1
|
Ebert ET, Schwinghamer KM, Siahaan TJ. Delivery of Neuroregenerative Proteins to the Brain for Treatments of Neurodegenerative Brain Diseases. Life (Basel) 2024; 14:1456. [PMID: 39598254 PMCID: PMC11595909 DOI: 10.3390/life14111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Neurodegenerative brain diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), and Parkinson's disease (PD) are difficult to treat. Unfortunately, many therapeutic agents for neurodegenerative disease only halt the progression of these diseases and do not reverse neuronal damage. There is a demand for finding solutions to reverse neuronal damage in the central nervous system (CNS) of patients with neurodegenerative brain diseases. Therefore, the purpose of this review is to discuss the potential for therapeutic agents like specific neurotrophic and growth factors in promoting CNS neuroregeneration in brain diseases. We discuss how BDNF, NGF, IGF-1, and LIF could potentially be used for the treatment of brain diseases. The molecule's different mechanisms of action in stimulating neuroregeneration and methods to analyze their efficacy are described. Methods that can be utilized to deliver these proteins to the brain are also discussed.
Collapse
Affiliation(s)
| | | | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA; (E.T.E.); (K.M.S.)
| |
Collapse
|
2
|
Herrera ML, Champarini LG, Basmadjian OM, Bellini MJ, Hereñú CB. IGF-1 gene therapy prevents spatial memory deficits and modulates dopaminergic neurodegeneration and inflammation in a parkinsonism model. Brain Behav Immun 2024; 119:851-866. [PMID: 38750702 DOI: 10.1016/j.bbi.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/14/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024] Open
Abstract
Cognitive impairment in Parkinson's disease is considered an indicator of the prodromal stages of this condition, occurring prior to the onset of classic and pathognomonic motor symptoms. Among other factors, neuroinflammation is increasingly recognized as a potential mediator of this neurodegenerative process, and glial cells are directly involved. However, the use of neurotrophic factors is associated with neuroprotection and cognitive improvements. Among all those factors, insulin-like growth factor 1 (IGF-1) has attracted considerable attention. In this study, we aimed to investigate the effect of IGF-1 gene therapy in an early animal model of 6-hydroxidopamine (6-OHDA)- induced parkinsonism. For this purpose, we employed male Wistar rats. The animals were first divided into two groups according to the bilateral injection into de Caudate Putamen unit (CPu):(a) VEH group (vehicle solution) and (b) 6-OHDA group (neurotoxic solution). After that, the animals in each group were divided, according to the bilateral injection into the dorsal hippocampus, in a control group (who received a control virus RAd-DSRed) and an experimental group (who received a therapeutic virus (RAd-IGF1). After three weeks of exposure to 6-OHDA, our study showed that IGF-1 gene therapy improved cognitive deficits related to short-term and spatial working memory, it also increased expression levels of tyrosine hydroxylase in the CPu. In addition, the therapy resulted in significant changes in several parameters (area, perimeter, roundness, ramification, and skeleton ́s analyses) related to microglia and astrocyte phenotypes, particularly in the CPu and dorsal hippocampal areas. Our data support the use of IGF-1 as a therapeutic molecule for future gene transfer interventions, that will contribute to a better understanding of the mechanisms correlating cognitive function and inflammatory process.
Collapse
Affiliation(s)
- Macarena Lorena Herrera
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Córdoba, Argentina; Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata (INIBIOLP-CONICET-UNLP), Buenos Aires, Argentina
| | - Leandro Gabriel Champarini
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Córdoba, Argentina
| | - Osvaldo Martín Basmadjian
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), CONICET-UNC, Córdoba, Argentina
| | - María José Bellini
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata (INIBIOLP-CONICET-UNLP), Buenos Aires, Argentina.
| | - Claudia Beatriz Hereñú
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Córdoba, Argentina.
| |
Collapse
|
3
|
Saad FA. Gene Therapy for Skin Aging. Curr Gene Ther 2024; 25:2-9. [PMID: 38529607 DOI: 10.2174/0115665232286489240320051925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
Extrinsic and intrinsic factors contribute to skin aging; nonetheless, they are intertwined. Moreover, intrinsic skin aging mirrors age-related declines in the entire human body's internal organs. There is evidence that skin appearance is an indicator of the general health of somebody or a visual certificate of health. Earlier, it was apparent that the intrinsic factors are unalterable, but the sparkling of skin aging gene therapy on the horizon is changing this narrative. Skin aging gene therapy offers tools for skin rejuvenation, natural beauty restoration, and therapy for diseases affecting the entire skin. However, skin aging gene therapy is an arduous and sophisticated task relying on precise interim stimulation of telomerase to extend telomeres and wend back the biological clock in the hopes to find the fountain of youth, while preserving cells innate biological features. Finding the hidden fountain of youth will be a remarkable discovery for promoting aesthetics medicine, genecosmetics, and healthy aging. Caloric restriction offers ultimate health benefits and a reproducible way to promote longevity in mammals, while delaying age-related diseases. Moreover, exercise further enhances these health benefits. This article highlights the potential of skin aging gene therapy and foretells the emerging dawn of the genecosmetics era.
Collapse
Affiliation(s)
- Fawzy A Saad
- Department of Gene Therapy, Saad Pharmaceuticals, Juhkentali 8, Tallinn, 10132, Estonia
| |
Collapse
|
4
|
Labombarda F, Bellini M. Brain and spinal cord trauma: what we know about the therapeutic potential of insulin growth factor 1 gene therapy. Neural Regen Res 2023; 18:253-257. [PMID: 35900399 PMCID: PMC9396494 DOI: 10.4103/1673-5374.343902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although little attention has been paid to cognitive and emotional dysfunctions observed in patients after spinal cord injury, several reports have described impairments in cognitive abilities. Our group also has contributed significantly to the study of cognitive impairments in a rat model of spinal cord injury. These findings are very significant because they demonstrate that cognitive and mood deficits are not induced by lifestyle changes, drugs of abuse, and combined medication. They are related to changes in brain structures involved in cognition and emotion, such as the hippocampus. Chronic spinal cord injury decreases neurogenesis, enhances glial reactivity leading to hippocampal neuroinflammation, and triggers cognitive deficits. These brain distal abnormalities are recently called tertiary damage. Given that there is no treatment for Tertiary Damage, insulin growth factor 1 gene therapy emerges as a good candidate. Insulin growth factor 1 gene therapy recovers neurogenesis and induces the polarization from pro-inflammatory towards anti-inflammatory microglial phenotypes, which represents a potential strategy to treat the neuroinflammation that supports tertiary damage. Insulin growth factor 1 gene therapy can be extended to other central nervous system pathologies such as traumatic brain injury where the neuroinflammatory component is crucial. Insulin growth factor 1 gene therapy could emerge as a new therapeutic strategy for treating traumatic brain injury and spinal cord injury.
