1
|
Kadhim HJ, Al-Mumen H, Nahi HH, Hamidi SM. Streptozotocin-induced Alzheimer's disease investigation by one-dimensional plasmonic grating chip. Sci Rep 2022; 12:21878. [PMID: 36536049 PMCID: PMC9763475 DOI: 10.1038/s41598-022-26607-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Recently, there has been significant interest in researching brain insulin resistance as it has been hypothesized that it may play a role in the progression of Alzheimer's disease. Alzheimer's disease (AD) is brain dementia that contributes to damage to the neuron cells and then patient death. This dementia is ranked as the fifth more dangerous disease in the world. Streptozotocin (STZ) is used to induce Alzheimer's disease experimentally. STZ is toxic to the pancreatic beta cells and induces insulin resistance. Neuroplasmonin techniques have been used to investigate the ability of STZ on the activity of cultured neuron cells. Neuroplasmonic is a novel technology that combines nanotechnology and biosensor. This technique has been used to record neuron signals in vivo and in vitro. Also, it has many facilities such as label-free detection, real-time analysis, biological compatibility, small sample, high throughput, and low detection limit. In this paper, we introduce a one-dimensional electro-plasmonic nanograting platform that consists of a straight nanorod of gold embedded in a dielectric layer of polycarbonate. The chip is connected with an externally applied voltage to induce tunable PIT and increase the sensor sensitivity. To evaluate the sensing performance of the electro-plasmonic sensor, this chip was cultured with Human Nucleus Pulposus Cells (HNPC). The first step was to measure the neuron cell activity in a healthy case. The next step was to measure the activity of neuron cells injected with different concentrations of STZ (0.5, 1, 2 mM) to induce the formation of Alzheimer's disease in the cultured neuron cells. The results indicated that the electro-plasmonics sensor had a high sensitivity to the cells' activity and showed good results for the effecting STZ on the neuron cell's activities.
Collapse
Affiliation(s)
- Hussam Jawad Kadhim
- Magneto‑plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
- Department of Electrical Engineering, College of Engineering, University of Babylon, Babylon, Iraq
| | - Haider Al-Mumen
- Department of Electrical Engineering, College of Engineering, University of Babylon, Babylon, Iraq
| | - H H Nahi
- College of Veterinary Medicine, Al-Qasim Green University, Babylon, Iraq
| | - S M Hamidi
- Magneto‑plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
2
|
Zhang RY, Zhang X, Zhang L, Wu YC, Sun XJ, Li L. Tetrahydroxystilbene glucoside protects against sodium azide-induced mitochondrial dysfunction in human neuroblastoma cells. CHINESE HERBAL MEDICINES 2021; 13:255-260. [PMID: 36117503 PMCID: PMC9476786 DOI: 10.1016/j.chmed.2020.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/10/2020] [Accepted: 11/12/2020] [Indexed: 12/02/2022] Open
Abstract
Objective Mitochondrial dysfunction is evident in the early stage of Alzheimer’s disease (AD). Therefore development of drugs that protect mitochondrial function is a promising strategy for AD. The present work was to investigate the effects of 2, 3, 5, 4′-Tetrahydroxystilbene-2-O-β-d-glucosides (TSG) on a mitochondrial dysfunction cell model induced by sodium azide and elucidate the underlying mechanisms. Methods Mitochondrial membrane potential (MMP) was detected by a fluorescence method. Cellular adenosine triphosphate (ATP) level was measured using a firefly luciferase-based kit. Reactive oxygen species (ROS) was detected using dichlorofluorescin diacetate (DCFH-DA). The expression levels of Bcl-2 and Bax were measured by Western blotting assay. Flow cytometry was utilized to measure apoptosis. Results Pretreatment of TSG (25–200 μmol/L) for 24 h significantly elevated MMP and ATP content, reduced ROS level and Bax/Bcl-2 ratio, and inhibited apoptosis in SH-SY5Y cells exposed to sodium azide. Conclusion These results suggest that TSG protects SH-SY5Y cells against sodium azide-induced mitochondrial dysfunction and apoptosis. These findings are helpful to understand the protective effect of TSG on mitochondria, which are involved in the early stage of AD.
