1
|
Scholl JL, Rogers JT, Feng N, Forster GL, Watt MJ, Yaeger JD, Buchanan MW, Lowry CA, Renner KJ. Corticosterone rapidly modulates dorsomedial hypothalamus serotonin and behavior in an estrogen- and progesterone-dependent manner in adult female rats: potential role of organic cation transporter 3 (OCT3). Stress 2025; 28:2457765. [PMID: 39898528 PMCID: PMC11801257 DOI: 10.1080/10253890.2025.2457765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
Previous studies have shown that corticosterone rapidly alters extracellular serotonin (5-hydroxytryptamine; 5-HT) concentrations in the dorsomedial hypothalamus (DMH) of adult male rats, suggesting a role for corticosterone actions in the DMH in regulation of physiological and behavioral responses. Whether or not corticosterone also rapidly alters extracellular serotonin concentrations in the DMH of female rats, and the dependence of this effect on ovarian hormones, is not known. To determine the effects of 17β-estradiol (E2), progesterone (P), and corticosterone on extracellular concentrations of serotonin in the DMH, corticosterone and/or P were delivered into the DMH of ovariectomized rats via reverse microdialysis in E2-primed rats. Combined, but not separate, delivery of corticosterone and P into the DMH rapidly and transiently increased extracellular 5-HT concentrations, a result that was dependent upon circulating E2. This effect of corticosterone on DMH 5-HT was replicated by local perfusion of the organic cation transporter 3 (OCT3) competitive inhibitor normetanephrine. Intra-DMH infusions of either corticosterone or normetanephrine also reversibly suppressed lordosis responses in E2 + P-primed females. These results suggest that ovarian hormones in combination with corticosterone modulate OCT3-mediated 5-HT clearance in the DMH, potentially representing an adaptive mechanism that allows sexually receptive females to respond rapidly to acute stressors.
Collapse
Affiliation(s)
- Jamie L. Scholl
- Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Joshua T. Rogers
- Department of Biology & Center for Brain and Behavior Research, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| | - Na Feng
- Department of Biology & Center for Brain and Behavior Research, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| | - Gina L. Forster
- Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
- Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Michael J. Watt
- Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
- Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Jazmine D.W. Yaeger
- Department of Biology & Center for Brain and Behavior Research, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| | - Michael W. Buchanan
- Department of Biology & Center for Brain and Behavior Research, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology, Department of Psychology and Neuroscience, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kenneth J. Renner
- Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
- Department of Biology & Center for Brain and Behavior Research, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| |
Collapse
|
2
|
Scholl JL, Solanki RR, Watt MJ, Renner KJ, Forster GL. Chronic administration of glucocorticoid receptor ligands increases anxiety-like behavior and selectively increase serotonin transporters in the ventral hippocampus. Brain Res 2023; 1800:148189. [PMID: 36462646 PMCID: PMC9837808 DOI: 10.1016/j.brainres.2022.148189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/11/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Organic cation transporter-3 (OCT3) is widely distributed in the brain with high expression in portions of the stress axis. These high capacity, polyspecific transporters function in monoamine clearance and are sensitive to the stress hormone corticosterone. In rats, withdrawal from chronic amphetamine increases OCT3 expression in specific limbic brain regions involved anxiety and stress responses, including the ventral hippocampus, central nucleus of amygdala (CeA) and dorsomedial hypothalamus. (DMH). Previous studies show that glucocorticoid receptor (GR) agonists increase OCT1 mRNA and OCT2 mRNA expression in non-neural tissues. Thus, we hypothesized that corticosterone increases OCT3 expression in the brain by activating GRs. Male Sprague-Dawley rats were pre-treated daily with the GR antagonist mifepristone (20 mg/kg; sc.) or vehicle followed 45 min later by injections of corticosterone or vehicle for 2 weeks. Corticosterone treatment significantly increased OCT3 expression in the ventral hippocampus and increased anxiety-like behavior. However, these effects were not blocked by mifepristone. Interestingly, treatment with mifepristone alone reduced plasma corticosterone levels and increased serotonin transporter and GR expression in the ventral hippocampus but did not significantly affect OCT3 expression or behavior. No treatment effects on OCT3, serotonin transporter or GR expression were observed in the DMH, CeA or dorsal hippocampus. Our findings suggest that corticosterone increases OCT3 expression in the ventral hippocampus by a mechanism independent of GRs, and that mifepristone and corticosterone can act in an independent manner to affect HPA axis-related physiological and behavioral parameters.
Collapse
Affiliation(s)
- Jamie L Scholl
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, USA.
| | - Rajeshwari R Solanki
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, USA.
| | - Michael J Watt
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, USA; Center for Brain and Behavior Research, Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Kenneth J Renner
- Center for Brain and Behavior Research, Department of Biology, University of South Dakota, 414 East Clark St, Vermillion, SD, USA.