Collapse
|
5
|
Dolcetti FJC, Falomir-Lockhart E, Acuña F, Herrera ML, Cervellini S, Barbeito CG, Grassi D, Arevalo MA, Bellini MJ. IGF1 gene therapy in middle-aged female rats delays reproductive senescence through its effects on hypothalamic GnRH and kisspeptin neurons. Aging (Albany NY) 2022; 14:8615-8632. [DOI: 10.18632/aging.204360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Franco Juan Cruz Dolcetti
- Laboratorio de Bioquímica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
| | - Eugenia Falomir-Lockhart
- Laboratorio de Bioquímica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
| | - Francisco Acuña
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Macarena Lorena Herrera
- Laboratorio de Bioquímica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
- Instituto de Farmacología Experimental de Córdoba-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, UNC-CONICET, Córdoba, Argentina
| | - Sofia Cervellini
- Laboratorio de Bioquímica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
| | - Claudio Gustavo Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Daniela Grassi
- Department of Anatomy, Histology and Neuroscience, Autonomous University of Madrid, Madrid, España
| | - Maria-Angeles Arevalo
- Instituto Cajal, CSIC, Madrid, España
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, España
| | - María José Bellini
- Laboratorio de Bioquímica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
| |
Collapse
|
6
|
Champarini LG, Herrera ML, Comas Mutis RG, Espejo PJ, Molina VA, Calfa GD, Hereñú CB. Effect of intra-BLA overexpression of IGF-1 on the expression of a contextual fear memory trace. Hippocampus 2022; 32:765-775. [PMID: 36000813 DOI: 10.1002/hipo.23465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022]
Abstract
Growth factors, such as insulin-like growth factor 1 (IGF-1), among others are known for their critical involvement in learning and memory processes. IGF-1 regulates cognitive functions, synapse density, neurotransmission, and adult neurogenesis and induces structural and synaptic plasticity-specific changes. Although IGF-1 has been suggested to participate in different memory processes, its role in memories associated with negative emotional experiences still remains to be elucidated. The principal aim of the present study was to test whether IGF-1 overexpression using adenoviral vectors in basolateral amygdala (BLA) influences both the expression and formation of contextual fear memory, as well as the hippocampal structural plasticity associated with such memory trace. We found that IGF-1 overexpression promotes the formation and expression of a specific contextual fear memory trace, and such effect persisted at least 7 days after recall. Moreover, the overexpression of this growth factor in BLA upregulates the activation of the ERK/MAPK pathway in this brain structure. In addition, intra-BLA IGF-1 overexpression causes dorsal hippocampus (DH) structural plasticity modifications promoting changes in the proportion of mature dendritic spines in the CA1 region, after a weak conditioning protocol. The present findings contribute to the knowledge underlying BLA-DH trace memory of fear and reveal important new insights into the neurobiology and neurochemistry of fear acquisition modulated by IGF-1 overexpression. The understanding of how IGF-1 modulates the formation of a fear contextual trace may pave the way for the development of novel therapeutic strategies focused on fear, anxiety, and trauma-related disorders.
Collapse
Affiliation(s)
- Leandro Gabriel Champarini
- Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Macarena Lorena Herrera
- Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Ramiro Gabriel Comas Mutis
- Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Pablo Javier Espejo
- Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Victor Alejandro Molina
- Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Gastón Diego Calfa
- Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Claudia Beatriz Hereñú
- Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Cordoba, Argentina
| |
Collapse
|
7
|
Jang A, Lehtinen MK. Experimental approaches for manipulating choroid plexus epithelial cells. Fluids Barriers CNS 2022; 19:36. [PMID: 35619113 PMCID: PMC9134666 DOI: 10.1186/s12987-022-00330-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/14/2022] [Indexed: 12/26/2022] Open
Abstract
Choroid plexus (ChP) epithelial cells are crucial for the function of the blood-cerebrospinal fluid barrier (BCSFB) in the developing and mature brain. The ChP is considered the primary source and regulator of CSF, secreting many important factors that nourish the brain. It also performs CSF clearance functions including removing Amyloid beta and potassium. As such, the ChP is a promising target for gene and drug therapy for neurodevelopmental and neurological disorders in the central nervous system (CNS). This review describes the current successful and emerging experimental approaches for targeting ChP epithelial cells. We highlight methodological strategies to specifically target these cells for gain or loss of function in vivo. We cover both genetic models and viral gene delivery systems. Additionally, several lines of reporters to access the ChP epithelia are reviewed. Finally, we discuss exciting new approaches, such as chemical activation and transplantation of engineered ChP epithelial cells. We elaborate on fundamental functions of the ChP in secretion and clearance and outline experimental approaches paving the way to clinical applications.
Collapse
Affiliation(s)
- Ahram Jang
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
IGF-1 Gene Transfer Modifies Inflammatory Environment and Gene Expression in the Caudate-Putamen of Aged Female Rat Brain. Mol Neurobiol 2022; 59:3337-3352. [DOI: 10.1007/s12035-022-02791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/04/2022] [Indexed: 11/26/2022]
|
9
|
Herrera ML, Deza-Ponzio R, Ghersi MS, de la Villarmois EA, Virgolini MB, Pérez MF, Molina VA, Bellini MJ, Hereñú CB. Early Cognitive Impairment Behind Nigrostriatal Circuit Neurotoxicity: Are Astrocytes Involved? ASN Neuro 2021; 12:1759091420925977. [PMID: 32466659 PMCID: PMC7263115 DOI: 10.1177/1759091420925977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cognitive dysfunction is one of the most severe nonmotor symptoms of nigrostriatal impairment. This occurs as a result of profound functional and morphological changes of different neuronal circuits, including modifications in the plasticity and architecture of hippocampal synapses. Such alterations can be implicated in the genesis and progression of dementia associated with neurodegenerative diseases including Parkinson-like symptoms. There are few studies regarding cognitive changes in nigrostriatal animal models. The aim of this study was to characterize the onset of memory deficit after induction of neurotoxicity with 6-hydroxydopamine (6-OHDA) and its correlation with hippocampal dysfunction. For this, we bilaterally microinjected 6-OHDA in dorsolateral Caudate-Putamen unit (CPu) and then, animals were tested weekly for working memory, spatial short-term memory, and motor performance. We evaluated tyrosine hydroxylase (TH) as a dopamine marker, aldehyde dehydrogenase 2 (ALDH2), a mitochondria detoxification enzyme and astrocyte glial fibrillar acid protein (GFAP) an immunoreactivity marker involved in different areas: CPu, substantia nigra, prefrontal cortex, and hippocampus. We observed a specific prefrontal cortex and nigrostriatal pathway TH reduction while ALDH2 showed a decrease-positive area in all the studied regions. Moreover, GFAP showed a specific CPu decrease and hippocampus increase of positively stained area on the third week after toxicity. We also evaluated the threshold to induce long-term potentiation in hippocampal excitability. Our findings showed that reduced hippocampal synaptic transmission was accompanied by deficits in memory processes, without affecting motor performance on the third-week post 6-OHDA administration. Our results suggest that 3 weeks after neurotoxic administration, astrocytes and ALDH2 mitochondrial enzyme modifications participate in altering the properties that negatively affect hippocampal function and consequently cognitive behavior.
