1
|
Erzurumlu RS, Gaspar P. How the Barrel Cortex Became a Working Model for Developmental Plasticity: A Historical Perspective. J Neurosci 2020; 40:6460-6473. [PMID: 32817388 PMCID: PMC7486654 DOI: 10.1523/jneurosci.0582-20.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
For half a century now, the barrel cortex of common laboratory rodents has been an exceptionally useful model for studying the formation of topographically organized maps, neural patterning, and plasticity, both in development and in maturity. We present a historical perspective on how barrels were discovered, and how thereafter, they became a workhorse for developmental neuroscientists and for studies on brain plasticity and activity-dependent modeling of brain circuits. What is particularly remarkable about this sensory system is a cellular patterning that is induced by signals derived from the sensory receptors surrounding the snout whiskers and transmitted centrally to the brainstem (barrelettes), the thalamus (barreloids), and the neocortex (barrels). Injury to the sensory receptors shortly after birth leads to predictable pattern alterations at all levels of the system. Mouse genetics have increased our understanding of how barrels are constructed and revealed the interplay of the molecular programs that direct axon growth and cell specification, with activity-dependent mechanisms. There is an ever-rising interest in this sensory system as a neurobiological model to study development of somatotopy, patterning, and plasticity at both the morphologic and physiological levels. This article is part of a group of articles commemorating the 50th anniversary of the Society for Neuroscience.
Collapse
Affiliation(s)
- Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Patricia Gaspar
- Institut National de la Santé et de la Recherche Médicale, Paris Brain Institute, Sorbonne Universités, Paris, France 75013
| |
Collapse
|
2
|
Lo FS, Erzurumlu RS. Sensory Activity-Dependent and Sensory Activity-Independent Properties of the Developing Rodent Trigeminal Principal Nucleus. Dev Neurosci 2016; 38:163-170. [PMID: 27287019 DOI: 10.1159/000446395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/24/2016] [Indexed: 11/19/2022] Open
Abstract
The whisker-sensory trigeminal central pathway of rodents is an established model for studies of activity-dependent neural plasticity. The first relay station of the pathway is the trigeminal principal nucleus (PrV), the ventral part of which receives sensory inputs mainly from the infraorbital branch of the maxillary trigeminal nerve (ION). Whisker-sensory afferents play an important role in the development of the morphological and physiological properties of PrV neurons. In neonates, deafferentation by ION transection leads to the disruption of whisker-related neural patterns (barrelettes) and cell death within a specific time window (critical period), as revealed by morphological studies. Whisker-sensory inputs control synaptic elimination, postsynaptic AMPA receptor trafficking, astrocyte-mediated synaptogenesis, and receptive-field characteristics of PrV cells, without a postnatal critical period. Sensory activity-dependent synaptic plasticity requires the activation of NMDA receptors and involves the participation of glia. However, the basic physiological properties of PrV neurons, such as cell type-specific ion channels, presynaptic terminal function, postsynaptic NMDA receptor subunit composition, and formation of the inhibitory circuitry, are independent of sensory inputs. Therefore, the first relay station of the whisker sensation is largely mature-like and functional at birth. Delineation of activity-dependent and activity-independent features of the postnatal PrV is important for understanding the development and functional characteristics of downstream trigeminal stations in the thalamus and neocortex. This mini review focuses on such features of the developing rodent PrV.