Collapse
|
3
|
Bagaméry F, Varga K, Kecsmár K, Vincze I, Szökő É, Tábi T. The Impact of Differentiation on Cytotoxicity and Insulin Sensitivity in Streptozotocin Treated SH-SY5Y Cells. Neurochem Res 2021; 46:1350-1358. [PMID: 33616807 PMCID: PMC8084777 DOI: 10.1007/s11064-021-03269-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
Recently neuronal insulin resistance was suggested playing a role in Alzheimer’s disease. Streptozotocin (STZ) is commonly used to induce impairment in insulin metabolism. In our previous work on undifferentiated SH-SY5Y cells the compound exerted cytotoxicity without altering insulin sensitivity. Nevertheless, differentiation of the cells to a more mature neuron-like phenotype may considerably affect the significance of insulin signaling and its sensitivity to STZ. We aimed at studying the influence of STZ treatment on insulin signaling in SH-SY5Y cells differentiated by retinoic acid (RA). Cytotoxicity of STZ or low serum (LS) condition and protective effect of insulin were compared in RA differentiated SH-SY5Y cells. The effect of insulin and an incretin analogue, exendin-4 on insulin signaling was also examined by assessing glycogen synthase kinase-3 (GSK-3) phosphorylation. STZ was found less cytotoxic in the differentiated cells compared to our previous results in undifferentiated SH-SY5Y cells. The cytoprotective concentration of insulin was similar in the STZ and LS groups. However, the right-shifted concentration–response curve of insulin induced GSK-3 phosphorylation in STZ-treated differentiated cells is suggestive of the development of insulin resistance that was further confirmed by the insulin potentiating effect of exendin-4. Differentiation reduced the sensitivity of SH-SY5Y cells for the non-specific cytotoxicity of STZ and enhanced the relative significance of development of insulin resistance. The differentiated cells thus serve as a better model for studying the role of insulin signaling in neuronal survival. However, direct cytotoxicity of STZ also contributes to the cell death.
Collapse
Affiliation(s)
- Fruzsina Bagaméry
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Kamilla Varga
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Kitti Kecsmár
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - István Vincze
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary.
| |
Collapse
|
4
|
Shenzhiling Oral Liquid Protects STZ-Injured Oligodendrocyte through PI3K/Akt-mTOR Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4527283. [PMID: 32774416 PMCID: PMC7396001 DOI: 10.1155/2020/4527283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 02/01/2023]
Abstract
White matter degeneration and demyelination are nonnegligible pathological manifestations of Alzheimer's disease (AD). The damage of myelin sheath consisting of oligodendrocytes is the basis of AD's unique early lesions. Shenzhiling oral liquid (SZL) was the effective Chinese herbal compound approved by the Food and Drug Administration (FDA) for the treatment of AD in China, which plays the exact therapeutic role in clinical AD patients. However, its molecular mechanism remains unclear to date. For this purpose, an in vitro mode of streptozotocin- (STZ-) induced rat oligodendrocyte OLN-93 cell injury was established to mimic the pathological changes of myelin sheath of AD and investigate the mechanism of SZL protecting injured OLN-93 cell. The results showed that STZ can decrease cell viability and downregulate the activity of PI3K/Akt-mTOR signalling pathway and the expression of myelin sheath-related proteins (MBP, MOG, and PLP) in OLN-93 cells. Both SZL-medicated serum and donepezil (positive control) can protect cells from STZ-caused damage. SZL-medicated serum increased OLN-93 cell viability in a dose- and time-dependent manner and enhanced the activity of PI3K/Akt-mTOR signalling pathway. The inhibitor of PI3K (LY294002) inhibited the protective effect of SZL-medicated serum on the STZ-injured OLN-93 cells. Furthermore, rapamycin, the inhibitor of mTOR, inhibited the promotion of cell viability and upregulation of p-mTOR and MBP caused by SZL-medicated serum. In conclusion, our data indicate that SZL plays its therapeutic role on AD by promoting PI3K/Akt-mTOR signalling pathway of oligodendrocytes. Thus, the present study may facilitate the therapeutic research of AD.
