1
|
Anacker A, Esser KH, Lenarz T, Paasche G. Purification of Fibroblasts From the Spiral Ganglion. Front Neurol 2022; 13:877342. [PMID: 35493807 PMCID: PMC9051338 DOI: 10.3389/fneur.2022.877342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Using cultures of freshly isolated spiral ganglion cells (SGC) is common to investigate the effect of substances on spiral ganglion neurons (SGN) in vitro. As these cultures contain more cell types than just neurons, and it might be beneficial to have cochlear fibroblasts available to further investigate approaches to reduce the growth of fibrous tissue around the electrode array after cochlear implantation, we aimed at the purification of fibroblasts from the spiral ganglion in the current study. Subcultivation of the primary SGC culture removed the neurons from the culture and increased the fibroblast to glial cell ratio in the preparations, which was revealed by staining for vimentin, the S100B-protein, and the 200-kD neurofilament. We performed direct immunolabeling for the Thy1-glycoprotein and the p75NGFR-enabled fluorescence-based cell sorting. This procedure resulted in a cell culture of cochlear fibroblasts with a purity of more than 99%. The received fibroblasts can be subcultivated for up to 10 passages before proliferation rates drop. Additionally, 80% of the cells survived the first attempt of cryopreservation and exhibited a fibroblast-specific morphology. Using the described approach provides a purified preparation of cochlear fibroblasts, which can now be used in vitro for further investigations.
Collapse
Affiliation(s)
- Annett Anacker
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | | | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover Medical School, Hannover, Germany
| | - Gerrit Paasche
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover Medical School, Hannover, Germany
- *Correspondence: Gerrit Paasche
| |
Collapse
|
2
|
Schwann Cell Cultures: Biology, Technology and Therapeutics. Cells 2020; 9:cells9081848. [PMID: 32781699 PMCID: PMC7465416 DOI: 10.3390/cells9081848] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Schwann cell (SC) cultures from experimental animals and human donors can be prepared using nearly any type of nerve at any stage of maturation to render stage- and patient-specific populations. Methods to isolate, purify, expand in number, and differentiate SCs from adult, postnatal and embryonic sources are efficient and reproducible as these have resulted from accumulated refinements introduced over many decades of work. Albeit some exceptions, SCs can be passaged extensively while maintaining their normal proliferation and differentiation controls. Due to their lineage commitment and strong resistance to tumorigenic transformation, SCs are safe for use in therapeutic approaches in the peripheral and central nervous systems. This review summarizes the evolution of work that led to the robust technologies used today in SC culturing along with the main features of the primary and expanded SCs that make them irreplaceable models to understand SC biology in health and disease. Traditional and emerging approaches in SC culture are discussed in light of their prospective applications. Lastly, some basic assumptions in vitro SC models are identified in an attempt to uncover the combined value of old and new trends in culture protocols and the cellular products that are derived.
Collapse
|
3
|
Noda T, Meas SJ, Nogami J, Amemiya Y, Uchi R, Ohkawa Y, Nishimura K, Dabdoub A. Direct Reprogramming of Spiral Ganglion Non-neuronal Cells into Neurons: Toward Ameliorating Sensorineural Hearing Loss by Gene Therapy. Front Cell Dev Biol 2018; 6:16. [PMID: 29492404 PMCID: PMC5817057 DOI: 10.3389/fcell.2018.00016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/31/2018] [Indexed: 01/22/2023] Open
Abstract
Primary auditory neurons (PANs) play a critical role in hearing by transmitting sound information from the inner ear to the brain. Their progressive degeneration is associated with excessive noise, disease and aging. The loss of PANs leads to permanent hearing impairment since they are incapable of regenerating. Spiral ganglion non-neuronal cells (SGNNCs), comprised mainly of glia, are resident within the modiolus and continue to survive after PAN loss. These attributes make SGNNCs an excellent target for replacing damaged PANs through cellular reprogramming. We used the neurogenic pioneer transcription factor Ascl1 and the auditory neuron differentiation factor NeuroD1 to reprogram SGNNCs into induced neurons (iNs). The overexpression of both Ascl1 and NeuroD1 in vitro generated iNs at high efficiency. Transcriptome analyses revealed that iNs displayed a transcriptome profile resembling that of endogenous PANs, including expression of several key markers of neuronal identity: Tubb3, Map2, Prph, Snap25, and Prox1. Pathway analyses indicated that essential pathways in neuronal growth and maturation were activated in cells upon neuronal induction. Furthermore, iNs extended projections toward cochlear hair cells and cochlear nucleus neurons when cultured with each respective tissue. Taken together, our study demonstrates that PAN-like neurons can be generated from endogenous SGNNCs. This work suggests that gene therapy can be a viable strategy to treat sensorineural hearing loss caused by degeneration of PANs.