Collapse
Affiliation(s)
- Fu-Sun Lo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Md., USA
| | | |
Collapse
|
3
|
Physiological Roles of Calpain 1 Associated to Multiprotein NMDA Receptor Complex. PLoS One 2015; 10:e0139750. [PMID: 26431040 PMCID: PMC4592069 DOI: 10.1371/journal.pone.0139750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/15/2015] [Indexed: 01/10/2023] Open
Abstract
We have recently demonstrated that in resting conditions calpain 1, but not calpain 2, is specifically associated to the N-Methyl-D-Aspartate receptor (NMDAR) multiprotein complex. We are here reporting that in SKNBE neuroblastoma cells or in freshly isolated nerve terminals from adult rat hippocampus, the proteolytic activity of calpain 1 resident at the NMDAR is very low under basal conditions and greatly increases following NMDAR stimulation. Since the protease resides at the NMDAR in saturating amounts, variations in Ca2+ influx promote an increase in calpain 1 activity without affecting the amount of the protease originally associated to NMDAR. In all the conditions examined, resident calpain 1 specifically cleaves NR2B at the C-terminal region, leading to its internalization together with NR1 subunit. While in basal conditions intracellular membranes include small amounts of NMDAR containing the calpain-digested NR2B, upon NMDAR stimulation nearly all the receptor molecules are internalized. We here propose that resident calpain 1 is involved in NMDAR turnover, and following an increase in Ca2+ influx, the activated protease, by promoting the removal of NMDAR from the plasma membranes, can decrease Ca2+ entrance through this channel. Due to the absence of calpastatin in such cluster, the activity of resident calpain 1 may be under the control of HSP90, whose levels are directly related to the activation of this protease. Observations of different HSP90/calpain 1 ratios in different ultrasynaptic compartments support this conclusion.
Collapse
|
4
|
Lo FS, Zhao S, Erzurumlu RS. Neonatal infraorbital nerve crush-induced CNS synaptic plasticity and functional recovery. J Neurophysiol 2014; 111:1590-600. [PMID: 24478162 DOI: 10.1152/jn.00658.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infraorbital nerve (ION) transection in neonatal rats leads to disruption of whisker-specific neural patterns (barrelettes), conversion of functional synapses into silent synapses, and reactive gliosis in the brain stem trigeminal principal nucleus (PrV). Here we tested the hypothesis that neonatal peripheral nerve crush injuries permit better functional recovery of associated central nervous system (CNS) synaptic circuitry compared with nerve transection. We developed an in vitro whisker pad-trigeminal ganglion (TG)-brain stem preparation in neonatal rats and tested functional recovery in the PrV following ION crush. Intracellular recordings revealed that 68% of TG cells innervate the whisker pad. We used the proportion of whisker pad-innervating TG cells as an index of ION function. The ION function was blocked by ∼64%, immediately after mechanical crush, then it recovered beginning after 3 days postinjury and was complete by 7 days. We used this reversible nerve-injury model to study peripheral nerve injury-induced CNS synaptic plasticity. In the PrV, the incidence of silent synapses increased to ∼3.5 times of control value by 2-3 days postinjury and decreased to control levels by 5-7 days postinjury. Peripheral nerve injury-induced reaction of astrocytes and microglia in the PrV was also reversible. Neonatal ION crush disrupted barrelette formation, and functional recovery was not accompanied by de novo barrelette formation, most likely due to occurrence of recovery postcritical period (P3) for pattern formation. Our results suggest that nerve crush is more permissive for successful regeneration and reconnection (collectively referred to as "recovery" here) of the sensory inputs between the periphery and the brain stem.