| | - Gina L Forster
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, USA; Center for Brain and Behavior Research, Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
3
|
Ye X, Shin BC, Baldauf C, Ganguly A, Ghosh S, Devaskar SU. Developing Brain Glucose Transporters, Serotonin, Serotonin Transporter, and Oxytocin Receptor Expression in Response to Early-Life Hypocaloric and Hypercaloric Dietary, and Air Pollutant Exposures. Dev Neurosci 2021; 43:27-42. [PMID: 33774619 DOI: 10.1159/000514709] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Perturbed maternal diet and prenatal exposure to air pollution (AP) affect the fetal brain, predisposing to postnatal neurobehavioral disorders. Glucose transporters (GLUTs) are key in fueling neurotransmission; deficiency of the neuronal isoform GLUT3 culminates in autism spectrum disorders. Along with the different neurotransmitters, serotonin (5-HT) and oxytocin (OXT) are critical for the development of neural connectivity. Serotonin transporter (SERT) modulates synaptic 5-HT levels, while the OXT receptor (OXTR) mediates OXT action. We hypothesized that perturbed brain GLUT1/GLUT3 regulated 5-HT-SERT imbalance, which serves as a contributing factor to postnatal neuropsychiatric phenotypes, with OXT/OXTR providing a counterbalance. Employing maternal diet restriction (intrauterine growth restriction [IUGR]), high-fat (HF) dietary modifications, and prenatal exposure to simulated AP, fetal (E19) murine brain 5-HT was assessed by ELISA with SERT and OXTR being localized by immunohistochemistry and measured by quantitative Western blot analysis. IUGR with lower head weights led to a 48% reduction in male and female fetal brain GLUT3 with no change in GLUT1, when compared to age- and sex-matched controls, with no significant change in OXTR. In addition, a ∼50% (p = 0.005) decrease in 5-HT and SERT concentrations was displayed in fetal IUGR brains. In contrast, despite emergence of microcephaly, exposure to a maternal HF diet or AP caused no significant changes. We conclude that in the IUGR during fetal brain development, reduced GLUT3 is associated with an imbalanced 5-HT-SERT axis. We speculate that these early changes may set the stage for altering the 5HT-SERT neural axis with postnatal emergence of associated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xin Ye
- Department of Pediatrics, Division of Neonatology & Developmental Biology and the Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Bo-Chul Shin
- Department of Pediatrics, Division of Neonatology & Developmental Biology and the Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Claire Baldauf
- Department of Pediatrics, Division of Neonatology & Developmental Biology and the Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Amit Ganguly
- Department of Pediatrics, Division of Neonatology & Developmental Biology and the Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shubhamoy Ghosh
- Department of Pediatrics, Division of Neonatology & Developmental Biology and the Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sherin U Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology and the Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
4
|
Paul N, Raymond J, Lumbreras S, Bartsch D, Weber T, Lau T. Activation of the glucocorticoid receptor rapidly triggers calcium-dependent serotonin release in vitro. CNS Neurosci Ther 2021; 27:753-764. [PMID: 33715314 PMCID: PMC8193689 DOI: 10.1111/cns.13634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/01/2022] Open
Abstract
Aims Glucocorticoids rapidly provoke serotonin (5‐HT) release in vivo. We aimed to investigate molecular mechanisms of glucocorticoid receptor (GR)‐triggered 5‐HT release. Methods Employing 1C11 cells to model 5‐HT neurotransmission, immunofluorescence and Pearson's Correlation Coefficient were used to analyze colocalization of GR, 5‐HT, vesicle membrane protein synaptotagmin 1 and vesicle dye FM4‐64FX. FFN511 and FM4‐64FX dyes as well as calcium imaging were used to visualize vesicular 5‐HT release upon application of GR agonist dexamethasone, GR antagonist mifepristone and voltage‐gated calcium channel (VGCC) inhibitors. Results GR, 5‐HT, synaptotagmin 1 and FM4‐64FX showed overlapping staining patterns, with Pearson's Correlation Coefficient indicating colocalization. Similarly to potassium chloride, dexamethasone caused a release of FFN511 and uptake of FM4‐64FX, indicating vesicular 5‐HT release. Mifepristone, calcium depletion and inhibition of L‐type VGCC significantly diminished dexamethasone‐induced vesicular 5‐HT release. Conclusions In close proximity to 5‐HT releasing sites, activated GR rapidly triggers L‐type VGCC‐dependent vesicular 5‐HT release. These findings provide a better understanding of the interrelationship between glucocorticoids and 5‐HT release.
Collapse
Affiliation(s)
- Nicolas Paul
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Justine Raymond
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sara Lumbreras
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dusan Bartsch
- Transgenic Models, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tillmann Weber
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,MEDIAN Klinik Wilhelmsheim, Oppenweiler, Germany
| | - Thorsten Lau
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Translational Brain Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
5
|
Maier J, Niello M, Rudin D, Daws LC, Sitte HH. The Interaction of Organic Cation Transporters 1-3 and PMAT with Psychoactive Substances. Handb Exp Pharmacol 2021; 266:199-214. [PMID: 33993413 DOI: 10.1007/164_2021_469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Organic cation transporters 1-3 (OCT1-3, SLC22A1-3) and the plasma membrane monoamine transporter (PMAT, SLC29A4) play a major role in maintaining monoaminergic equilibrium in the central nervous system. With many psychoactive substances interacting with OCT1-3 and PMAT, a growing literature focuses on characterizing their properties via in vitro and in vivo studies. In vitro studies mainly aim at characterizing compounds as inhibitors or substrates of murine, rat, and human isoforms. The preponderance of studies has put emphasis on phenylalkylamine derivatives, but ketamine and opioids have also been investigated. Studies employing in vivo (knockout) models mostly concentrate on the interaction of psychoactive substances and OCT3, with an emphasis on stress and addiction, pharmacokinetics, and sensitization to psychoactive drugs. The results highlight the importance of OCT3 in the mechanism of action of psychoactive compounds. Concerning in vivo studies, a veritable research gap concerning OCT1, 2, and PMAT exists. This review provides an overview and summary of research conducted in this field of research.
Collapse
Affiliation(s)
- Julian Maier
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marco Niello
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Deborah Rudin
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lynette C Daws
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health, San Antonio, TX, USA
| | - Harald H Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Sinet F, Soty M, Zemdegs J, Guiard B, Estrada J, Malleret G, Silva M, Mithieux G, Gautier-Stein A. Dietary Fibers and Proteins Modulate Behavior via the Activation of Intestinal Gluconeogenesis. Neuroendocrinology 2021; 111:1249-1265. [PMID: 33429400 DOI: 10.1159/000514289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Several studies have suggested that diet, especially the one enriched in microbiota-fermented fibers or fat, regulates behavior. The underlying mechanisms are currently unknown. We previously reported that certain macronutrients (fermentable fiber and protein) regulate energy homeostasis via the activation of intestinal gluconeogenesis (IGN), which generates a neural signal to the brain. We hypothesized that these nutriments might control behavior using the same gut-brain circuit. METHODS Wild-type and IGN-deficient mice were fed chow or diets enriched in protein or fiber. Changes in their behavior were assessed using suited tests. Hippocampal neurogenesis, extracellular levels of serotonin, and protein expression levels were assessed by immunofluorescence, in vivo dialysis, and Western blotting, respectively. IGN was rescued by infusing glucose into the portal vein of IGN-deficient mice. RESULTS We show here that both fiber- and protein-enriched diets exert beneficial actions on anxiety-like and depressive-like behaviors. These benefits do not occur in mice lacking IGN. Consistently, IGN-deficient mice display hallmarks of depressive-like disorders, including decreased hippocampal neurogenesis, basal hyperactivity, and deregulation of the hypothalamic-pituitary-adrenal axis, which are associated with increased expression of the precursor of corticotropin-releasing hormone in the hypothalamus and decreased expression of the glucocorticoid receptor in the hippocampus. These neurobiological alterations are corrected by portal glucose infusion mimicking IGN. CONCLUSION IGN translates nutritional information, allowing the brain to finely coordinate energy metabolism and behavior.