Collapse
Affiliation(s)
- Macarena L Herrera
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba.,Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Romina Deza-Ponzio
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Marisa S Ghersi
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Emilce A de la Villarmois
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Miriam B Virgolini
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Mariela F Pérez
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Victor A Molina
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - María J Bellini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Claudia B Hereñú
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| |
Collapse
|
10
|
IGF1 Gene Therapy Reversed Cognitive Deficits and Restored Hippocampal Alterations After Chronic Spinal Cord Injury. Mol Neurobiol 2021; 58:6186-6202. [PMID: 34463925 DOI: 10.1007/s12035-021-02545-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
The hippocampus is implicated in the generation of memory and learning, processes which involve extensive neuroplasticity. The generation of hippocampal adult-born neurons is particularly regulated by glial cells of the neurogenic niche and the surrounding microenvironment. Interestingly, recent evidence has shown that spinal cord injury (SCI) in rodents leads to hippocampal neuroinflammation, neurogenesis reduction, and cognitive impairments. In this scenario, the aim of this work was to evaluate whether an adenoviral vector expressing IGF1 could reverse hippocampal alterations and cognitive deficits after chronic SCI. SCI caused neurogenesis reduction and impairments of both recognition and working memories. We also found that SCI increased the number of hypertrophic arginase-1 negative microglia concomitant with the decrease of the number of ramified surveillance microglia in the hilus, molecular layer, and subgranular zone of the dentate gyrus. RAd-IGF1 treatment restored neurogenesis and improved recognition and working memory impairments. In addition, RAd-IGF1 gene therapy modulated differentially hippocampal regions. In the hilus and molecular layer, IGF1 gene therapy recovered the number of surveillance microglia coincident with a reduction of hypertrophic microglia cell number. However, in the neurogenic niche, IGF1 reduced the number of ramified microglia and increased the number of hypertrophic microglia, which as a whole expressed arginase-1. In summary, RAd-IGF1 gene therapy might surge as a new therapeutic strategy for patients with hippocampal microglial alterations and cognitive deficits such as those with spinal cord injury and other neurodegenerative diseases.
Collapse
|
11
|
Montivero AJ, Ghersi MS, Silvero C MJ, Artur de la Villarmois E, Catalan-Figueroa J, Herrera M, Becerra MC, Hereñú CB, Pérez MF. Early IGF-1 Gene Therapy Prevented Oxidative Stress and Cognitive Deficits Induced by Traumatic Brain Injury. Front Pharmacol 2021; 12:672392. [PMID: 34234671 PMCID: PMC8255687 DOI: 10.3389/fphar.2021.672392] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Traumatic Brain Injury (TBI) remains a leading cause of morbidity and mortality in adults under 40 years old. Once primary injury occurs after TBI, neuroinflammation and oxidative stress (OS) are triggered, contributing to the development of many TBI-induced neurological deficits, and reducing the probability of critical trauma patients´ survival. Regardless the research investment on the development of anti-inflammatory and neuroprotective treatments, most pre-clinical studies have failed to report significant effects, probably because of the limited blood brain barrier permeability of no-steroidal or steroidal anti-inflammatory drugs. Lately, neurotrophic factors, such as the insulin-like growth factor 1 (IGF-1), are considered attractive therapeutic alternatives for diverse neurological pathologies, as they are neuromodulators linked to neuroprotection and anti-inflammatory effects. Considering this background, the aim of the present investigation is to test early IGF-1 gene therapy in both OS markers and cognitive deficits induced by TBI. Male Wistar rats were injected via Cisterna Magna with recombinant adenoviral vectors containing the IGF-1 gene cDNA 15 min post-TBI. Animals were sacrificed after 60 min, 24 h or 7 days to study the advanced oxidation protein products (AOPP) and malondialdehyde (MDA) levels, to recognize the protein oxidation damage and lipid peroxidation respectively, in the TBI neighboring brain areas. Cognitive deficits were assessed by evaluating working memory 7 days after TBI. The results reported significant increases of AOPP and MDA levels at 60 min, 24 h, and 7 days after TBI in the prefrontal cortex, motor cortex and hippocampus. In addition, at day 7, TBI also reduced working memory performance. Interestingly, AOPP, and MDA levels in the studied brain areas were significantly reduced after IGF-1 gene therapy that in turn prevented cognitive deficits, restoring TBI-animals working memory performance to similar values regarding control. In conclusion, early IGF-1 gene therapy could be considered a novel therapeutic approach to targeting neuroinflammation as well as to preventing some behavioral deficits related to TBI.
Collapse
Affiliation(s)
- Agustín J Montivero
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - Marisa S Ghersi
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - M Jazmín Silvero C
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - Emilce Artur de la Villarmois
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - Johanna Catalan-Figueroa
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina.,Escuela de Química y Farmacia, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Macarena Herrera
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - María Cecilia Becerra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - Claudia B Hereñú
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - Mariela F Pérez
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| |
Collapse
|
12
|
Nishida F, Zappa Villar MF, Zanuzzi CN, Sisti MS, Camiña AE, Reggiani PC, Portiansky EL. Intracerebroventricular Delivery of Human Umbilical Cord Mesenchymal Stem Cells as a Promising Therapy for Repairing the Spinal Cord Injury Induced by Kainic Acid. Stem Cell Rev Rep 2020; 16:167-180. [PMID: 31760626 DOI: 10.1007/s12015-019-09934-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a common pathological condition that leads to permanent or temporal loss of motor and autonomic functions. Kainic acid (KA), an agonist of kainate receptors, a type of ionotropic glutamate receptor, is widely used to induce experimental neurodegeneration models of CNS. Mesenchymal Stem Cells (MSC) therapy applied at the injured nervous tissue have emerged as a promising therapeutic treatment. Here we used a validated SCI experimental model in which an intraparenchymal injection of KA into the C5 segment of rat spinal cord induced an excitotoxic lesion. Three days later, experimental animals were treated with an intracerebroventricular injection of human umbilical cord (hUC) MSC whereas control group only received saline solution. Sensory and motor skills as well as neuronal and glial reaction of both groups were recorded. Differences in motor behavior, neuronal counting and glial responses were observed between hUC-MSC-treated and untreated rats. According to the obtained results, we suggest that hUC-MSC therapy delivered into the fourth ventricle using the intracerebroventricular via can exert a neuroprotective or neurorestorative effect on KA-injected animals.