Collapse
Affiliation(s)
- Fu-Sun Lo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
5
|
Lo FS, Akkentli F, Tsytsarev V, Erzurumlu RS. Functional significance of cortical NMDA receptors in somatosensory information processing. J Neurophysiol 2013; 110:2627-36. [PMID: 24047907 DOI: 10.1152/jn.00052.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-methyl-d-aspartate receptor (NMDAR)-mediated activity is required for whisker-related neural patterning in the rodent brain. Deletion of the essential NMDAR subunit NR1 gene in excitatory cortical neurons prevents whisker-specific barrel formation and impairs thalamocortical afferent patterning. We used electrophysiological and voltage-sensitive dye imaging methods to assess synaptic and sensory evoked cortical activity and immunohistochemistry to examine immediate early gene expression following whisker stimulation in cortex-specific NR1 knockout (CxNR1KO) mice. In mutant mice, layer IV neurons lacked NMDAR-mediated excitatory postsynaptic currents, and temporal summation of excitatory postsynaptic potentials (EPSPs) was impaired. Barrel neurons showed both phasic and tonic responses to whisker deflection. The averaged tonic response in CxNR1KO mice was significantly less than that in control mice due to impaired EPSP temporal summation. Electrophysiological estimation of the number of thalamic neurons innervating single barrel neurons indicated a significant increase in CxNR1KO mice. Similarly, voltage-sensitive dye optical signals in response to whisker stimulation were widespread. Immediate early gene expression following whisker stimulation also showed a diffuse expression pattern in the CxNR1KO cortex compared with whisker-specific expression patterns in controls. Thus, when NMDAR function is impaired, spatial discrimination of whisker inputs is severely compromised, and sensory stimulation evokes diffuse, topographically misaligned activity in the barrel cortex.
Collapse
Affiliation(s)
- Fu-Sun Lo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | | | |
Collapse
|
6
|
Gocel J, Larson J. Synaptic NMDA receptor-mediated currents in anterior piriform cortex are reduced in the adult fragile X mouse. Neuroscience 2012; 221:170-81. [PMID: 22750206 PMCID: PMC3424403 DOI: 10.1016/j.neuroscience.2012.06.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/05/2012] [Accepted: 06/21/2012] [Indexed: 01/16/2023]
Abstract
Fragile X syndrome is a neurodevelopmental condition caused by the transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. The Fmr1 knockout (KO) mouse exhibits age-dependent deficits in long term potentiation (LTP) at association (ASSN) synapses in anterior piriform cortex (APC). To investigate the mechanisms for this, whole-cell voltage-clamp recordings of ASSN stimulation-evoked synaptic currents were made in APC of slices from adult Fmr1-KO and wild-type (WT) mice, using the competitive N-methyl-D-aspartate (NMDA) receptor antagonist, CPP, to distinguish currents mediated by NMDA and AMPA receptors. NMDA/AMPA current ratios were lower in Fmr1-KO mice than in WT mice, at ages ranging from 3-18months. Since amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs) mediated by AMPA receptors were no different in Fmr1-KO and WT mice at these ages, the results suggest that NMDA receptor-mediated currents are selectively reduced in Fmr1-KO mice. Analyses of voltage-dependence and decay kinetics of NMDA receptor-mediated currents did not reveal differences between Fmr1-KO and WT mice, suggesting that reduced NMDA currents in Fmr1-KO mice are due to fewer synaptic receptors rather than differences in receptor subunit composition. Reduced NMDA receptor signaling may help to explain the LTP deficit seen at APC ASSN synapses in Fmr1-KO mice at 6-18months of age, but does not explain normal LTP at these synapses in mice 3-6months old. Evoked currents and mEPSCs were also examined in senescent Fmr1-KO and WT mice at 24-28months of age. NMDA/AMPA ratios were similar in senescent WT and Fmr1-KO mice, due to a decrease in the ratio in the WT mice, without significant change in AMPA receptor-mediated mEPSCs.
Collapse
Affiliation(s)
- James Gocel
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | |
Collapse
|
7
|
Abstract
In primary sensory neocortical areas of mammals, the distribution of sensory receptors is mapped with topographic precision and amplification in proportion to the peripheral receptor density. The visual, somatosensory and auditory cortical maps are established during a critical period in development. Throughout this window in time, the developing cortical maps are vulnerable to deleterious effects of sense organ damage or sensory deprivation. The rodent barrel cortex offers an invaluable model system with which to investigate the mechanisms underlying the formation of topographic maps and their plasticity during development. Five rows of mystacial vibrissa (whisker) follicles on the snout and an array of sinus hairs are represented by layer IV neural modules ('barrels') and thalamocortical axon terminals in the primary somatosensory cortex. Perinatal damage to the whiskers or the sensory nerve innervating them irreversibly alters the structural organization of the barrels. Earlier studies emphasized the role of the sensory periphery in dictating whisker-specific brain maps and patterns. Recent advances in molecular genetics and analyses of genetically altered mice allow new insights into neural pattern formation in the neocortex and the mechanisms underlying critical period plasticity. Here, we review the development and patterning of the barrel cortex and the critical period plasticity.
