina Pilipenko
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Tesfaye B. Mersha
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jaroslaw Meller
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Bioinformatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth M. Kaufman
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Cincinnati VA Medical Center, Cincinnati, OH, USA
| | - Lisa J. Martin
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - John McAuliffe
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
9
|
Biesiada J, Chidambaran V, Wagner M, Zhang X, Martin LJ, Meller J, Sadhasivam S. Genetic risk signatures of opioid-induced respiratory depression following pediatric tonsillectomy. Pharmacogenomics 2014; 15:1749-1762. [PMID: 25493568 PMCID: PMC4287371 DOI: 10.2217/pgs.14.137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/19/2014] [Indexed: 12/29/2022] Open
Abstract
Background: Respiratory depression is a clinically and economically important but preventable complication of opioids. Genetic factors can help identify patients with high risk for respiratory depression. Methods: In this prospective genotype blinded clinical study, we evaluated the effect of a panel of variants in candidate genes on opioid-related respiratory depression in 347 children following tonsillectomy. Results: Using unsupervised hierarchical clustering and a combination of candidate genotypes and clinical variables, we identified several distinct clusters of patients at high risk (36-38%) and low risk (10-17%) of respiratory depression; the relative risk of respiratory depression for high versus low risk clusters was 2.1-3.8 (p = 0.003). Conclusion: Genetic risk predictions (genetic signatures) along with clinical risk factors effectively identify children at higher and lower risks of opioid-induced respiratory depression. Genetic signatures of respiratory depression offer strategies for improved clinical decision support to guide clinicians to balance the risks of opioid adverse effects with analgesia. Original submitted 9 July 2014; Revision submitted 19 September 2014.
Collapse
Affiliation(s)
- Jacek Biesiada
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
- Division of Informatics in Industry, Technical University of Silesia, Gliwice, Poland
| | - Vidya Chidambaran
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael Wagner
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xue Zhang
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lisa J Martin
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jaroslaw Meller
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
- Department of Informatics, Nicholas Copernicus University, Torun, Poland
| | - Senthilkumar Sadhasivam
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
10
|
Tree KC, Scotto di Perretolo M, Peyronnet J, Cayetanot F. In utero cannabinoid exposure alters breathing and the response to hypoxia in newborn mice. Eur J Neurosci 2014; 40:2196-204. [PMID: 24717006 DOI: 10.1111/ejn.12588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/21/2014] [Accepted: 03/13/2014] [Indexed: 11/26/2022]
Abstract
Cannabis is one of the most commonly used recreational drugs at ages highly correlated with potential pregnancy. Endocannabinoid signalling regulates important stages of neuronal development. When cannabinoid receptors, which are widely distributed through the nervous system, are activated by exogenous cannabinoids, breathing in adult rats is depressed. Here, we show that, in newborn mice, endocannabinoids, through the activation of cannabinoid receptor type 1 (CB1 R), participate in the modulation of respiration and its control. Blocking CB1 Rs at birth suppressed the brake exerted by endocannabinoids on ventilation in basal and in hypoxic conditions. The number of apnoeas and their duration were also minimized by activation of CB1 Rs in normoxic and in hypoxic conditions. However, prenatal cannabis intoxication, caused by a daily injection of WIN55,212-2, in pregnant mice durably modified respiration of the offspring, as shown by hyperventilation in basal conditions, an altered chemoreflex in response to hypoxia, and longer apnoeas. When CB1 Rs were blocked in WIN55,212-2 treated newborns, persistent hyperventilation was still observed, which could partly be explained by a perturbation of the central respiratory network. In fact, in vitro medullary preparations from WIN55,212-2 treated pups, free of peripheral or of supramedullary structures, showed an altered fictive breathing frequency. In conclusion, the endocannabinoid pathway at birth seems to modulate breathing and protect the newborn against apnoeas. However, when exposed prenatally to an excess of cannabinoid, the breathing neuronal network in development seems to be modified, probably rendering the newborn more vulnerable in the face of an unstable environment.
Collapse
Affiliation(s)
- Keda C Tree
- Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, CNRS, Marseille, France
| | | | | | | |
Collapse
|