Collapse
|
5
|
Li Y, Xu P, Shan J, Sun W, Ji X, Chi T, Liu P, Zou L. Interaction between hyperphosphorylated tau and pyroptosis in forskolin and streptozotocin induced AD models. Biomed Pharmacother 2020; 121:109618. [DOI: 10.1016/j.biopha.2019.109618] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 12/15/2022] Open
|
6
|
Bagaméry F, Varga K, Kecsmár K, Vincze I, Szökő É, Tábi T. Lack of insulin resistance in response to streptozotocin treatment in neuronal SH-SY5Y cell line. J Neural Transm (Vienna) 2019; 127:71-80. [PMID: 31858268 PMCID: PMC6942577 DOI: 10.1007/s00702-019-02118-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/08/2019] [Indexed: 12/20/2022]
Abstract
Recently, it is suggested that brain insulin resistance may contribute to the development of Alzheimer’s disease; therefore, there is a high interest in its investigation. Streptozotocin (STZ) is often used to induce dysregulation of glucose and insulin metabolism in animal and cell culture models. Alteration in insulin sensitivity however, has not yet been assessed in neuronal cells after STZ treatment. We aimed at studying the concentration dependence of the protective effect of insulin on STZ-induced damage using SH-SY5Y cell line. Cells were treated with STZ and cell viability was assessed by resazurin reduction and lactate dehydrogenase release assays. Low serum (LS) medium was used as control damage. The effect of various concentrations (30, 100, 300, 1000 nM) of insulin was studied on cell viability and glycogen synthase kinase-3 (GSK-3) phosphorylation, an indicator of insulin signaling. STZ induced dose- and time-dependent cytotoxicity, its 1 mM concentration exerted a low, gradually developing damage. The cytoprotective effect of insulin was demonstrated in both STZ and LS groups. Its maximal effect was lower in the STZ-treated cells; however, its effective concentration remained largely unaltered. Insulin-induced GSK-3 phosphorylation was similar in the STZ- and LS-treated cells suggesting unchanged insulin signaling. Our present results indicate that STZ does not induce significant impairment in insulin sensitivity in SH-SY5Y cells, thus in this cell line it is not a good tool for studying the role of insulin resistance in neurodegeneration and to examine protective agents acting by improving insulin signaling.
Collapse
Affiliation(s)
- Fruzsina Bagaméry
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Kamilla Varga
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Kitti Kecsmár
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - István Vincze
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| |
Collapse
|
7
|
Living in Promiscuity: The Multiple Partners of Alpha-Synuclein at the Synapse in Physiology and Pathology. Int J Mol Sci 2019; 20:ijms20010141. [PMID: 30609739 PMCID: PMC6337145 DOI: 10.3390/ijms20010141] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/18/2022] Open
Abstract
Alpha-synuclein (α-syn) is a small protein that, in neurons, localizes predominantly to presynaptic terminals. Due to elevated conformational plasticity, which can be affected by environmental factors, in addition to undergoing disorder-to-order transition upon interaction with different interactants, α-syn is counted among the intrinsically disordered proteins (IDPs) family. As with many other IDPs, α-syn is considered a hub protein. This function is particularly relevant at synaptic sites, where α-syn is abundant and interacts with many partners, such as monoamine transporters, cytoskeletal components, lipid membranes, chaperones and synaptic vesicles (SV)-associated proteins. These protein–protein and protein–lipid membrane interactions are crucial for synaptic functional homeostasis, and alterations in α-syn can cause disruption of this complex network, and thus a failure of the synaptic machinery. Alterations of the synaptic environment or post-translational modification of α-syn can induce its misfolding, resulting in the formation of oligomers or fibrillary aggregates. These α-syn species are thought to play a pathological role in neurodegenerative disorders with α-syn deposits such as Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), which are referred to as synucleinopathies. Here, we aim at revising the complex and promiscuous role of α-syn at synaptic terminals in order to decipher whether α-syn molecular interactants may influence its conformational state, contributing to its aggregation, or whether they are just affected by it.