Collapse
Affiliation(s)
- Fabián Nishida
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Calles 60 y 118, 1900, La Plata, Buenos Aires, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - María F Zappa Villar
- National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina.,INIBIOLP, School of Medical Sciences, UNLP, La Plata, Buenos Aires, Argentina.,Department of Histology and of Embryology B, School of Medical Sciences, UNLP, La Plata, Buenos Aires, Argentina
| | - Carolina N Zanuzzi
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Calles 60 y 118, 1900, La Plata, Buenos Aires, Argentina. .,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina. .,Department of Histology and Embryology, School of Veterinary Sciences, UNLP, La Plata, Buenos Aires, Argentina.
| | - María S Sisti
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Calles 60 y 118, 1900, La Plata, Buenos Aires, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - Agustina E Camiña
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Calles 60 y 118, 1900, La Plata, Buenos Aires, Argentina
| | - Paula C Reggiani
- National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina.,INIBIOLP, School of Medical Sciences, UNLP, La Plata, Buenos Aires, Argentina.,Department of Histology and of Embryology B, School of Medical Sciences, UNLP, La Plata, Buenos Aires, Argentina
| | - Enrique L Portiansky
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Calles 60 y 118, 1900, La Plata, Buenos Aires, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| |
Collapse
|
13
|
Nishida F, Zanuzzi CN, Sisti MS, Falomir Lockhart E, Camiña AE, Hereñú CB, Bellini MJ, Portiansky EL. Intracisternal IGF-1 gene therapy abrogates kainic acid-induced excitotoxic damage of the rat spinal cord. Eur J Neurosci 2020; 52:3339-3352. [PMID: 32573850 DOI: 10.1111/ejn.14876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022]
Abstract
Development of alternative therapies for treating functional deficits after different neurological damages is a challenge in neuroscience. Insulin-like growth factor-1 (IGF-1) is a potent neurotrophic factor exerting neuroprotective actions in brain and spinal cord. It is used to prevent or treat injuries of the central nervous system using different administration routes in different animal models. In this study, we evaluated whether intracisternal (IC) route for IGF-1 gene therapy may abrogate or at least reduce the structural and behavioral damages induced by the intraparenchymal injection of kainic acid (KA) into the rat spinal cord. Experimental (Rad-IGF-1) and control (Rad-DsRed-KA) rats were evaluated using a battery of motor and sensory tests before the injection of the recombinant adenovector (day -3), before KA injection (day 0) and at every post-injection (pi) time point (days 1, 2, 3 and 7 pi). Histopathological changes and neuronal and glial counting were assessed. Pretreatment using IC delivery of RAd-IGF-1 improved animal's general condition and motor and sensory functions as compared to Rad-DsRed-KA-injected rats. Besides, IC Rad-IGF-1 therapy abrogated later spinal cord damage and reduced the glial response induced by KA as observed in Rad-DsRed-KA rats. We conclude that the IC route for delivering RAd-IGF-1 prevents KA-induced excitotoxicity in the spinal cord.
Collapse
Affiliation(s)
- Fabián Nishida
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - Carolina N Zanuzzi
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina.,Department of Histology and Embryology, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina
| | - María S Sisti
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - Eugenia Falomir Lockhart
- National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina.,INIBIOLP-Histology B, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Agustina E Camiña
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina
| | - Claudia B Hereñú
- Department of Pharmacology, School of Chemistry, National University of Córdoba (UNC), Córdoba, Argentina.,Institute for Experimental Pharmacology, Córdoba, Argentina
| | - María J Bellini
- National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina.,INIBIOLP-Histology B, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Enrique L Portiansky
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Herrera ML, Basmadjian OM, Falomir Lockhart E, Dolcetti FJC, Hereñú CB, Bellini MJ. Novel adenoviral IGF-1 administration modulates the association between depressive symptoms and aging: Does gender matter? Behav Brain Res 2019; 372:112050. [DOI: 10.1016/j.bbr.2019.112050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/31/2019] [Accepted: 06/20/2019] [Indexed: 11/24/2022]
|
15
|
Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419842176. [PMID: 31024217 PMCID: PMC6472167 DOI: 10.1177/1178626419842176] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factors (IGF-I and IGF-II) and their receptors are widely expressed in nervous tissue from early embryonic life. They also cross the blood brain barriers by active transport, and their regulation as endocrine factors therefore differs from other tissues. In brain, IGFs have paracrine and autocrine actions that are modulated by IGF-binding proteins and interact with other growth factor signalling pathways. The IGF system has roles in nervous system development and maintenance. There is substantial evidence for a specific role for this system in some neurodegenerative diseases, and neuroprotective actions make this system an attractive target for new therapeutic approaches. In developing new therapies, interaction with IGF-binding proteins and other growth factor signalling pathways should be considered. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - Gary W Boyd
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
16
|
Lidocaine protects neurons of the spinal cord in an excitotoxicity model. Neurosci Lett 2019; 698:105-112. [DOI: 10.1016/j.neulet.2019.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/31/2022]
|
17
|
Falomir-Lockhart E, Dolcetti FJC, García-Segura LM, Hereñú CB, Bellini MJ. IGF1 Gene Therapy Modifies Microglia in the Striatum of Senile Rats. Front Aging Neurosci 2019; 11:48. [PMID: 30890930 PMCID: PMC6411822 DOI: 10.3389/fnagi.2019.00048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/19/2019] [Indexed: 12/20/2022] Open
Abstract
Microglial cells become dystrophic with aging; this phenotypic alteration contributes to basal central nervous system (CNS) neuroinflammation being a risk factor for age related neurodegenerative diseases. In previous studies we have observed that insulin like growth factor 1 (IGF1) gene therapy is a feasible approach to target brain cells, and that is effective to modify inflammatory response in vitro and to ameliorate cognitive or motor deficits in vivo. Based on these findings, the main aim of the present study is to investigate the effect of IGF1 gene therapy on microglia distribution and morphology in the senile rat. We found that IGF1 therapy leads to a region-specific modification of aged microglia population.
Collapse
Affiliation(s)
- Eugenia Falomir-Lockhart
- Laboratorio de Bioquimica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
| | - Franco Juan Cruz Dolcetti
- Laboratorio de Bioquimica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
| | - Luis Miguel García-Segura
- Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación, Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Claudia Beatriz Hereñú
- Instituto de Farmacología Experimental de Córdoba-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, UNC-CONICET, Córdoba, Argentina
| | - Maria Jose Bellini
- Laboratorio de Bioquimica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
| |
Collapse
|
18
|
Ueha R, Kondo K, Ueha S, Yamasoba T. Dose-Dependent Effects of Insulin-Like Growth Factor 1 in the Aged Olfactory Epithelium. Front Aging Neurosci 2018; 10:385. [PMID: 30515092 PMCID: PMC6256067 DOI: 10.3389/fnagi.2018.00385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/02/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Olfaction is known to be impaired by aging. We hypothesized that insulin-like growth factor-1 (IGF-1) administered at an appropriate dose could prevent age-induced negative effects on olfactory receptor neurons (ORNs). We explored the effects of low- and high-dose administration of IGF-1 on the ORN cell system in aged mice and investigated the involvement of the cellular mechanisms of IGF-1 in the regeneration of ORNs in aged mice. Methods: We subcutaneously administered recombinant human IGF-1 (rhIGF-1) to 16-month-old male mice over 56 days, and then examined the histological effects of rhGF-1 on cellular composition, cell proliferation, and cell death in the aged olfactory epithelium (OE), by comparing among saline-treated and low- and high-dose rhIGF-1-treated mice. Results: Low-dose rhIGF-1 administration increased the numbers of olfactory progenitors, immature ORNs, and mature ORNs in the OE, despite an increase in Cas3+ apoptotic cells. Notably, high-dose rhIGF-1 administration increased the numbers of only immature ORNs, not olfactory progenitors and mature ORNs, with a concurrent increase in apoptotic cells. Conclusion: Our data suggest that in aged mice, IGF-1 administered at an appropriate dose could increase the number of mature ORNs and further human studies may contribute to the development of treatments for aging-related olfactory impairment.