Collapse
Affiliation(s)
- Flore Sinet
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Maud Soty
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Juliane Zemdegs
- CRCA - UMR 5169 - Université Paul Sabatier, Toulouse, France
| | - Bruno Guiard
- CRCA - UMR 5169 - Université Paul Sabatier, Toulouse, France
| | - Judith Estrada
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Gaël Malleret
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, Université de Lyon, Lyon, France
| | - Marine Silva
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Gilles Mithieux
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | | |
Collapse
|
7
|
Wang J, Li P, Qin T, Sun D, Zhao X, Zhang B. Protective effect of epigallocatechin-3-gallate against neuroinflammation and anxiety-like behavior in a rat model of myocardial infarction. Brain Behav 2020; 10:e01633. [PMID: 32304289 PMCID: PMC7303397 DOI: 10.1002/brb3.1633] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Individuals who experience myocardial infarction (MI) often experience anxiety. Green tea has potent antioxidative properties and, epigallocatechin-3-gallate (EGCG), which is a primary component of tea polyphenols, has advantageous effects on anxiety and depression. However, its mechanism of action regarding the inhibition of anxiety-like symptoms after MI remains unclear. This study examined whether EGCG alleviated anxiety-like behavior in MI rats and its possible mechanism. MATERIAL AND METHODS Rats were administered a daily gavage of EGCG (50 mg/kg) 7 days before and 14 consecutive days after the MI procedure. The open-field test and light/dark shuttle box were performed to evaluate anxiety-like behavior. Serum and hippocampus interleukin (IL)-6 levels were tested using ELISA. Caspase 3, caspase 8, caspase 9 and bcl-2 messenger RNA levels in the hippocampus were determined using quantitative polymerase chain reaction, and STAT3 protein was detected by Western blot. RESULTS Results of the open field test and light/dark shuttle box task demonstrated that the MI procedure induced anxiety-like behavior in the animals, and this impairment was improved by EGCG. Daily EGCG administration significantly decreased the level of IL-6 both in serum and hippocampus after MI. The administration of EGCG also significantly moderated the expression of caspases 3, 8, and 9 mRNA, which was related to apoptosis in the hippocampus. Furthermore, EGCG also downregulated the expression of STAT3, which was related to the activity of IL-6. These results suggest that EGCG alleviated anxiety-like behavior by inhibiting increases in neuroinflammation and apoptosis in the rat hippocampus. In addition, EGCG reversed alterations of IL-6 and STAT3 in the brain to alleviate apoptosis in the hippocampus. CONCLUSIONS Thus, EGCG reversed anxiety-like behavior through an anti-inflammation effect to alleviate apoptosis in neurons and may be a useful therapeutic material for anxiety-like behavior after MI.
Collapse
Affiliation(s)
- Jinpeng Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Paediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Tian Qin
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dongjie Sun
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xin Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Beilin Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
8
|
Bray B, Clement KA, Bachmeier D, Weber MA, Forster GL. Corticosterone in the ventral hippocampus differentially alters accumbal dopamine output in drug-naïve and amphetamine-withdrawn rats. Neuropharmacology 2020; 165:107924. [PMID: 31881169 DOI: 10.1016/j.neuropharm.2019.107924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022]
Abstract
Dysregulation in glucocorticoid stress and accumbal dopamine reward systems can alter reward salience to increase motivational drive in control conditions while contributing to relapse during drug withdrawal. Amphetamine withdrawal is associated with dysphoria and stress hypersensitivity that may be mediated, in part, by enhanced stress-induced corticosterone observed in the ventral hippocampus. Electrical stimulation of the ventral hippocampus enhances accumbal shell dopamine release, establishing a functional connection between these two regions. However, the effects of ventral hippocampal corticosterone on this system are unknown. To address this, a stress-relevant concentration of corticosterone (0.24ng/0.5 μL) or vehicle were infused into the ventral hippocampus of urethane-anesthetized adult male rats in control and amphetamine withdrawn conditions. Accumbal dopamine output was assessed with in vivo chronoamperometry. Corticosterone infused into the ventral hippocampus rapidly enhanced accumbal dopamine output in control conditions, but produced a biphasic reduction of accumbal dopamine output in amphetamine withdrawal. Selectively blocking glucocorticoid-, mineralocorticoid-, or cytosolic receptors prevented the effects of corticosterone. Overall, these results suggest that the ability of corticosterone to alter accumbal dopamine output requires cooperative activation of mineralocorticoid and glucocorticoid receptors in the cytosol, which is dysregulated during amphetamine withdrawal. These findings implicate ventral hippocampal corticosterone in playing an important role in driving neural systems involved in positive stress coping mechanisms in healthy conditions, whereas dysregulation of this system may contribute to relapse during withdrawal.
Collapse
Affiliation(s)
- Brenna Bray
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA.
| | - Kaci A Clement
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA.
| | - Dana Bachmeier
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA.
| | - Matthew A Weber
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA; Department of Neurology, Iowa Neuroscience Institute, Pappajohn Biomedical Discovery Building, 169 Newton Road, Iowa City, IA, 52242, USA.
| | - Gina L Forster
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA; Department of Anatomy and Brain Health Research Centre, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
9
|
LPA 1 receptor and chronic stress: Effects on behaviour and the genes involved in the hippocampal excitatory/inhibitory balance. Neuropharmacology 2020; 164:107896. [PMID: 31811875 DOI: 10.1016/j.neuropharm.2019.107896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 11/22/2022]
Abstract
The LPA1 receptor, one of the six characterized G protein-coupled receptors (LPA1-6) through which lysophosphatidic acid acts, is likely involved in promoting normal emotional behaviours. Current data suggest that the LPA-LPA1-receptor pathway may be involved in mediating the negative consequences of stress on hippocampal function. However, to date, there is no available information regarding the mechanisms whereby the LPA1 receptor mediates this adaptation. To gain further insight into how the LPA-LPA1 pathway may prevent the negative consequences of chronic stress, we assessed the effects of the continuous delivery of LPA on depressive-like behaviours induced by a chronic restraint stress protocol. Because a proper excitatory/inhibitory balance seems to be key for controlling the stress response system, the gene expression of molecular markers of excitatory and inhibitory neurotransmission was also determined. In addition, the hippocampal expression of mineralocorticoid receptor genes and glucocorticoid receptor genes and proteins as well as plasma corticosterone levels were determined. Contrary to our expectations, the continuous delivery of LPA in chronically stressed animals potentiated rather than inhibited some (e.g., anhedonia, reduced latency to the first immobility period), though not all, behavioural effects of stress. Furthermore, this treatment led to an alteration in the genes coding for proteins involved in the excitatory/inhibitory balance in the ventral hippocampus and to changes in corticosterone levels. In conclusion, the results of this study reinforce the assumption that LPA is involved in emotional regulation, mainly through the LPA1 receptor, and regulates the effects of stress on hippocampal gene expression and hippocampus-dependent behaviour.