Collapse
Affiliation(s)
- Teppei Noda
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Otolaryngology - Head and Neck Surgery, Kyushu University, Fukuoka, Japan
| | - Steven J Meas
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jumpei Nogami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yutaka Amemiya
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ryutaro Uchi
- Department of Otolaryngology - Head and Neck Surgery, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Koji Nishimura
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Hearing Communication Medical Center, Shiga Medical Center Research Institute, Moriyama, Japan
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Nishimura K, Noda T, Dabdoub A. Dynamic Expression of Sox2, Gata3, and Prox1 during Primary Auditory Neuron Development in the Mammalian Cochlea. PLoS One 2017; 12:e0170568. [PMID: 28118374 PMCID: PMC5261741 DOI: 10.1371/journal.pone.0170568] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022] Open
Abstract
Primary auditory neurons (PANs) connect cochlear sensory hair cells in the mammalian inner ear to cochlear nucleus neurons in the brainstem. PANs develop from neuroblasts delaminated from the proneurosensory domain of the otocyst and keep maturing until the onset of hearing after birth. There are two types of PANs: type I, which innervate the inner hair cells (IHCs), and type II, which innervate the outer hair cells (OHCs). Glial cells surrounding these neurons originate from neural crest cells and migrate to the spiral ganglion. Several transcription factors are known to regulate the development and differentiation of PANs. Here we systematically examined the spatiotemporal expression of five transcription factors: Sox2, Sox10, Gata3, Mafb, and Prox1 from early delamination at embryonic day (E) 10.5 to adult. We found that Sox2 and Sox10 were initially expressed in the proneurosensory cells in the otocyst (E10.5). By E12.75 both Sox2 and Sox10 were downregulated in the developing PANs; however, Sox2 expression transiently increased in the neurons around birth. Furthermore, both Sox2 and Sox10 continued to be expressed in spiral ganglion glial cells. We also show that Gata3 and Prox1 were first expressed in all developing neurons, followed by a decrease in expression of Gata3 and Mafb in type I PANs and Prox1 in type II PANs as they matured. Moreover, we describe two subtypes of type II neurons based on Peripherin expression. These results suggest that Sox2, Gata3 and Prox1 play a role during neurogenesis as well as maturation of the PANs.