Collapse
Affiliation(s)
- Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201-1075, USA.
| | | |
Collapse
|
8
|
Lo FS, Zhao S, Erzurumlu RS. Astrocytes promote peripheral nerve injury-induced reactive synaptogenesis in the neonatal CNS. J Neurophysiol 2011; 106:2876-87. [PMID: 21900512 DOI: 10.1152/jn.00312.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neonatal damage to the trigeminal nerve leads to "reactive synaptogenesis" in the brain stem sensory trigeminal nuclei. In vitro models of brain injury-induced synaptogenesis have implicated an important role for astrocytes. In this study we tested the role of astrocyte function in reactive synaptogenesis in the trigeminal principal nucleus (PrV) of neonatal rats following unilateral transection of the infraorbital (IO) branch of the trigeminal nerve. We used electrophysiological multiple input index analysis (MII) to estimate the number of central trigeminal afferent fibers that converge onto single barrelette neurons. In the developing PrV, about 30% of afferent connections are eliminated within 2 postnatal weeks. After neonatal IO nerve damage, multiple trigeminal inputs (2.7 times that of the normal inputs) converge on single barrelette cells within 3-5 days; they remain stable up to the second postnatal week. Astrocyte proliferation and upregulation of astrocyte-specific proteins (GFAP and ALDH1L1) accompany reactive synaptogenesis in the IO nerve projection zone of the PrV. Pharmacological blockade of astrocyte function, purinergic receptors, and thrombospondins significantly reduced or eliminated reactive synaptogenesis without changing the MII in the intact PrV. GFAP immunohistochemistry further supported these electrophysiological results. We conclude that immature astrocytes, purinergic receptors, and thrombospondins play an important role in reactive synaptogenesis in the peripherally deafferented neonatal PrV.
Collapse
Affiliation(s)
- Fu-Sun Lo
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
9
|
Lo FS, Erzurumlu RS. Peripheral nerve damage does not alter release properties of developing central trigeminal afferents. J Neurophysiol 2011; 105:1681-8. [PMID: 21307331 DOI: 10.1152/jn.00833.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The infraorbital branch of the trigeminal nerve (ION) is essential in whisker-specific neural patterning ("barrelettes") in the principal nucleus of the trigeminal nerve (PrV). The barrelettes are formed by the ION terminal arbors, somata, and dendrites of the PrV cells; they are abolished after neonatal damage to the ION. Physiological studies show that disruption of the barrelettes is accompanied by conversion of functional synapses into silent synapses in the PrV. In this study, we used whole cell recordings with a paired-pulse stimulation protocol and MK-801 blocking rate to estimate the presynaptic release probability (Pr) of ION central trigeminal afferent terminals in the PrV. We investigated Pr during postnatal development, following neonatal ION damage, and determined whether conversion of functional synapses into silent synapses after peripheral denervation results from changes in Pr. The paired-pulse ratio (PPR) was quite variable ranging from 40% (paired-pulse depression) to 175% (paired-pulse facilitation). The results from paired-pulse protocol were confirmed by MK-801 blocking rate experiments. The nonuniform PPRs did not show target cell specificity and developmental regulation. The distribution of PPRs fit nicely to Gaussian function with a peak at ∼ 100%. In addition, neonatal ION transections did not alter the distribution pattern of PPR in their central terminals, suggesting that the conversion from functional synapses into silent synapses in the peripherally denervated PrV is not caused by changes in the Pr.
Collapse
Affiliation(s)
- Fu-Sun Lo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|