Collapse
Affiliation(s)
- Rumi Ueha
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| | - Kenji Kondo
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Ueha R, Shichino S, Ueha S, Kondo K, Kikuta S, Nishijima H, Matsushima K, Yamasoba T. Reduction of Proliferating Olfactory Cells and Low Expression of Extracellular Matrix Genes Are Hallmarks of the Aged Olfactory Mucosa. Front Aging Neurosci 2018; 10:86. [PMID: 29636678 PMCID: PMC5880952 DOI: 10.3389/fnagi.2018.00086] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
Background: The incidence of olfactory impairment increases with age; however, the detailed molecular and cellular mechanisms underlying this increase are yet to be determined. Methods: We examined the influence of aging on olfactory receptor neurons (ORNs), which are maintained by a unique stem cell system, from olfactory progenitor cells to mature ORNs, by histological comparisons of the physiological status of the olfactory epithelium between young adult and aged mice. Furthermore, we clarified the expression of genes encoding inflammatory cytokines, neurotrophins, growth factors, and extracellular matrix proteins to reveal the molecular mechanisms underlying olfactory impairment caused by aging. Results: The numbers of mature and immature ORNs, but not olfactory progenitors, decreased in the aged olfactory epithelium, with a concurrent reduction in Ki-67-positive proliferating cells. Transcriptome analyses revealed an increase in Il6, encoding a component of senescence-associated secretary phenotypes (SASP), and a decrease in Igf1, encoding a growth factor for ORNs, in the aged nasal mucosa. Interestingly, expression levels of several extracellular matrix genes, including Col1a2, decreased in the aged nasal mucosa. Consistent with the transcriptional changes, the number of Col1a2-GFP-positive cells decreased in the aged lamina propria. Conclusions: Our data suggest that reduction in ORN number and cell proliferation, reduced extracellular matrix gene expression, and increased SASP contribute to olfactory impairment during aging.
Collapse
Affiliation(s)
- Rumi Ueha
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Shichino
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ueha
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Kondo
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| | - Shu Kikuta
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| | | | - Kouji Matsushima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Sun BL, Wang LH, Yang T, Sun JY, Mao LL, Yang MF, Yuan H, Colvin RA, Yang XY. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Prog Neurobiol 2017; 163-164:118-143. [PMID: 28903061 DOI: 10.1016/j.pneurobio.2017.08.007] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022]
Abstract
The belief that the vertebrate brain functions normally without classical lymphatic drainage vessels has been held for many decades. On the contrary, new findings show that functional lymphatic drainage does exist in the brain. The brain lymphatic drainage system is composed of basement membrane-based perivascular pathway, a brain-wide glymphatic pathway, and cerebrospinal fluid (CSF) drainage routes including sinus-associated meningeal lymphatic vessels and olfactory/cervical lymphatic routes. The brain lymphatic systems function physiological as a route of drainage for interstitial fluid (ISF) from brain parenchyma to nearby lymph nodes. Brain lymphatic drainage helps maintain water and ion balance of the ISF, waste clearance, and reabsorption of macromolecular solutes. A second physiological function includes communication with the immune system modulating immune surveillance and responses of the brain. These physiological functions are influenced by aging, genetic phenotypes, sleep-wake cycle, and body posture. The impairment and dysfunction of the brain lymphatic system has crucial roles in age-related changes of brain function and the pathogenesis of neurovascular, neurodegenerative, and neuroinflammatory diseases, as well as brain injury and tumors. In this review, we summarize the key component elements (regions, cells, and water transporters) of the brain lymphatic system and their regulators as potential therapeutic targets in the treatment of neurologic diseases and their resulting complications. Finally, we highlight the clinical importance of ependymal route-based targeted gene therapy and intranasal drug administration in the brain by taking advantage of the unique role played by brain lymphatic pathways in the regulation of CSF flow and ISF/CSF exchange.
Collapse
Affiliation(s)
- Bao-Liang Sun
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China.
| | - Li-Hua Wang
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, China
| | - Tuo Yang
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jing-Yi Sun
- Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Gangwon 220-701, Republic of Korea
| | - Lei-Lei Mao
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China
| | - Ming-Feng Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China
| | - Hui Yuan
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China
| | - Robert A Colvin
- Department of Biological Sciences, Interdisciplinary Graduate Program in Molecular and Cellular Biology, Neuroscience Program, Ohio University, Athens, OH 45701, USA
| | - Xiao-Yi Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China.
| |
Collapse
|
21
|
Pardo J, Abba MC, Lacunza E, Ogundele OM, Paiva I, Morel GR, Outeiro TF, Goya RG. IGF-I Gene Therapy in Aging Rats Modulates Hippocampal Genes Relevant to Memory Function. J Gerontol A Biol Sci Med Sci 2017. [DOI: 10.1093/gerona/glx125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Joaquín Pardo
- INIBIOLP-Histology B-Pathology B, University of La Plata, La Plata, Argentina
| | - Martin C Abba
- CINIBA, School of Medicine, University of La Plata, La Plata, Argentina
| | - Ezequiel Lacunza
- CINIBA, School of Medicine, University of La Plata, La Plata, Argentina
| | - Olalekan M Ogundele
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge
| | - Isabel Paiva
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Germany
| | - Gustavo R Morel
- INIBIOLP-Histology B-Pathology B, University of La Plata, La Plata, Argentina
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Rodolfo G Goya
- INIBIOLP-Histology B-Pathology B, University of La Plata, La Plata, Argentina
| |
Collapse
|
22
|
A new adenovector system for implementing thymulin gene therapy for inflammatory disorders. Mol Immunol 2017; 87:180-187. [PMID: 28501652 DOI: 10.1016/j.molimm.2017.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/18/2017] [Accepted: 04/22/2017] [Indexed: 01/12/2023]
Abstract
Thymulin is a thymic peptide possessing anti-inflammatory effects. In order to manipulate thymulin expression in gene therapy studies, we built a bidirectional regulatable two-vector Tet-Off system and the corresponding control system. The experimental two-vector system, ETV, consists of a recombinant adenovector (RAd) harboring an expression cassette centered on a Tet-Off bidirectional promoter flanked by a synthetic gene for thymulin and the gene for humanized Green Fluorescent Protein (hGFP). The second adenovector of this system, RAd-tTA, constitutively expresses the regulatory protein tTA. When cells are co-transduced by the two adenovector components, tTA activates the bidirectional promoter and both transgenes are expressed. In the presence of the antibiotic doxycycline (DOX) transgene expression is deactivated. The control two-vector system, termed CTV, is similar to ETV but only expresses hGFP. In CHO-K1, BHK, and C2C12 cells, ETV and CTV induced a dose-dependent hGFP expression. In CHO-K1 cells, transgene expression was almost completely inhibited by DOX (1mg/ml). After intracerebroventricular injection of ETV in rats, thymulin levels increased significantly in the cerebrospinal fluid and there was high hGFP expression in the ependymal cell layer. When injected intramuscularly the ETV system induced a progressive increase in serum thymulin levels, which were inhibited when DOX was added to the drinking water. We conclude that our regulatable two-adenovector system is an effective molecular tool for implementing short and long-term anti-inflammatory thymulin gene therapy in animal models of acute or chronic inflammation.