Collapse
Affiliation(s)
- Koji Nishimura
- Shiga Medical Center Research Institute, Moriyama, Shiga, Japan
| | - Teppei Noda
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Otolaryngology – Head & Neck Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
5
|
Smith FL, Davis RL. Organ of Corti explants direct tonotopically graded morphology of spiral ganglion neurons in vitro. J Comp Neurol 2016; 524:2182-207. [PMID: 26663318 DOI: 10.1002/cne.23940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 11/12/2015] [Accepted: 11/30/2015] [Indexed: 01/25/2023]
Abstract
The spiral ganglion is a compelling model system to examine how morphological form contributes to sensory function. While the ganglion is composed mainly of a single class of type I neurons that make simple one-to-one connections with inner hair cell sensory receptors, it has an elaborate overall morphological design. Specific features, such as soma size and axon outgrowth, are graded along the spiral contour of the cochlea. To begin to understand the interplay between different regulators of neuronal morphology, we cocultured neuron explants with peripheral target tissues removed from distinct cochlear locations. Interestingly, these "hair cell microisolates" were capable of both increasing and decreasing neuronal somata size, without adversely affecting survival. Moreover, axon characteristics elaborated de novo by the primary afferents in culture were systematically regulated by the sensory endorgan. Apparent peripheral nervous system (PNS)-like and central nervous system (CNS)-like axonal profiles were established in our cocultures allowing an analysis of putative PNS/CNS axon length ratios. As predicted from the in vivo organization, PNS-like axon bundles elaborated by apical cocultures were longer than their basal counterparts and this phenotype was methodically altered when neuron explants were cocultured with microisolates from disparate cochlear regions. Thus, location-dependent signals within the organ of Corti may set the "address" of neurons within the spiral ganglion, allowing them to elaborate the appropriate tonotopically associated morphological features in order to carry out their signaling function. J. Comp. Neurol. 524:2182-2207, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Felicia L Smith
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Robin L Davis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
6
|
The Comparative Utility of Viromer RED and Lipofectamine for Transient Gene Introduction into Glial Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:458624. [PMID: 26539498 PMCID: PMC4619820 DOI: 10.1155/2015/458624] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/23/2015] [Accepted: 07/26/2015] [Indexed: 11/18/2022]
Abstract
The introduction of genes into glial cells for mechanistic studies of cell function and as a therapeutic for gene delivery is an expanding field. Though viral vector based systems do exhibit good delivery efficiency and long-term production of the transgene, the need for transient gene expression, broad and rapid gene setup methodologies, and safety concerns regarding in vivo application still incentivize research into the use of nonviral gene delivery methods. In the current study, aviral gene delivery vectors based upon cationic lipid (Lipofectamine 3000) lipoplex or polyethylenimine (Viromer RED) polyplex technologies were examined in cell lines and primary glial cells for their transfection efficiencies, gene expression levels, and toxicity. The transfection efficiencies of polyplex and lipoplex agents were found to be comparable in a limited, yet similar, transfection setting, with or without serum across a number of cell types. However, differential effects on cell-specific transgene expression and reduced viability with cargo loaded polyplex were observed. Overall, our data suggests that polyplex technology could perform comparably to the market dominant lipoplex technology in transfecting various cells lines including glial cells but also stress a need for further refinement of polyplex reagents to minimize their effects on cell viability.
Collapse
|
7
|
Lang H, Xing Y, Brown LN, Samuvel DJ, Panganiban CH, Havens LT, Balasubramanian S, Wegner M, Krug EL, Barth JL. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve. Sci Rep 2015; 5:13383. [PMID: 26307538 PMCID: PMC4549618 DOI: 10.1038/srep13383] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/24/2015] [Indexed: 12/14/2022] Open
Abstract
The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Yazhi Xing
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - LaShardai N Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Devadoss J Samuvel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Clarisse H Panganiban
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Luke T Havens
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | | | - Michael Wegner
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Edward L Krug
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
8
|