Collapse
|
10
|
Li Y, Zu Y, Li X, Zhao S, Ou F, Li L, Zhang X, Wang W, He T, Liang Y, Sun X, Tang M. Acute corticosterone treatment elicits antidepressant-like actions on the hippocampal 5-HT and the immobility phenotype. Brain Res 2019; 1714:166-173. [DOI: 10.1016/j.brainres.2019.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/09/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
|
11
|
Hassell JE, Collins VE, Li H, Rogers JT, Austin RC, Visceau C, Nguyen KT, Orchinik M, Lowry CA, Renner KJ. Local inhibition of uptake2 transporters augments stress-induced increases in serotonin in the rat central amygdala. Neurosci Lett 2019; 701:119-124. [DOI: 10.1016/j.neulet.2019.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
|
12
|
Laureano-Melo R, Souza JSD, da Conceição RR, Albuquerque JML, Rodrigues NC, Marinho BG, Olivares EL, Giannocco G, Côrtes WDS. Prenatal thyroxine treatment promotes anxiolysis in male Swiss mice offspring. Horm Behav 2019; 108:10-19. [PMID: 30576638 DOI: 10.1016/j.yhbeh.2018.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 01/09/2023]
Abstract
The proper functioning of the maternal thyroid plays a crucial role in fetal development. Thus, the aim of our study was to verify how maternal hyperthyroidism is able to change behavioral parameters in mice offspring during adulthood. For this purpose, pregnant Swiss mice (n = 24 and ~35 g) were randomly assigned into two groups: a control and a thyroxine (T4)-treatment group. The control was treated with 0.9% saline, while the treatment group received T4 (200 μg/kg, s.c.) once daily during the entire pregnancy period. After completing 70 days of life, a part of male offspring underwent a battery of tests, including open field, dark-light box, elevated plus maze, marble burying, rotarod and tail suspension tests. The other male pups were euthanized, being hippocampus and serum collected for RNA analysis and hormones measurement, respectively. Statistical analysis was performed using Student's t-test, and the means were considered significantly different when p < 0.05. In adult offspring, a significant decrease was observed for serum T3 in treated group. It was demonstrated that the T4 group had an increase in total distance traveled in an open field test. In the elevated plus maze test, we observed a higher time in opened arms as well as an increased in percentage of entries in these arms. In the hippocampus, T4 offspring had a higher expression of tryptophan hydroxylase 2 (TPH2), serotonin transporter (SERT) and glutamate decarboxylase 67 (GAD 67) in comparison to controls. These findings suggest that prenatal T4 treatment alters hippocampal serotonergic and GABAergic systems, promoting anxiolysis in male adult offspring.
Collapse
Affiliation(s)
- Roberto Laureano-Melo
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil.
| | - Janaina Sena de Souza
- Molecular and Translational Endocrinology Laboratory, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Rodrigo Rodrigues da Conceição
- Molecular and Translational Endocrinology Laboratory, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | - Nayana Coutinho Rodrigues
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Bruno Guimarães Marinho
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Emerson Lopes Olivares
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Gisele Giannocco
- Molecular and Translational Endocrinology Laboratory, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Wellington da Silva Côrtes
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| |
Collapse
|
13
|
Modulatory Effects of the Glucocorticoid and Opioid Systems on Anxiety-Related Behavior in Young and Mature Rats. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Solanki RR, Scholl JL, Watt MJ, Renner KJ, Forster GL. Amphetamine Withdrawal Differentially Increases the Expression of Organic Cation Transporter 3 and Serotonin Transporter in Limbic Brain Regions. J Exp Neurosci 2016; 10:93-100. [PMID: 27478387 PMCID: PMC4957605 DOI: 10.4137/jen.s40231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/26/2022] Open
Abstract
Amphetamine withdrawal increases anxiety and stress sensitivity related to blunted ventral hippocampus (vHipp) and enhances the central nucleus of the amygdala (CeA) serotonin responses. Extracellular serotonin levels are regulated by the serotonin transporter (SERT) and organic cation transporter 3 (OCT3), and vHipp OCT3 expression is enhanced during 24 hours of amphetamine withdrawal, while SERT expression is unaltered. Here, we tested whether OCT3 and SERT expression in the CeA is also affected during acute withdrawal to explain opposing regional alterations in limbic serotonergic neurotransmission and if respective changes continued with two weeks of withdrawal. We also determined whether changes in transporter expression were confined to these regions. Male rats received amphetamine or saline for two weeks followed by 24 hours or two weeks of withdrawal, with transporter expression measured using Western immunoblot. OCT3 and SERT expression increased in the CeA at both withdrawal timepoints. In the vHipp, OCT3 expression increased only at 24 hours of withdrawal, with an equivalent pattern seen in the dorsomedial hypothalamus. No changes were evident in any other regions sampled. These regionally specific changes in limbic OCT3 and SERT expression may partially contribute to the serotonergic imbalance and negative affect during amphetamine withdrawal.
Collapse
Affiliation(s)
- Rajeshwari R. Solanki
- Division of Basic Biomedical Sciences, Sanford School of Medicine, Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
| | - Jamie L. Scholl
- Division of Basic Biomedical Sciences, Sanford School of Medicine, Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
| | - Michael J. Watt
- Division of Basic Biomedical Sciences, Sanford School of Medicine, Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
| | - Kenneth J. Renner
- Biology Department, Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
| | - Gina L. Forster
- Division of Basic Biomedical Sciences, Sanford School of Medicine, Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
15
|
Bray B, Scholl JL, Tu W, Watt MJ, Renner KJ, Forster GL. Amphetamine withdrawal differentially affects hippocampal and peripheral corticosterone levels in response to stress. Brain Res 2016; 1644:278-87. [PMID: 27208490 DOI: 10.1016/j.brainres.2016.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/20/2016] [Accepted: 05/16/2016] [Indexed: 12/29/2022]
Abstract
Amphetamine withdrawal is associated with heightened anxiety-like behavior, which is directly driven by blunted stress-induced glucocorticoid receptor-dependent serotonin release in the ventral hippocampus. This suggests that glucocorticoid availability in the ventral hippocampus during stress may be reduced during amphetamine withdrawal. Therefore, we tested whether amphetamine withdrawal alters either peripheral or hippocampal corticosterone stress responses. Adult male rats received amphetamine (2.5mg/kg, ip) or saline for 14 days followed by 2 weeks of withdrawal. Contrary to our prediction, microdialysis samples from freely-moving rats revealed that restraint stress-induced corticosterone levels in the ventral hippocampus are enhanced by amphetamine withdrawal relative to controls. In separate groups of rats, plasma corticosterone levels increased immediately after 20min of restraint and decreased to below stress-naïve levels after 1h, indicating negative feedback regulation of corticosterone following stress. However, plasma corticosterone responses were similar in amphetamine-withdrawn and control rats. Neither amphetamine nor stress exposure significantly altered protein expression or enzyme activity of the steroidogenic enzymes 11β-hydroxysteroid dehydrogenase (11β-HSD1) or hexose-6-phosphate dehydrogenase (H6PD) in the ventral hippocampus. Our findings demonstrate for the first time that amphetamine withdrawal potentiates stress-induced corticosterone in the ventral hippocampus, which may contribute to increased behavioral stress sensitivity previously observed during amphetamine withdrawal. However, this is not mediated by either changes in plasma corticosterone or hippocampal steroidogenic enzymes. Establishing enhanced ventral hippocampal corticosterone as a direct cause of greater stress sensitivity may identify the glucocorticoid system as a novel target for treating behavioral symptoms of amphetamine withdrawal.
