1
|
Liao F, de la Villa P, Liu H, Germain F, Wang T. P2 component latency of fVEP as a bioindicator for clinical and diagnostic use in visual pathologies. Exp Eye Res 2025; 255:110381. [PMID: 40210193 DOI: 10.1016/j.exer.2025.110381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
PURPOSE The signaling of flash visual evoked potential (fVEP) derives from the retina, but how retinal activity influences fVEP remains unclear. This work aimed to decipher the specific retinal kinetic contributions to fVEP response. METHODS Monocular and simultaneous recordings of flash VEP and electroretinogram were performed. Healthy and adult mice C57BL/6J were used. The right eye was injected intravitreally with 1 μL of PBS containing 25 mM APB, 10 mM Bicuculline, 30 mM DNQX, 100 mM Glutamate, 100 mM GABA, 5 mM TPMPA, or 25 mM HEPES. The left eye was injected with 1 μL of PBS and then wore an opaque patch. The amplitude and latency of fVEP were analyzed in detail. RESULTS In the control group, at light intensity ≤0.1 cd·s/m2, four robust components of the fVEP recordings, N1, P1, N2, and P2, were identified in dark adaptation conditions. After administration reagents, N1 and P1 components were abolished by APB, Bicuculline, DNQX or TPMPA, but were preserved by GABA/Glutamate or HEPES. Notably, N2 and P2 components were always kept. The latency and amplitude of fVEP were shown to be stimulus-dependent. Nevertheless, the amplitude showed greater inter-individual variability than latency. CONCLUSION N1 and P1 components are strongly related to rod photoreceptor activity and/or the level of horizontal cell excitation. Latency, rather than fVEP amplitude, could be a good biomarker for clinical and diagnostic purposes, particularly the P2 latency in the rod-driven scotopic response.
Collapse
Affiliation(s)
- Fei Liao
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Jinan 250021, China
| | - Pedro de la Villa
- Department of Systems Biology, Laboratory of Visual Neurophysiology, University of Alcalá, Alcalá de Henares, 28871, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, 28034, Madrid, Spain
| | - Haitao Liu
- Department of Systems Biology, Laboratory of Visual Neurophysiology, University of Alcalá, Alcalá de Henares, 28871, Madrid, Spain
| | - Francisco Germain
- Department of Systems Biology, Laboratory of Visual Neurophysiology, University of Alcalá, Alcalá de Henares, 28871, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, 28034, Madrid, Spain.
| | - Ting Wang
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Jinan 250021, China.
| |
Collapse
|
2
|
Castoldi V, Rossi E, Marenna S, Comi G, Leocani L. Transcorneal Electrical Stimulation Modulates Visual Pathway Function in Mice. J Neurosci Res 2025; 103:e70026. [PMID: 39931921 PMCID: PMC11811922 DOI: 10.1002/jnr.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/20/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
Due to its ability to modulate neuronal activity, electrical stimulation of the eye may be a promising therapy for preserving or restoring vision. To investigate how electrical currents can influence visual function, Transcorneal Electrical Stimulation (TES) was tested on both female and male C57BL/6 mice to evaluate its neuromodulatory effect from the retina to the cerebral cortex through visual evoked potential (VEP) and electroretinogram (ERG) recording. VEP or ERG was acquired before (baseline), immediately (t0), after 5 min (t5), and 10 min (t10) of sham (i.e., no stimulation) or TES applied on the eye of anesthetized C57BL/6 mice. Notably, TES affected neuronal activity in the visual pathway since a significant increase in VEP and ERG amplitude was detected and persisted 10 min after TES. The amplitude increase induced by TES could underlie an enhancement of neuronal excitability that may ameliorate retinal-genicular-cortical function in diseases involving the visual system.