He Y, Zhang PZ, Sun D, Mi WJ, Zhang XY, Cui Y, Jiang XW, Mao XB, Qiu JH. Wnt1 from cochlear schwann cells enhances neuronal differentiation of transplanted neural stem cells in a rat spiral ganglion neuron degeneration model. Cell Transplant 2013; 23:747-60. [PMID: 23809337 DOI: 10.3727/096368913x669761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although neural stem cell (NSC) transplantation is widely expected to become a therapy for nervous system degenerative diseases and injuries, the low neuronal differentiation rate of NSCs transplanted into the inner ear is a major obstacle for the successful treatment of spiral ganglion neuron (SGN) degeneration. In this study, we validated whether the local microenvironment influences the neuronal differentiation of transplanted NSCs in the inner ear. Using a rat SGN degeneration model, we demonstrated that transplanted NSCs were more likely to differentiate into microtubule-associated protein 2 (MAP2)-positive neurons in SGN-degenerated cochleae than in control cochleae. Using real-time quantitative PCR and an immunofluorescence assay, we also proved that the expression of Wnt1 (a ligand of Wnt signaling) increases significantly in Schwann cells in the SGN-degenerated cochlea. We further verified that NSC cultures express receptors and signaling components for Wnts. Based on these expression patterns, we hypothesized that Schwann cell-derived Wnt1 and Wnt signaling might be involved in the regulation of the neuronal differentiation of transplanted NSCs. We verified our hypothesis in vitro using a coculture system. We transduced a lentiviral vector expressing Wnt1 into cochlear Schwann cell cultures and cocultured them with NSC cultures. The coculture with Wnt1-expressing Schwann cells resulted in a significant increase in the percentage of NSCs that differentiated into MAP2-positive neurons, whereas this differentiation-enhancing effect was prevented by Dkk1 (an inhibitor of the Wnt signaling pathway). These results suggested that Wnt1 derived from cochlear Schwann cells enhanced the neuronal differentiation of transplanted NSCs through Wnt signaling pathway activation. Alterations of the microenvironment deserve detailed investigation because they may help us to conceive effective strategies to overcome the barrier of the low differentiation rate of transplanted NSCs.
Collapse
Affiliation(s)
- Ya He
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yang J, Han Y, Ye W, Liu F, Zhuang K, Wu G. Alpha tocopherol treatment reduces the expression of Nogo-A and NgR in rat brain after traumatic brain injury. J Surg Res 2012. [PMID: 23207171 DOI: 10.1016/j.jss.2012.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neurite outgrowth inhibitor-A (Nogo-A), myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein are three myelin-associated proteins that act as inhibitors to central nervous system regeneration. Neurite outgrowth inhibitor-A imposes the strongest effect on inhibiting axonal regeneration after traumatic brain injury. Alpha-tocopherol, a member of the vitamin E family, is recognized as an active antioxidative substance. Its use has not been well studied in brain injury research, especially in axonal regeneration research. METHODS We obtained 99 intact adult male Sprague-Dawley rats (200-250 g) from the Experimental Animal Center of Central South University. We used the modified method of Freeney to generate moderate brain injury in the rats. We injected 600 mg/kg α-tocopherol intraperitoneally daily as traumatic brain injury (TBI) treatment. Then, we performed behavioral tests in the corresponding time point, examined brain tissues after hematoxylin-eosin staining to identify changes in cell morphology, and performed immunohistochemical staining and quantitative real-time polymerase chain reaction to detect the expression of NoGo and Nogo receptor (NgR) in brain tissue. RESULTS For the Neurological Severity Scores of rats, there were obvious differences among the three groups at the corresponding time points. Standard hematoxylin-eosin staining showed that the brain structure of a sham-operated group of rats was clear, uniform, and compact. A TBI group exhibited hemorrhage, edema, inflammatory cell infiltration, condensed nuclei, and necrosis. We also saw glial cells and fibrous tissue proliferation. The α-tocopherol-treated TBI group had similar but less severe changes than the TBI group. Expression of Nogo-A and NgR increased after TBI compared with the sham-operated group. However, Nogo-A and NgR expression was significantly lower in the α-tocopherol-treated TBI group compared with the TBI group. Similarly, results showed that functional neurological deficits among rats in the α-tocopherol-treated TBI group were less pronounced than in the TBI group (model group). CONCLUSIONS Our data demonstrate that α-tocopherol-treated rats had reduced microscopic evidence of brain damage. Alpha-tocopherol reduced Nogo-A and NgR expression in brain tissue after traumatic brain injury and promoted nerve regeneration. Alpha-tocopherol treatment of TBI rats had a neuroprotective role in their recovery.