Collapse
|
8
|
Wu J, Liu C, Zhang L, Qu CH, Sui XL, Zhu H, Huang L, Xu YF, Han YL, Qin C. Histone deacetylase-2 is involved in stress-induced cognitive impairment via histone deacetylation and PI3K/AKT signaling pathway modification. Mol Med Rep 2017; 16:1846-1854. [PMID: 28656275 PMCID: PMC5561802 DOI: 10.3892/mmr.2017.6840] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 03/07/2017] [Indexed: 12/24/2022] Open
Abstract
Exposure to chronic stress upregulates blood glucocorticoid levels and impairs cognition via diverse epigenetic mechanisms, such as histone deacetylation. Histone deacetylation can lead to transcriptional silencing of many proteins involved in cognition and may also cause learning and memory dysfunction. Histone deacetylase-2 (HDAC2) has been demonstrated to epigenetically block cognition via a reduction in the histone acetylation level; however, it is unknown whether HDAC2 is involved in the cognitive decline induced by chronic stress. To the best of authors' knowledge, this is the first study to demonstrate that the stress hormone corticosteroid upregulate HDAC2 protein levels in neuro-2a cells and cause cell injuries. HDAC2 knockdown resulted in a significant amelioration of the pathological changes in N2a cells via the upregulation of histone acetylation and modifications in the phosphoinositide 3-kinase/protein kinase B signaling pathway. In addition, the HDAC2 protein levels were upregulated in 12-month-old female C57BL/6J mice under chronic stress in vivo. Taken together, these findings suggested that HDAC2 may be an important negative regulator involved in chronic stress-induced cognitive impairment.
Collapse
Affiliation(s)
- Jie Wu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Cui Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Ling Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Chun-Hui Qu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Xiao-Long Sui
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Hua Zhu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Lan Huang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Yan-Feng Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Yun-Lin Han
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| |
Collapse
|
9
|
Azman AS, Othman I, Fang CM, Chan KG, Goh BH, Lee LH. Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils. Indian J Microbiol 2017; 57:177-187. [PMID: 28611495 PMCID: PMC5446825 DOI: 10.1007/s12088-016-0627-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022] Open
Abstract
Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115T, Sinomonas humi MUSC 117T and Monashia flava MUSC 78T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115T and M. flava MUSC 78T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and neuroprotective agents.
Collapse
Affiliation(s)
- Adzzie-Shazleen Azman
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Chee-Mun Fang
- School of Pharmacy, Faculty of Science, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
10
|
Wang P, Su C, Feng H, Chen X, Dong Y, Rao Y, Ren Y, Yang J, Shi J, Tian J, Jiang S. Curcumin regulates insulin pathways and glucose metabolism in the brains of APPswe/PS1dE9 mice. Int J Immunopathol Pharmacol 2017; 30:25-43. [PMID: 28124574 PMCID: PMC5806780 DOI: 10.1177/0394632016688025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Recent studies have shown the therapeutic potential of curcumin in Alzheimer’s disease (AD). In 2014, our lab found that curcumin reduced Aβ40, Aβ42 and Aβ-derived diffusible ligands in the mouse hippocampus, and improved learning and memory. However, the mechanisms underlying this biological effect are only partially known. There is considerable evidence in brain metabolism studies indicating that AD might be a brain-specific type of diabetes with progressive impairment of glucose utilisation and insulin signalling. We hypothesised that curcumin might target both the glucose metabolism and insulin signalling pathways. In this study, we monitored brain glucose metabolism in living APPswe/PS1dE9 double transgenic mice using a micro-positron emission tomography (PET) technique. The study showed an improvement in cerebral glucose uptake in AD mice. For a more in-depth study, we used immunohistochemical (IHC) staining and western blot techniques to examine key factors in both glucose metabolism and brain insulin signalling pathways. The results showed that curcumin ameliorated the defective insulin signalling pathway by upregulating insulin-like growth factor (IGF)-1R, IRS-2, PI3K, p-PI3K, Akt and p-Akt protein expression while downregulating IR and IRS-1. Our study found that curcumin improved spatial learning and memory, at least in part, by increasing glucose metabolism and ameliorating the impaired insulin signalling pathways in the brain.