Collapse
|
23
|
Neurons of the rat cervical spinal cord express vimentin and neurofilament after intraparenchymal injection of kainic acid. Neurosci Lett 2017; 643:103-110. [PMID: 28229936 DOI: 10.1016/j.neulet.2017.02.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/23/2017] [Accepted: 02/09/2017] [Indexed: 12/19/2022]
Abstract
Intermediate filaments (IF) can be altered under disorders such as neurodegenerative diseases. Kainic acid (KA) induce behavioral changes and histopathological alterations of the spinal cord of injected rats. Our goal was to evaluate the IF expression in neurons during this injury model. Animals were injected with KA at the C5 segment of the cervical spinal cord and euthanized at 1, 3 and 7 post injection (pi) days. Neuronal cell counting showed a significant loss of neurons at the injection site when compared with those of sham and non-operated animals. Immunohistochemistry for vimentin and neurofilament showed positive labeling of perikarya in sham and KA-injected animals since day 1 pi that lasted for the remaining experimental days. Colocalization analysis between enolase and vimentin or neurofilament confirmed a high index of colocalization in both experimental groups at day 1 pi. This index decreased in sham animals by day 3 pi whereas that of KA-injected animals remained high throughout the experiment. These results may suggest that perikarya initiate an unconventional IF expression, which may respond to the neuronal damage induced by the mechanical injury and the excitotoxic effect of KA. It seems that vimentin and neurofilament expression may be a necessary change to promote recovery of the damaged tissue.
Collapse
|
24
|
Pardo J, Uriarte M, Cónsole GM, Reggiani PC, Outeiro TF, Morel GR, Goya RG. Insulin-like growth factor-I gene therapy increases hippocampal neurogenesis, astrocyte branching and improves spatial memory in female aging rats. Eur J Neurosci 2016; 44:2120-8. [PMID: 27188415 DOI: 10.1111/ejn.13278] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/24/2016] [Accepted: 05/10/2016] [Indexed: 11/29/2022]
Abstract
In rats, learning and memory performance decline during aging, which makes this rodent species a suitable model to evaluate therapeutic strategies of potential value for correcting age-related cognitive deficits. Some of these strategies involve neurotrophic factors like insulin-like growth factor-I (IGF-I), a powerful neuroprotective molecule in the brain. Here, we implemented 18-day long intracerebroventricular (ICV) IGF-I gene therapy in 28 months old Sprague-Dawley female rats, and assessed spatial memory performance in the Barnes maze. We also studied hippocampal morphology using an unbiased stereological approach. Adenovectors expressing the gene for rat IGF-I or the reporter DsRed were used. Cerebrospinal fluid (CSF) samples were taken and IGF-I levels determined by radioimmunoassay. At the end of the study, IGF-I levels in the CSF were significantly higher in the experimental group than in the DsRed controls. After treatment, the IGF-I group showed a significant improvement in spatial memory accuracy as compared with DsRed counterparts. In the dentate gyrus (DG) of the hippocampus, the IGF-I group showed a higher number of immature neurons than the DsRed controls. The treatment increased hippocampal astrocyte branching and reduced their number in the hippocampal stratum radiatum. We conclude that the ependymal route is an effective approach to increase CSF levels of IGF-I and that this strategy improves the accuracy of spatial memory in aging rats. The favorable effect of the treatment on DG neurogenesis and astrocyte branching in the stratum radiatum may contribute to improving memory performance in aging rats.
Collapse
Affiliation(s)
- Joaquín Pardo
- INIBIOLP-Pathology B, School of Medicine, UNLP, CC 455, 1900, La Plata, Argentina.,Department of Histology and of Embryology B, School of Medicine, UNLP, La Plata, Argentina
| | - Maia Uriarte
- INIBIOLP-Pathology B, School of Medicine, UNLP, CC 455, 1900, La Plata, Argentina.,Department of Histology and of Embryology B, School of Medicine, UNLP, La Plata, Argentina
| | - Gloria M Cónsole
- Department of Histology and of Embryology B, School of Medicine, UNLP, La Plata, Argentina
| | - Paula C Reggiani
- INIBIOLP-Pathology B, School of Medicine, UNLP, CC 455, 1900, La Plata, Argentina.,Department of Histology and of Embryology B, School of Medicine, UNLP, La Plata, Argentina
| | - Tiago F Outeiro
- Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Gustavo R Morel
- INIBIOLP-Pathology B, School of Medicine, UNLP, CC 455, 1900, La Plata, Argentina.,Department of Histology and of Embryology B, School of Medicine, UNLP, La Plata, Argentina
| | - Rodolfo G Goya
- INIBIOLP-Pathology B, School of Medicine, UNLP, CC 455, 1900, La Plata, Argentina.,Department of Histology and of Embryology B, School of Medicine, UNLP, La Plata, Argentina
| |
Collapse
|
25
|
Abstract
The resiliency of the adult nervous system is markedly affected by the environment and the circumstances during infant and child development. As such, adults in resource-limited settings who may have experienced early deprivation are particularly vulnerable to subsequent neurological disorders. Adult populations in countries with relatively recent advances in economic development may still have a higher susceptibility to neurological illness or injury that is reflective of the socioeconomic environment that was present during that population’s infancy and childhood. Brain and peripheral nervous system research conducted over the past decade in resource-limited settings has led to an impressive and growing body of knowledge that informs our understanding of neurological function and dysfunction, independent of geography. Neurological conditions feature prominently in the burgeoning epidemic of non-communicable diseases facing low- and middle-income countries. Neurological research in these countries is needed to address this burden of disease. Although the burden of more prevalent and severe neurological disease poses public health and clinical challenges in settings with limited neurological expertise, the same factors, along with genetic heterogeneity and the relative absence of ingrained clinical care practices, offer circumstances well-suited for the conduct of crucial future research that is globally relevant.