Collapse
Affiliation(s)
- Brenna Bray
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, University of South Dakota, 414 East Clark St, Vermillion, SD, United States.
| | - Jamie L Scholl
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, University of South Dakota, 414 East Clark St, Vermillion, SD, United States.
| | - Wenyu Tu
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, University of South Dakota, 414 East Clark St, Vermillion, SD, United States.
| | - Michael J Watt
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, University of South Dakota, 414 East Clark St, Vermillion, SD, United States.
| | - Kenneth J Renner
- Department of Biology, Center for Brain and Behavior Research, University of South Dakota, 414 East Clark St, Vermillion, SD, United States.
| | - Gina L Forster
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, University of South Dakota, 414 East Clark St, Vermillion, SD, United States.
| |
Collapse
|
16
|
Formyl peptide receptor as a novel therapeutic target for anxiety-related disorders. PLoS One 2014; 9:e114626. [PMID: 25517119 PMCID: PMC4269406 DOI: 10.1371/journal.pone.0114626] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/11/2014] [Indexed: 01/09/2023] Open
Abstract
Formyl peptide receptors (FPR) belong to a family of sensors of the immune system that detect microbe-associated molecules and inform various cellular and sensorial mechanisms to the presence of pathogens in the host. Here we demonstrate that Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced anxiety in the marble burying and light-dark box paradigms, increased exploratory behaviour in an open-field, together with superior performance on a novel object recognition test. Pharmacological blockade with a formyl peptide receptor antagonist, Boc2, in wild type mice reproduced most of the behavioural changes observed in the Fpr2/3-/- mice, including a significant improvement in novel object discrimination and reduced anxiety in a light/dark shuttle test. These effects were associated with reduced FPR signalling in the gut as shown by the significant reduction in the levels of p-p38. Collectively, these findings suggest that homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours. These findings thus suggest that therapies targeting FPRs may be a novel approach to ameliorate behavioural abnormalities present in neuropsychiatric disorders at the cognitive-emotional interface.
Collapse
|
17
|
Li H, Scholl JL, Tu W, Hassell JE, Watt MJ, Forster GL, Renner KJ. Serotonergic responses to stress are enhanced in the central amygdala and inhibited in the ventral hippocampus during amphetamine withdrawal. Eur J Neurosci 2014; 40:3684-92. [PMID: 25234335 DOI: 10.1111/ejn.12735] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/05/2014] [Accepted: 08/20/2014] [Indexed: 12/26/2022]
Abstract
Withdrawal from amphetamine increases anxiety and reduces the ability to cope with stress, which are factors that are believed to contribute to drug relapse. Stress-induced serotonergic transmission in the central nucleus of the amygdala is associated with anxiety states and fear. Conversely, stress-induced increases in ventral hippocampal serotonin (5-HT) levels have been linked to coping mechanisms. The goal of this study was to investigate the neurobiological changes induced by amphetamine that contribute to stress sensitivity during withdrawal. We tested the hypothesis that limbic serotonergic responses to restraint stress would be altered in male Sprague-Dawley rats chronically pretreated with amphetamine (2.5 mg/kg, intraperitoneal) and then subjected to 2 weeks of withdrawal. Amphetamine withdrawal resulted in increased stress-induced behavioral arousal relative to control treatment, suggesting that drug withdrawal induced greater sensitivity to the stressor. When microdialysis was used to determine the effects of restraint on extracellular 5-HT, stress-induced increases in 5-HT levels were abolished in the ventral hippocampus and augmented in the central amygdala during amphetamine withdrawal. Reverse dialysis of the glucocorticoid receptor antagonist mifepristone into the ventral hippocampus blocked the stress-induced increase in 5-HT levels in saline-pretreated rats, suggesting that glucocorticoid receptors mediate stress-induced increases in 5-HT levels in the ventral hippocampus. However, mifepristone had no effect on stress-induced increases in 5-HT levels in the central amygdala, indicating that stress increases 5-HT levels in this region independently of glucocorticoid receptors. During amphetamine withdrawal, the absence of stress-induced increases in ventral hippocampal 5-HT levels combined with enhanced stress-induced serotonergic responses in the central amygdala may contribute to drug relapse by decreasing stress-coping ability and heightening stress responsiveness.
Collapse
Affiliation(s)
- Hao Li
- Department of Biology & Center for Brain and Behavior Research, University of South Dakota, 414 E. Clark St, Vermillion, SD, 57069, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Tu W, Cook A, Scholl JL, Mears M, Watt MJ, Renner KJ, Forster GL. Serotonin in the ventral hippocampus modulates anxiety-like behavior during amphetamine withdrawal. Neuroscience 2014; 281:35-43. [PMID: 25241066 DOI: 10.1016/j.neuroscience.2014.09.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/06/2014] [Accepted: 09/10/2014] [Indexed: 12/13/2022]
Abstract
Withdrawal from amphetamine is associated with increased anxiety and sensitivity to stressors which are thought to contribute to relapse. Rats undergoing amphetamine withdrawal fail to exhibit stress-induced increases in serotonin (5-HT) release in the ventral hippocampus and show heightened anxiety-like behaviors. Therefore, we tested the hypothesis that reducing 5-HT levels in the ventral hippocampus is a causal mechanism in increasing anxiety-like behaviors during amphetamine withdrawal. First, we tested whether reducing 5-HT levels in the ventral hippocampus directly increases anxiety behavior. Male rats were bilaterally infused with 5,7-dihydroxytryptamine (5,7-DHT) into the ventral hippocampus, which produced a 83% decrease in ventral hippocampus 5-HT content, and were tested on the elevated plus maze (EPM) for anxiety-like behavior. Reducing ventral hippocampus 5-HT levels decreased the time spent in the open arms of the maze, suggesting that diminished ventral hippocampus 5-HT levels increases anxiety-like behavior. Next, we tested whether increasing 5-HT levels in the ventral hippocampus reverses anxiety behavior exhibited by rats undergoing amphetamine withdrawal. Rats were treated daily with either amphetamine (2.5-mg/kg, i.p.) or saline for 2weeks, and at 2weeks withdrawal, were infused with the selective serotonin reuptake inhibitor paroxetine (0.5μM) bilaterally into the ventral hippocampus and tested for anxiety-like behavior on the EPM. Rats pre-treated with amphetamine exhibited increased anxiety-like behavior on the EPM. This effect was reversed by ventral hippocampus infusion of paroxetine. Our results suggest that 5-HT levels in the ventral hippocampus are critical for regulating anxiety behavior. Increasing 5-HT levels during withdrawal may be an effective strategy for reducing anxiety-induced drug relapse.