Collapse
Affiliation(s)
- Pengwen Wang
- 1 Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,2 Key Laboratory of Pharmacology of Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, China
| | - Caixin Su
- 3 Department of Surgery (Neurosurgery, Neurobiology) and Hamilton NeuroRestorative Group, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Huili Feng
- 1 Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,2 Key Laboratory of Pharmacology of Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaopei Chen
- 1 Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,4 Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, China
| | - Yunfang Dong
- 1 Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,2 Key Laboratory of Pharmacology of Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yingxue Rao
- 5 Mizumori Lab, Department of Psychology, University of Washington, Seattle, WA, USA
| | - Ying Ren
- 1 Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,2 Key Laboratory of Pharmacology of Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, China
| | - Jinduo Yang
- 1 Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,2 Key Laboratory of Pharmacology of Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, China
| | - Jing Shi
- 1 Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,6 Beijing University of Chinese Medicine, BUCM Neurology Center, Dongzhimen Hospital, Beijing, China
| | - Jinzhou Tian
- 1 Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,6 Beijing University of Chinese Medicine, BUCM Neurology Center, Dongzhimen Hospital, Beijing, China
| | - Shucui Jiang
- 3 Department of Surgery (Neurosurgery, Neurobiology) and Hamilton NeuroRestorative Group, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| |
Collapse
|
11
|
Yao J, Ma L, Wang R, Sheng S, Ji Z, Zhang J. Neurotrophic effects of amyloid precursor protein peptide 165 in vitro. Brain Res Bull 2015; 120:58-62. [PMID: 26551064 DOI: 10.1016/j.brainresbull.2015.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
Diabetic encephalopathy is one of the risk factors for Alzheimer's disease. Our previous findings indicated that animals with diabetic encephalopathy exhibit learning and memory impairment in addition to hippocampal neurodegeneration, both of which are ameliorated with amyloid precursor protein (APP) 17-mer (APP17) peptide treatment. Although APP17 is neuroprotective, it is susceptible to enzymatic degradation. Derived from the active sequence structure of APP17, we have previously structurally transformed and modified several APP5-mer peptides (APP328-332 [RERMS], APP 5). We have developed seven different derivatives of APP5, including several analogs. Results from the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on human neuroblastoma SH-SY5Y cells in the present study showed that P165 was the most neuroprotective APP5 derivative. Furthermore, we tested the effects of APP5 and P165 on the number of cells and the release of lactate dehydrogenase. Western immunoblot analyses were also performed. The digestion rates of P165 and APP5 were determined by the pepsin digestion test. P165 resisted pepsin digestion significantly more than APP5. Therefore, P165 may be optimal for oral administration. Overall, these findings suggest that P165 may be a potential drug for the treatment of diabetic encephalopathy.
Collapse
Affiliation(s)
- Jie Yao
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing 100053, China
| | - Lina Ma
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing 100053, China
| | - Rong Wang
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing 100053, China.
| | - Shuli Sheng
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing 100053, China
| | - Zhijuan Ji
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing 100053, China
| | - Jingyan Zhang
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing 100053, China
| |
Collapse
|
12
|
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment in clinical presentation, and by β-amyloid (Aβ) production and the hyper-phosphorylation of tau in basic research. More highlights demonstrate that the activation of the mammalian target of rapamycin (mTOR) enhances Aβ generation and deposition by modulating amyloid precursor protein (APP) metabolism and upregulating β- and γ-secretases. mTOR, an inhibitor of autophagy, decreases Aβ clearance by scissoring autophagy function. mTOR regulates Aβ generation or Aβ clearance by regulating several key signaling pathways, including phosphoinositide 3-kinase (PI3-K)/protein kinase B (Akt), glycogen synthase kinase 3 [GSK-3], AMP-activated protein kinase (AMPK), and insulin/insulin-like growth factor 1 (IGF-1). The activation of mTOR is also a contributor to aberrant hyperphosphorylated tau. Rapamycin, the inhibitor of mTOR, may mitigate cognitive impairment and inhibit the pathologies associated with amyloid plaques and neurofibrillary tangles by promoting autophagy. Furthermore, the upstream and downstream components of mTOR signaling are involved in the pathogenesis and progression of AD. Hence, inhibiting the activation of mTOR may be an important therapeutic target for AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Guanghui Chen
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Wenbo He
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Liang-Jun Yan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
13
|
Mehla J, Chauhan BC, Chauhan NB. Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits. J Alzheimers Dis 2014; 39:145-62. [PMID: 24121970 DOI: 10.3233/jad-131238] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD.