Collapse
|
26
|
Morel GR, Andersen T, Pardo J, Zuccolilli GO, Cambiaggi VL, Hereñú CB, Goya RG. Cognitive impairment and morphological changes in the dorsal hippocampus of very old female rats. Neuroscience 2015; 303:189-99. [PMID: 26141841 PMCID: PMC4532610 DOI: 10.1016/j.neuroscience.2015.06.050] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 11/20/2022]
Abstract
The hippocampus, a medial temporal lobe structure necessary for the formation of spatial memory, is particularly affected by both normal and pathologic aging. In previous studies, we observed a significant age-related increase in dopaminergic neuron loss in the hypothalamus and the substantia nigra of female rats, which becomes more conspicuous at extreme ages. Here, we extend our studies by assessing spatial memory in 4-6 month-old (young), 26-month-old (old) and 29-32-month-old (senile) Sprague-Dawley female rats as well as the age-related histopathological changes in their dorsal hippocampus. Age changes in spatial memory performance were assessed with a modified version of the Barnes maze test. We employed two probe trials (PTs), one and five days after training, respectively, in order to evaluate learning ability as well as short-term and longer-term spatial memory retention. A set of relevant hippocampal cell markers was also quantitated in the animals by means of an unbiased stereological approach. The results revealed that old rats perform better than senile rats in acquisition trials and young rats perform better than both aging groups. However, during short-term PT both aging groups showed a preserved spatial memory while in longer-term PT, spatial memory showed deterioration in both aged groups. Morphological analysis showed a marked decrease (94-97%) in doublecortin neuron number in the dentate gyrus in both aged groups and a reduction in glial fibrillary acidic protein-positive cell number in the stratum radiatum of aging rats. Astroglial process length and branching complexity decreased in aged rats. We conclude that while target-seeking activity and learning ability decrease in aged females, spatial memory only declines in the longer-term tests. The reduction in neuroblast number and astroglial arborescence complexity in the dorsal hippocampus are likely to play a role in the cognitive deficits of aging rats.
Collapse
Affiliation(s)
- G R Morel
- INIBIOLP-Histology B-Pathology B, School of Medicine, National University of La Plata, La Plata city, Argentina
| | - T Andersen
- INIBIOLP-Histology B-Pathology B, School of Medicine, National University of La Plata, La Plata city, Argentina
| | - J Pardo
- INIBIOLP-Histology B-Pathology B, School of Medicine, National University of La Plata, La Plata city, Argentina
| | - G O Zuccolilli
- Institute of Anatomy, School of Veterinary Sciences, National University of La Plata, La Plata city, Argentina
| | - V L Cambiaggi
- Institute of Anatomy, School of Veterinary Sciences, National University of La Plata, La Plata city, Argentina
| | - C B Hereñú
- INIBIOLP-Histology B-Pathology B, School of Medicine, National University of La Plata, La Plata city, Argentina
| | - R G Goya
- INIBIOLP-Histology B-Pathology B, School of Medicine, National University of La Plata, La Plata city, Argentina.
| |
Collapse
|
27
|
The spread of adenoviral vectors to central nervous system through pathway of cochlea in mimetic aging and young rats. Gene Ther 2015; 22:866-75. [PMID: 26125607 DOI: 10.1038/gt.2015.63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 06/08/2015] [Accepted: 06/15/2015] [Indexed: 12/11/2022]
Abstract
There is no definitive conclusion concerning the spread of viral vectors to the brain after a cochlear inoculation. In addition, some studies have reported different distribution profiles of viral vectors in the central auditory system after a cochlear inoculation. Thus, rats were grouped into either a mimetic aging group or a young group and transfected with adenoviral vectors (AdVs) by round window membrane injection. The distribution of AdV in central nervous system (CNS) was demonstrated in the two groups with transmission electron microscopy and immunofluorescence. We found that the AdV could disseminate into the CNS and that the neuronal damage and stress-induced GRP78 expression were reduced after transfection with PGC-1α, as compared with the control vectors, especially in the mimetic aging group. We also found that the host immune response was degraded in CNS in the mimetic aging group after transduction through the cochlea, as compared with the young group. These results demonstrate that viral vectors can disseminate into the CNS through the cochlea. Moreover, mimetic aging induced by D-galactose could facilitate the spread of viral vectors into the CNS from the cochlea. These findings may indicate a new potential approach for gene therapy against age-related diseases in the CNS.
Collapse
|
28
|
Nishida F, Zanuzzi CN, Martínez A, Barbeito CG, Portiansky EL. Functional and histopathological changes induced by intraparenchymal injection of kainic acid in the rat cervical spinal cord. Neurotoxicology 2015; 49:68-78. [PMID: 26014486 DOI: 10.1016/j.neuro.2015.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 01/04/2023]
Abstract
Kainic acid (KA) is an analog of the neurotransmitter glutamate and is widely used as an excitotoxic agent to lesion spinal cord networks, thus, providing an interesting model to learn basic mechanisms of spinal cord injury. The present work was aimed to evaluate motor and sensory performance of rats and analyze morphometric parameters of spinal cord neurons after KA injection. Animals were injected either with 0.75, 1 or 1.25 mM of KA at the C5 segment of the cervical spinal cord. Motor and sensory performance of the rats were evaluate at day 0 (before injection) and at days 1, 2, 3 and 7 post-injection (pi) and compared with those of saline-treated and non-operated animals. Animals were sacrificed at each time point for morphometric and histopathological analysis and compared among groups. All KA-treated animals showed a significant impairment at the motor and sensory tests for the ipsilateral forelimb in a concentration-dependent manner in comparison to saline-treated and non-operated animals. Neuronal cell count showed a significant loss of neurons at C4, C5 and C6 cervical segments when compared with those of saline-treated and non-operated animals. The contralateral side of the cervical segments in KA-treated rats remained unchanged. Some improvement at the motor and sensory tests was observed in animals injected with 0.75 and 1mM KA. Moreover, a mild increase in the neuronal count of the damaged segments was also recorded. The improvement recorded in the motor and sensory tests by day 7 pi may be a consequence of a neuron repairing mechanism triggered soon after the KA excitotoxic effect.