Collapse
Affiliation(s)
- W Tu
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark Street, Vermillion, SD, USA
| | - A Cook
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark Street, Vermillion, SD, USA
| | - J L Scholl
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark Street, Vermillion, SD, USA
| | - M Mears
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark Street, Vermillion, SD, USA
| | - M J Watt
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark Street, Vermillion, SD, USA
| | - K J Renner
- Center for Brain and Behavior Research, Biology Department, University of South Dakota, 414 East Clark Street, Vermillion, SD, USA
| | - G L Forster
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark Street, Vermillion, SD, USA.
| |
Collapse
|
19
|
Carabelli B, Delattre AM, Pudell C, Mori MA, Suchecki D, Machado RB, Venancio DP, Piazzetta SR, Hammerschmidt I, Zanata SM, Lima MMS, Zanoveli JM, Ferraz AC. The Antidepressant-Like Effect of Fish Oil: Possible Role of Ventral Hippocampal 5-HT1A Post-synaptic Receptor. Mol Neurobiol 2014; 52:206-15. [DOI: 10.1007/s12035-014-8849-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/31/2014] [Indexed: 01/05/2023]
|
20
|
Barr JL, Forster GL, Unterwald EM. Repeated cocaine enhances ventral hippocampal-stimulated dopamine efflux in the nucleus accumbens and alters ventral hippocampal NMDA receptor subunit expression. J Neurochem 2014; 130:583-90. [PMID: 24832868 DOI: 10.1111/jnc.12764] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/01/2014] [Accepted: 05/13/2014] [Indexed: 01/09/2023]
Abstract
Dopaminergic neurotransmission in the nucleus accumbens is important for various reward-related cognitive processes including reinforcement learning. Repeated cocaine enhances hippocampal synaptic plasticity, and phasic elevations of accumbal dopamine evoked by unconditioned stimuli are dependent on impulse flow from the ventral hippocampus. Therefore, sensitized hippocampal activity may be one mechanism by which drugs of abuse enhance limbic dopaminergic activity. In this study, in vivo microdialysis in freely moving adult male Sprague-Dawley rats was used to investigate the effect of repeated cocaine on ventral hippocampus-mediated dopaminergic transmission within the medial shell of the nucleus accumbens. Following seven daily injections of saline or cocaine (20 mg/kg, ip), unilateral infusion of N-methyl-d-aspartate (NMDA, 0.5 μg) into the ventral hippocampus transiently increased both motoric activity and ipsilateral dopamine efflux in the medial shell of the nucleus accumbens, and this effect was greater in rats that received repeated cocaine compared to controls that received repeated saline. In addition, repeated cocaine altered NMDA receptor subunit expression in the ventral hippocampus, reducing the NR2A : NR2B subunit ratio. Together, these results suggest that repeated exposure to cocaine produces maladaptive ventral hippocampal-nucleus accumbens communication, in part through changes in glutamate receptor composition. A behaviorally sensitizing regimen of cocaine (20 mg/kg, ip 7 days) also sensitized ventral hippocampus (hipp)-mediated dopaminergic transmission within the nucleus accumbens (Nac) to NMDA stimulation (bolts). This was associated with reduced ventral hippocampal NR2A:NR2B subunit ratio, suggesting that repeated exposure to cocaine produces changes in hippocampal NMDA receptor composition that lead to enhanced ventral hippocampus-nucleus accumbens communication.
Collapse
Affiliation(s)
- Jeffrey L Barr
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
21
|
The role of serotonin in drug use and addiction. Behav Brain Res 2014; 277:146-92. [PMID: 24769172 DOI: 10.1016/j.bbr.2014.04.007] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/26/2022]
Abstract
The use of psychoactive drugs is a wide spread behaviour in human societies. The systematic use of a drug requires the establishment of different drug use-associated behaviours which need to be learned and controlled. However, controlled drug use may develop into compulsive drug use and addiction, a major psychiatric disorder with severe consequences for the individual and society. Here we review the role of the serotonergic (5-HT) system in the establishment of drug use-associated behaviours on the one hand and the transition and maintenance of addiction on the other hand for the drugs: cocaine, amphetamine, methamphetamine, MDMA (ecstasy), morphine/heroin, cannabis, alcohol, and nicotine. Results show a crucial, but distinct involvement of the 5-HT system in both processes with considerable overlap between psychostimulant and opioidergic drugs and alcohol. A new functional model suggests specific adaptations in the 5-HT system, which coincide with the establishment of controlled drug use-associated behaviours. These serotonergic adaptations render the nervous system susceptible to the transition to compulsive drug use behaviours and often overlap with genetic risk factors for addiction. Altogether we suggest a new trajectory by which serotonergic neuroadaptations induced by first drug exposure pave the way for the establishment of addiction.
Collapse
|
22
|
Watt MJ, Roberts CL, Scholl JL, Meyer DL, Miiller LC, Barr JL, Novick AM, Renner KJ, Forster GL. Decreased prefrontal cortex dopamine activity following adolescent social defeat in male rats: role of dopamine D2 receptors. Psychopharmacology (Berl) 2014; 231:1627-36. [PMID: 24271009 PMCID: PMC3969403 DOI: 10.1007/s00213-013-3353-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 10/26/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Adverse social experience in adolescence causes reduced medial prefrontal cortex (mPFC) dopamine (DA) and associated behavioral deficits in early adulthood. OBJECTIVE This study aims to determine whether mPFC DA hypofunction following social stress is specific to adolescent experience and if this results from stress-induced DA D2 receptor activation. MATERIALS AND METHODS Male rats exposed to repeated social defeat during adolescence or adulthood had mPFC DA activity sampled 17 days later. Separate experiments used freely moving microdialysis to measure mPFC DA release in response to adolescent defeat exposure. At P40, 49 and 56 mPFC DA turnover was assessed to identify when DA activity decreased in relation to the adolescent defeat experience. Finally, nondefeated adolescent rats received repeated intra-mPFC infusions of the D2 receptor agonist quinpirole, while another adolescent group received intra-mPFC infusions of the D2 antagonist amisulpride before defeat exposure. RESULTS Long-term decreases or increases in mPFC DA turnover were observed following adolescent or adult defeat, respectively. Adolescent defeat exposure elicits sustained increases in mPFC DA release, and DA turnover remains elevated beyond the stress experience before declining to levels below normal at P56. Activation of mPFC D2 receptors in nondefeated adolescents decreases DA activity in a similar manner to that caused by adolescent defeat, while defeat-induced reductions in mPFC DA activity are prevented by D2 receptor blockade. CONCLUSIONS Both the developing and mature PFC DA systems are vulnerable to social stress, but only adolescent defeat causes DA hypofunction. This appears to result in part from stress-induced activation of mPFC D2 autoreceptors.