Collapse
Affiliation(s)
- Jogender Mehla
- Neuroscience Research, Jesse Brown VA Medical Center, Chicago, IL, USA Department of Pediatrics, University of Illinois Hospital & Health Science System-Children's Hospital, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Neelima B Chauhan
- Neuroscience Research, Jesse Brown VA Medical Center, Chicago, IL, USA Department of Pediatrics, University of Illinois Hospital & Health Science System-Children's Hospital, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Xu BL, Wang R, Meng XH, Zhao ZW, Wang HJ, Ma LN, Dong W, Sheng SL, Ji ZJ. Effects of analog P165 of amyloid precursor protein 5-mer peptide on learning, memory and brain insulin receptors in the rat model of cognitive decline. Neurol Sci 2014; 35:1821-6. [PMID: 24946940 DOI: 10.1007/s10072-014-1849-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/27/2014] [Indexed: 11/29/2022]
Abstract
We aim to study the therapeutic efficacy of analog P165 of amyloid precursor protein 5-mer peptide in streptozotocin (STZ)-induced cognitive decline model. Rats were divided into four groups: control, STZ, STZ+P165, and STZ+rosiglitazone (RSG). STZ model was established by intracerebroventricular injection of STZ. Three weeks following surgery, rats received daily gavage administration of distilled water (control and STZ groups), P165 (STZ+P165), or RSG (STZ+RSG) for four consecutive weeks. Learning and memory abilities were assessed with the Morris water maze test. Insulin-like growth factor-1 (IGF-1) was detected by ELISA. Expressions of insulin receptor-β (IR-β), insulin receptor substrate-1 (IRS-1), serine/threonine kinase (Akt), and phosphorylation of CREB (p-CREB) were observed by immunohistochemistry. Both P165 and RSG significantly reduced the escape latency relative to the STZ group (P165, P < 0.05; RSG, P < 0.01). STZ model rats had reduced levels of IGF-1 relative to control, and this deficit was attenuated in the STZ+P165 group (P < 0.01). IR and IRS-1 were elevated in STZ rats, and these levels were restored to near control in the STZ+P165 and STZ+RSG groups (P < 0.01). Our findings demonstrate that P165 and RSG improved hippocampus-dependent spatial learning and memory in STZ rats by regulating the insulin signaling pathway.
Collapse
Affiliation(s)
- Bao-Lei Xu
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu P, Zou LB, Wang LH, Jiao Q, Chi TY, Ji XF, Jin G. Xanthoceraside attenuates tau hyperphosphorylation and cognitive deficits in intracerebroventricular-streptozotocin injected rats. Psychopharmacology (Berl) 2014; 231:345-56. [PMID: 23958944 DOI: 10.1007/s00213-013-3240-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 08/05/2013] [Indexed: 12/26/2022]
Abstract
RATIONALE Xanthoceraside, a novel triterpenoid saponin extracted from the fruit husks of Xanthoceras sorbifolia Bunge, reverses cognitive deficits in intracerebroventricular injection of Aβ25-35 or Aβ1-42 mice. However, whether xanthoceraside has a positive effect on hyperphosphorylated tau protein remains unclear. OBJECTIVES We investigated the effects of xanthoceraside on behavioural impairments induced by intracerebroventricular injection of streptozotocin (STZ) in rats and its potential mechanisms. MATERIALS AND METHODS The rats were administered with xanthoceraside (0.06, 0.12 or 0.24 mg/kg) or vehicle once daily after STZ intracerebroventricular injections. The Y-maze test and novel object recognition test were performed 21 and 22 days after the second STZ injection, respectively. The levels of hyperphosphorylated tau, phosphatidylinositol-3-kinase (PI3K)/serine/threonine protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), protein phosphatase 1 (PP-1) and protein phosphatase 2A (PP-2A) were also tested by Western blot. RESULTS Xanthoceraside treatment significantly attenuated learning and memory impairments and reduced the level of STZ-induced hyperphosphorylated tau protein. Xanthoceraside also enhanced PP-2A and PP-1 expressions, increased PI3K (p85) and Akt (Ser473) phosphorylation and decreased GSK-3β (tyr216) phosphorylation. CONCLUSIONS Xanthoceraside has protective effect against learning and memory impairments and inhibits tau hyperphosphorylation in the hippocampus, possibly through the inhibition of the PI3K/Akt-dependent GSK-3β signalling pathway and an enhancement of phosphatases activity.