Collapse
Affiliation(s)
- Fabián Nishida
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina.
| | - Carolina N Zanuzzi
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; Department of Histology and Embryology, School of Veterinary Sciences, National University of La Plata, Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina.
| | - Agustín Martínez
- National Institute of Agricultural Technology (INTA), Bariloche, Argentina.
| | - Claudio G Barbeito
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; Department of Histology and Embryology, School of Veterinary Sciences, National University of La Plata, Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina.
| | - Enrique L Portiansky
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina.
| |
Collapse
|
29
|
Zhao L, Li H, Guo R, Ma T, Hou R, Ma X, Du Y. miR-137, a new target for post-stroke depression? Neural Regen Res 2014; 8:2441-8. [PMID: 25206554 PMCID: PMC4146110 DOI: 10.3969/j.issn.1673-5374.2013.26.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/11/2013] [Indexed: 12/17/2022] Open
Abstract
Expression of miR-137 is downregulated in brain tissue from patients with depression and suicidal behavior, and is also downregulated in peripheral blood from stroke patients. However, it is not yet known if miR-137 acts as a bridge between stroke and depression. To test this, we used middle cerebral artery occlusion and chronic mild stress to establish a post-stroke depression model in rats. Compared with controls, we found significantly lower miR-137 levels in the brain and peripheral blood from post-stroke depression rats. Injection of a miR-137 antagonist into the brain ventricles upregulated miR-137 levels, and improved behavioral changes in post-stroke depression rats. Luciferase assays showed miR-137 bound to the 3’UTR of Grin2A, regulating Grin2A expression in a neuronal cell line. Grin2A gene overexpression in the brain of post-stroke depression rats, noticeably suppressed the inhibitory effect of miR-137 on post-stroke depression. Overall, our results show that miR-137 suppresses Grin2A protein expression through binding to Grin2A mRNA, thereby exerting an inhibitory effect on post-stroke depression. Our results offer a new therapeutic direction for post-stroke depression.
Collapse
Affiliation(s)
- Lixia Zhao
- Department of Neurology, Shandong Provincial Hospital, Jinan 250021, Shandong Province, China ; Department of Neurology, Haici Hospital Affiliated to Medical College of Qingdao University, Qingdao 266033, Shandong Province, China
| | - Huazi Li
- Department of Medical Imaging, Haici Hospital Affiliated to Medical College of Qingdao University, Qingdao 266033, Shandong Province, China
| | - Ruiyou Guo
- Department of Neurology, Haici Hospital Affiliated to Medical College of Qingdao University, Qingdao 266033, Shandong Province, China
| | - Teng Ma
- Department of Neurology, Haici Hospital Affiliated to Medical College of Qingdao University, Qingdao 266033, Shandong Province, China
| | - Rongyao Hou
- Department of Neurology, Haici Hospital Affiliated to Medical College of Qingdao University, Qingdao 266033, Shandong Province, China
| | - Xiaowei Ma
- Department of Neurology, Haici Hospital Affiliated to Medical College of Qingdao University, Qingdao 266033, Shandong Province, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Jinan 250021, Shandong Province, China
| |
Collapse
|
30
|
Yamazaki Y, Hirai Y, Miyake K, Shimada T. Targeted gene transfer into ependymal cells through intraventricular injection of AAV1 vector and long-term enzyme replacement via the CSF. Sci Rep 2014; 4:5506. [PMID: 24981028 PMCID: PMC4076682 DOI: 10.1038/srep05506] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/09/2014] [Indexed: 12/13/2022] Open
Abstract
Enzyme replacement via the cerebrospinal fluid (CSF) has been shown to ameliorate neurological symptoms in model animals with neuropathic metabolic disorders. Gene therapy via the CSF offers a means to achieve a long-term sustainable supply of therapeutic proteins within the central nervous system (CNS) by setting up a continuous source of transgenic products. In the present study, a serotype 1 adeno-associated virus (AAV1) vector was injected into a lateral cerebral ventricle in adult mice to transduce the gene encoding human lysosomal enzyme arylsulfatase A (hASA) into the cells of the CNS. Widespread transduction and stable expression of hASA in the choroid plexus and ependymal cells was observed throughout the ventricles for more than 1 year after vector injection. Although humoral immunity to hASA developed after 6 weeks, which diminished the hASA levels detected in CSF from AAV1-injected mice, hASA levels in CSF were maintained for at least 12 weeks when the mice were tolerized to hASA prior of vector injection. Our results suggest that the cells lining the ventricles could potentially serve as a biological reservoir for long-term continuous secretion of lysosomal enzymes into the CSF following intracerebroventricular injection of an AAV1 vector.
Collapse
Affiliation(s)
- Yoshiyuki Yamazaki
- Department of Biochemistry and Molecular Biology, Division of Gene Therapy Research Center for Advanced Medical Technology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Yukihiko Hirai
- Department of Biochemistry and Molecular Biology, Division of Gene Therapy Research Center for Advanced Medical Technology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Koichi Miyake
- Department of Biochemistry and Molecular Biology, Division of Gene Therapy Research Center for Advanced Medical Technology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Takashi Shimada
- Department of Biochemistry and Molecular Biology, Division of Gene Therapy Research Center for Advanced Medical Technology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
31
|
Rodríguez SS, Schwerdt JI, Barbeito CG, Flamini MA, Han Y, Bohn MC, Goya RG. Hypothalamic IGF-I gene therapy prolongs estrous cyclicity and protects ovarian structure in middle-aged female rats. Endocrinology 2013; 154:2166-73. [PMID: 23584855 PMCID: PMC3740492 DOI: 10.1210/en.2013-1069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is substantial evidence that age-related ovarian failure in rats is preceded by abnormal responsiveness of the neuroendocrine axis to estrogen positive feedback. Because IGF-I seems to act as a permissive factor for proper GnRH neuronal response to estrogen positive feedback and considering that the hypothalamic content of IGF-I declines in middle-aged (M-A) rats, we assessed the effectiveness of long-term IGF-I gene therapy in the mediobasal hypothalamus (MBH) of M-A female rats to extend regular cyclicity and preserve ovarian structure. We used 3 groups of M-A rats: 1 group of intact animals and 2 groups injected, at 36.2 weeks of age, in the MBH with either a bicistronic recombinant adeno-associated virus (rAAV) harboring the genes for IGF-I and the red fluorescent protein DsRed2, or a control rAAV expressing only DsRed2. Daily vaginal smears were taken throughout the study, which ended at 49.5 weeks of age. We measured serum levels of reproductive hormones and assessed ovarian histology at the end of the study. Although most of the rats injected with the IGF-I rAAV had, on the average, well-preserved estrous cyclicity as well as a generally normal ovarian histology, the intact and control rAAV groups showed a high percentage of acyclic rats at the end of the study and ovaries with numerous enlarged cysts and scarce corpora lutea. Serum LH was higher and hyperprolactinemia lower in the treated animals. These results suggest that overexpression of IGF-I in the MBH prolongs normal ovarian function in M-A female rats.
Collapse
Affiliation(s)
- Silvia S Rodríguez
- Instituto de Investigaciones Bioquímicas de La Plata, University of La Plata, 1900 La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
32
|
Wolfe A, Divall S. Gene therapy to prolong reproductive life. Endocrinology 2013; 154:1965-6. [PMID: 23687112 PMCID: PMC5393328 DOI: 10.1210/en.2013-1384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | |
Collapse
|