Collapse
Affiliation(s)
- Michael J Watt
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E Clark St, Vermillion, SD, 57069, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang R, Li X, Shi Y, Shao Y, Sun K, Wang A, Sun F, Liu W, Wang D, Jin J, Li Y. The effects of LPM570065, a novel triple reuptake inhibitor, on extracellular serotonin, dopamine and norepinephrine levels in rats. PLoS One 2014; 9:e91775. [PMID: 24614602 PMCID: PMC3948889 DOI: 10.1371/journal.pone.0091775] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/13/2014] [Indexed: 11/19/2022] Open
Abstract
Triple reuptake inhibitors (TRIs) are currently being developed as a new class of promising antidepressants that block serotonin (5-HT), dopamine (DA) and norepinephrine (NE) transporters, thereby increasing extracellular monoamine concentrations. The purpose of this study was to investigate the effects of LPM570065, a novel TRI and a desvenlafaxine prodrug, on extracellular 5-HT, DA and NE levels in the rat striatum after acute and chronic administration relative to desvenlafaxine, using High Performance Liquid Chromatography (HPLC) and microdialysis. Acute administration was performed by providing rodents with oral solutions (0.06 mmol·kg(-1) p.o.), oral suspensions (0.06 mmol·kg(-1) p.o.) and intravenous solutions (0.04 mmol·kg(-1) i.v.) of LPM570065 and desvenlafaxine. Oral suspensions (0.06 mmol·kg(-1)·day(-1)) of the two drugs were also administered for a 14-day chronic period. HPLC analysis revealed that LPM570065 rapidly penetrated the rat striatum, converted into desvenlafaxine and exhibited larger total exposure compared with the administration of desvenlafaxine. Microdialysis revealed that acute and chronic administration of oral suspension of LPM570065 increased the 5-HT, DA and NE levels more than the relative administration of desvenlafaxine. Unlike desvenlafaxine, acute administration of an intravenous LPM570065 solution did not induce the undesirable 90% decrease in extracellular 5-HT levels. In contrast to the fully dose-dependent elevation of 5-HT induced by desvenlafaxine, the acute administration of LPM570065 showed a capped increase in extracellular 5-HT levels when combined with WAY-100635. Additionally, forced swim test demonstrated that acute and chronic administration of LPM570065 reduced the immobility time more than the relative administration of desvenlafaxine. These data suggest that LPM570065 may have greater efficacy and/or a more rapid onset of antidepressant action than desvenlafaxine and also counterbalance the harmful effects of desvenlafaxine on 5-HT neurotransmission related to 5-HT1A autoreceptors. Thus, this new class of drugs, TRIs has the potential to provide a new therapeutic mechanism for treating depression.
Collapse
Affiliation(s)
- Renyu Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Company Limited, Yantai, Shandong Province, China
| | - Xiang Li
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Company Limited, Yantai, Shandong Province, China
| | - Yanan Shi
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Company Limited, Yantai, Shandong Province, China
| | - Yufeng Shao
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Company Limited, Yantai, Shandong Province, China
| | - Kaoxiang Sun
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Company Limited, Yantai, Shandong Province, China
- School of Pharmacy, Yantai University, Yantai, Shandong Province, China
| | - Aiping Wang
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Company Limited, Yantai, Shandong Province, China
- School of Pharmacy, Yantai University, Yantai, Shandong Province, China
| | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Wanhui Liu
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Company Limited, Yantai, Shandong Province, China
- School of Pharmacy, Yantai University, Yantai, Shandong Province, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
- * E-mail: (YL); (JJ)
| | - Youxin Li
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Company Limited, Yantai, Shandong Province, China
- School of Pharmacy, Yantai University, Yantai, Shandong Province, China
- * E-mail: (YL); (JJ)
| |
Collapse
|
24
|
Tang M, He T, Sun X, Meng QY, Diao Y, Lei JY, He XJ, Chen L, Sang XB, Zhao S. Subregion-specific decreases in hippocampal serotonin transporter protein expression and function associated with endophenotypes of depression. Hippocampus 2014; 24:493-501. [PMID: 24436084 DOI: 10.1002/hipo.22242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Man Tang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lau T, Heimann F, Bartsch D, Schloss P, Weber T. Nongenomic, glucocorticoid receptor-mediated regulation of serotonin transporter cell surface expression in embryonic stem cell derived serotonergic neurons. Neurosci Lett 2013; 554:115-20. [PMID: 24021805 DOI: 10.1016/j.neulet.2013.08.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/26/2013] [Accepted: 08/29/2013] [Indexed: 01/30/2023]
Abstract
Depressive disorders have been linked to the combined dysregulation of the hypothalamus-pituitary-adrenal (HPA)-axis and the serotonergic system. The HPA-axis and serotonergic (5-HT) neurons exert reciprocal regulatory actions. It has been reported that glucocorticoid-glucocorticoid receptor (GR) signaling influences serotonin transporter (5-HTT) transcription but data also points to the fact that 5-HTT expression is regulated nongenomically via redistribution of 5-HTT from the cell surface into intracellular compartments. In order to analyze the acute effects of glucocorticoids on 5-HTT cell surface localization we differentiated serotonergic neurons from mouse embryonic stem (ES) cells derived from the C57BL/6N blastocysts. These postmitotic 5-HT neurons express all relevant serotonergic markers following the application of a growth factor-based differentiation protocol. Increasing concentrations of the GR agonist dexamethasone (Dex) resulted in enhanced, dose-dependent 5-HTT cell surface localization in the presence of the protein synthesis inhibitor cycloheximide already 1h after incubation. Inhibition of GR function by the specific GR-antagonist mifepristone abolished the increase in 5-HTT cell surface localization. Hence, our data account for a nongenomic upregulation of 5-HTT cell surface expression by glucocorticoid-GR interaction which likely constitutes a rapid physiological response to increased levels of glucocorticoids as seen during stress. Taken together, we provide a cellular model to analyze and dissect glucocorticoid-5HTT interactions on a molecular level that corresponds to in vivo animal models using C57BL/6N mice.
Collapse
Affiliation(s)
- Thorsten Lau
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
26
|
Teles MC, Dahlbom SJ, Winberg S, Oliveira RF. Social modulation of brain monoamine levels in zebrafish. Behav Brain Res 2013; 253:17-24. [PMID: 23850359 DOI: 10.1016/j.bbr.2013.07.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
In social species animals tend to adjust their social behaviour according to the available social information in the group, in order to optimize and improve their one social status. This changing environment requires for rapid and transient behavioural changes that relies primarily on biochemical switching of existing neural networks. Monoamines and neuropeptides are the two major candidates to mediate these changes in brain states underlying socially behavioural flexibility. In the current study we used zebrafish (Danio rerio) males to study the effects of acute social interactions on rapid regional changes in brain levels of monoamines (serotonin and dopamine). A behavioural paradigm under which male zebrafish consistently express fighting behaviour was used to investigate the effects of different social experiences: winning the interaction, losing the interaction, or fighting an unsolved interaction (mirror image). We found that serotonergic activity is significantly higher in the telencephalon of winners and in the optic tectum of losers, and no significant changes were observed in mirror fighters suggesting that serotonergic activity is differentially regulated in different brain regions by social interactions. Dopaminergic activity it was also significantly higher in the telencephalon of winners which may be representative of social reward. Together our data suggests that acute social interactions elicit rapid and differential changes in serotonergic and dopaminergic activity across different brain regions.