Collapse
|
16
|
Wang P, Su C, Li R, Wang H, Ren Y, Sun H, Yang J, Sun J, Shi J, Tian J, Jiang S. Mechanisms and effects of curcumin on spatial learning and memory improvement in APPswe/PS1dE9 mice. J Neurosci Res 2013; 92:218-31. [PMID: 24273069 DOI: 10.1002/jnr.23322] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/10/2013] [Accepted: 10/10/2013] [Indexed: 12/11/2022]
Abstract
Evidence suggests that curcumin, the phytochemical agent in the spice turmeric, might be a potential therapy for Alzheimer's disease (AD). Its antioxidant, anti-inflammatory properties have been investigated extensively. Studies have also shown that curcumin can reduce amyloid pathology in AD. The underlying mechanism, however, is complex and is still being explored. In this study, we used the APPswe/PS1dE9 double transgenic mice, an AD model, to investigate the effects and mechanisms of curcumin in the prevention and treatment of AD. The water maze test indicated that curcumin can improve spatial learning and memory ability in mice. Immunohistochemical staining and Western blot analysis were used to test major proteins in β-amyloid aggregation, β-amyloid production, and β-amyloid clearance. Data showed that, 3 months after administration, curcumin treatment reduced Aβ40 , Aβ42 , and aggregation of Aβ-derived diffusible ligands in the mouse hippocampal CA1 area; reduced the expression of the γ-secretase component presenilin-2; and increased the expression of β-amyloid-degrading enzymes, including insulin-degrading enzymes and neprilysin. This evidence suggests that curcumin, as a potential AD therapeutic method, can reduce β-amyloid pathological aggregation, possibly through mechanisms that prevent its production by inhibiting presenilin-2 and/or by accelerating its clearance by increasing degrading enzymes such as insulin-degrading enzyme and neprilysin.
Collapse
Affiliation(s)
- Pengwen Wang
- Key Laboratory of Chinese Internal Medicine, Ministry of Education, Beijing University of Chinese Medicine (BUCM), China; Key Laboratory of Pharmacology of Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Insulin induces neurite outgrowth via SIRT1 in SH-SY5Y cells. Neuroscience 2013; 238:371-80. [PMID: 23357110 DOI: 10.1016/j.neuroscience.2013.01.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/05/2013] [Accepted: 01/07/2013] [Indexed: 01/24/2023]
Abstract
Insulin plays diverse roles, including learning and memory, in the central nervous system. SIRT1 has been reported to be involved in the processes of normal learning, memory, and synaptic plasticity. However, whether insulin is directly involved in regulating SIRT1 expression in neurons or whether it affects synapses remains largely unknown. Here, we show that insulin promotes neurite outgrowth and increases SIRT1 expression in SH-SY5Y cells. LY294002, a phosphatidylinositol 3-kinase inhibitor, inhibited the expression of insulin-induced increases in SIRT1. Conversely, the downregulation of SIRT1 using a SIRT1 inhibitor and SIRT1-siRNA resulted in a significant reduction in the length of neurite outgrowth. Taken together, these results suggest that the regulation of SIRT1 by insulin is important for the neurite outgrowth of neuroblastoma cells.
Collapse
|