Collapse
Affiliation(s)
- Jinfu Yang
- Department of Neurosurgery, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | | | | | | | | |
Collapse
|
10
|
Freyer L, Aggarwal V, Morrow BE. Dual embryonic origin of the mammalian otic vesicle forming the inner ear. Development 2012; 138:5403-14. [PMID: 22110056 DOI: 10.1242/dev.069849] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The inner ear and cochleovestibular ganglion (CVG) derive from a specialized region of head ectoderm termed the otic placode. During embryogenesis, the otic placode invaginates into the head to form the otic vesicle (OV), the primordium of the inner ear and CVG. Non-autonomous cell signaling from the hindbrain to the OV is required for inner ear morphogenesis and neurogenesis. In this study, we show that neuroepithelial cells (NECs), including neural crest cells (NCCs), can contribute directly to the OV from the neural tube. Using Wnt1-Cre, Pax3(Cre/+) and Hoxb1(Cre/+) mice to label and fate map cranial NEC lineages, we have demonstrated that cells from the neural tube incorporate into the otic epithelium after otic placode induction has occurred. Pax3(Cre/+) labeled a more extensive population of NEC derivatives in the OV than did Wnt1-Cre. NEC derivatives constitute a significant population of the OV and, moreover, are regionalized specifically to proneurosensory domains. Descendents of Pax3(Cre/+) and Wnt1-Cre labeled cells are localized within sensory epithelia of the saccule, utricle and cochlea throughout development and into adulthood, where they differentiate into hair cells and supporting cells. Some NEC derivatives give rise to neuroblasts in the OV and CVG, in addition to their known contribution to glial cells. This study defines a dual cellular origin of the inner ear from sensory placode ectoderm and NECs, and changes the current paradigm of inner ear neurosensory development.
Collapse
Affiliation(s)
- Laina Freyer
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
11
|
Complex distribution patterns of voltage-gated calcium channel α-subunits in the spiral ganglion. Hear Res 2011; 278:52-68. [PMID: 21281707 DOI: 10.1016/j.heares.2011.01.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/21/2011] [Accepted: 01/21/2011] [Indexed: 01/10/2023]
Abstract
As with other elements of the peripheral auditory system, spiral ganglion neurons display specializations that vary as a function of location along the tonotopic axis. Previous work has shown that voltage-gated K(+) channels and synaptic proteins show graded changes in their density that confers rapid responsiveness to neurons in the high frequency, basal region of the cochlea and slower, more maintained responsiveness to neurons in the low frequency, apical region of the cochlea. In order to understand how voltage-gated calcium channels (VGCCs) may contribute to these diverse phenotypes, we identified the VGCC α-subunits expressed in the ganglion, investigated aspects of Ca(2+)-dependent neuronal firing patterns, and mapped the intracellular and intercellular distributions of seven VGCC α-subunits in the spiral ganglion in vitro. Initial experiments with qRT-PCR showed that eight of the ten known VGCC α-subunits were expressed in the ganglion and electrophysiological analysis revealed firing patterns that were consistent with the presence of both LVA and HVA Ca(2+) channels. Moreover, we were able to study seven of the α-subunits with immunocytochemistry, and we found that all were present in spiral ganglion neurons, three of which were neuron-specific (Ca(V)1.3, Ca(V)2.2, and Ca(V)3.3). Further characterization of neuron-specific α-subunits showed that Ca(V)1.3 and Ca(V)3.3 were tonotopically-distributed, whereas Ca(V)2.2 was uniformly distributed in apical and basal neurons. Multiple VGCC α-subunits were also immunolocalized to Schwann cells, having distinct intracellular localizations, and, significantly, appearing to distinguish putative compact (Ca(V)2.3, Ca(V)3.1) from loose (Ca(V)1.2) myelin. Electrophysiological evaluation of spiral ganglion neurons in the presence of TEA revealed Ca(2+) plateau potentials with slopes that varied proportionately with the cochlear region from which neurons were isolated. Because afterhyperpolarizations were minimal or absent under these conditions, we hypothesize that differential density and/or kinetics of one or more of the VGCC α-subunits could account for observed tonotopic differences. These experiments have set the stage for defining the clear multiplicity of functional control in neurons and Schwann cells of the spiral ganglion.
Collapse
|