Collapse
Affiliation(s)
- Magda C Teles
- ISPA-Instituto Universitário, Unidade de Investigação em Eco-Etologia, Rua Jardim do Tabaco 34, 1149-041, Lisboa, Portugal
| | | | | | | |
Collapse
|
27
|
Kobayashi K, Ikeda Y, Asada M, Inagaki H, Kawada T, Suzuki H. Corticosterone facilitates fluoxetine-induced neuronal plasticity in the hippocampus. PLoS One 2013; 8:e63662. [PMID: 23675498 PMCID: PMC3651130 DOI: 10.1371/journal.pone.0063662] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/03/2013] [Indexed: 01/10/2023] Open
Abstract
The hippocampal dentate gyrus has been implicated in a neuronal basis of antidepressant action. We have recently shown a distinct form of neuronal plasticity induced by the serotonergic antidepressant fluoxetine, that is, a reversal of maturation of the dentate granule cells in adult mice. This “dematuration” is induced in a large population of dentate neurons and maintained for at least one month after withdrawal of fluoxetine, suggesting long-lasting strong influence of dematuration on brain functioning. However, reliable induction of dematuration required doses of fluoxetine higher than suggested optimal doses for mice (10 to 18 mg/kg/day), which casts doubt on the clinical relevance of this effect. Since our previous studies were performed in naive mice, in the present study, we reexamined effects of fluoxetine using mice treated with chronic corticosterone that model neuroendocrine pathophysiology associated with depression. In corticosterone-treated mice, fluoxetine at 10 mg/kg/day downregulated expression of mature granule cell markers and attenuated strong frequency facilitation at the synapse formed by the granule cell axon mossy fiber, suggesting the induction of granule cell dematuration. In addition, fluoxetine caused marked enhancement of dopaminergic modulation at the mossy fiber synapse. In vehicle-treated mice, however, fluoxetine at this dose had no significant effects. The plasma level of fluoxetine was comparable to that in patients taking chronic fluoxetine, and corticosterone did not affect it. These results indicate that corticosterone facilitates fluoxetine-induced plastic changes in the dentate granule cells. Our finding may provide insight into neuronal mechanisms underlying enhanced responsiveness to antidepressant medication in certain pathological conditions.
Collapse
Affiliation(s)
- Katsunori Kobayashi
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Barr JL, Scholl JL, Solanki RR, Watt MJ, Lowry CA, Renner KJ, Forster GL. Influence of chronic amphetamine treatment and acute withdrawal on serotonin synthesis and clearance mechanisms in the rat ventral hippocampus. Eur J Neurosci 2012; 37:479-90. [PMID: 23157166 DOI: 10.1111/ejn.12050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 01/11/2023]
Abstract
Amphetamine withdrawal in both humans and rats is associated with increased anxiety states, which are thought to contribute to drug relapse. Serotonin in the ventral hippocampus mediates affective behaviors, and reduced serotonin levels in this region are observed in rat models of high anxiety, including during withdrawal from chronic amphetamine. This goal of this study was to understand the mechanisms by which reduced ventral hippocampus serotonergic neurotransmission occurs during amphetamine withdrawal. Serotonin synthesis (assessed by accumulation of serotonin precursor as a measure of the capacity of in vivo tryptophan hydroxylase activity), expression of serotonergic transporters, and in vivo serotonergic clearance using in vivo microdialysis were assessed in the ventral hippocampus in adult male Sprague Dawley rats at 24 h withdrawal from chronic amphetamine. Overall, results showed that diminished extracellular serotonin at 24 h withdrawal from chronic amphetamine was not accompanied by a change in capacity for serotonin synthesis (in vivo tryptophan hydroxylase activity), or serotonin transporter expression or function in the ventral hippocampus, but instead was associated with increased expression and function of organic cation transporters (low-affinity, high-capacity serotonin transporters). These findings suggest that 24 h withdrawal from chronic amphetamine reduces the availability of extracellular serotonin in the ventral hippocampus by increasing organic cation transporter-mediated serotonin clearance, which may represent a future pharmacological target for reversing anxiety states during drug withdrawal.
Collapse
Affiliation(s)
- Jeffrey L Barr
- Neuroscience Group, Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Ventral hippocampal molecular pathways and impaired neurogenesis associated with 5-HT1A and 5-HT1B receptors disruption in mice. Neurosci Lett 2012; 521:20-5. [DOI: 10.1016/j.neulet.2012.05.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/10/2012] [Accepted: 05/12/2012] [Indexed: 02/06/2023]
|
30
|
Chen GL, Miller GM. Advances in tryptophan hydroxylase-2 gene expression regulation: new insights into serotonin-stress interaction and clinical implications. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:152-71. [PMID: 22241550 PMCID: PMC3587664 DOI: 10.1002/ajmg.b.32023] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serotonin (5-HT) modulates the stress response by interacting with the hormonal hypothalamic-pituitary-adrenal (HPA) axis and neuronal sympathetic nervous system (SNS). Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in 5-HT biosynthesis, and the recent identification of a second, neuron-specific TPH isoform (TPH2) opened up a new area of research. While TPH2 genetic variance has been linked to numerous behavioral traits and disorders, findings on TPH2 gene expression have not only reinforced, but also provided new insights into, the long-recognized but not yet fully understood 5-HT-stress interaction. In this review, we summarize advances in TPH2 expression regulation and its relevance to the stress response and clinical implications. Particularly, based on findings on rhesus monkey TPH2 genetics and other relevant literature, we propose that: (i) upon activation of adrenal cortisol secretion, the cortisol surge induces TPH2 expression and de novo 5-HT synthesis; (ii) the induced 5-HT in turn inhibits cortisol secretion by modulating the adrenal sensitivity to ACTH via the suprachiasmatic nuclei (SCN)-SNS-adrenal system, such that it contributes to the feedback inhibition of cortisol production; (iii) basal TPH2 expression or 5-HT synthesis, as well as early-life experience, influence basal cortisol primarily via the hormonal HPA axis; and (iv) 5'- and 3'-regulatory polymorphisms of TPH2 may differentially influence the stress response, presumably due to their differential roles in gene expression regulation. Our increasing knowledge of TPH2 expression regulation not only helps us better understand the 5-HT-stress interaction and the pathophysiology of neuropsychiatric disorders, but also provides new strategies for the treatment of stress-associated diseases.
Collapse
Affiliation(s)
- Guo-Lin Chen
- Harvard Medical School, New England Primate Research Center, Division of Neuroscience, Southborough, MA 01772-9102, USA.
| | | |
Collapse
|