Collapse
Affiliation(s)
- Valerio Castoldi
- Experimental Neurophysiology UnitInstitute of Experimental Neurology (INSPE) – IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Elena Rossi
- Experimental Neurophysiology UnitInstitute of Experimental Neurology (INSPE) – IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Silvia Marenna
- Experimental Neurophysiology UnitInstitute of Experimental Neurology (INSPE) – IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Giancarlo Comi
- Faculty of MedicineUniversità Vita‐Salute San RaffaeleMilanItaly
- Department of Neurorehabilitation SciencesCasa di Cura IgeaMilanItaly
| | - Letizia Leocani
- Experimental Neurophysiology UnitInstitute of Experimental Neurology (INSPE) – IRCCS San Raffaele Scientific InstituteMilanItaly
- Faculty of MedicineUniversità Vita‐Salute San RaffaeleMilanItaly
- Department of Neurorehabilitation SciencesCasa di Cura IgeaMilanItaly
| |
Collapse
|
3
|
Rossi E, Marenna S, Castoldi V, Comi G, Leocani L. Transcranial direct current stimulation as a potential remyelinating therapy: Visual evoked potentials recovery in cuprizone demyelination. Exp Neurol 2024; 382:114972. [PMID: 39326818 DOI: 10.1016/j.expneurol.2024.114972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
AIMS Non-invasive neuromodulation by transcranial direct current stimulation (tDCS), owing to its reported beneficial effects on neuronal plasticity, has been proposed as a treatment to promote functional recovery in several neurological conditions, including demyelinating diseases like multiple sclerosis. Less information is available on the effects of tDCS in major pathological mechanisms of multiple sclerosis, such as demyelination and inflammation. To learn more about the latter effects, we applied multi-session anodal tDCS in mice exposed to long-term cuprizone (CPZ) diet, known to induce chronic demyelination. METHODS Visual evoked potentials (VEP) and motor performance (beam test) were employed for longitudinal monitoring of visual and motor pathways in 28 mice undergoing CPZ diet, compared with 12 control (H) mice. After randomization, anodal tDCS was applied for 5 days in awake, freely-moving surviving animals: 12 CPZ-anodal, 10 CPZ-sham, 5H-anodal, 5 h-sham. At the end of the experiment, histological analysis was performed on the optic nerves and corpus callosum for myelin, axons and microglia/macrophages. KEY FINDINGS CPZ diet was associated with significantly delayed VEPs starting at 4 weeks compared with their baseline, significant compared with controls at 8 weeks. After 5-day tDCS, VEPs latency significantly recovered in the active group compared with the sham group. Similar findings were observed in the time to cross on the beam test Optic nerve histology revealed higher myelin content and lower microglia/macrophage counts in the CPZ-Anodal group compared with CPZ-Sham. SIGNIFICANCE Multiple sessions of anodal transcranial direct current stimulation (tDCS) in freely moving mice induced recovery of visual nervous conduction and significant beneficial effects in myelin content and inflammatory cells in the cuprizone model of demyelination. Altogether, these promising findings prompt further exploration of tDCS as a potential therapeutic approach for remyelination.
Collapse
Affiliation(s)
- Elena Rossi
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milan, Italy; IRCCS-San Raffaele Scientific Institute, Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), via Olgettina 60, 20132 Milan, Italy
| | - Silvia Marenna
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milan, Italy; IRCCS-San Raffaele Scientific Institute, Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), via Olgettina 60, 20132 Milan, Italy
| | - Valerio Castoldi
- IRCCS-San Raffaele Scientific Institute, Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), via Olgettina 60, 20132 Milan, Italy
| | - Giancarlo Comi
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milan, Italy; Casa di Cura Igea Department of Neurorehabilitation Sciences, Milan, Italy
| | - Letizia Leocani
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milan, Italy; IRCCS-San Raffaele Scientific Institute, Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), via Olgettina 60, 20132 Milan, Italy.; Casa di Cura Igea Department of Neurorehabilitation Sciences, Milan, Italy.
| |
Collapse
|
4
|
Marenna S, Rossi E, Huang SC, Castoldi V, Comi G, Leocani L. Visual evoked potentials waveform analysis to measure intracortical damage in a preclinical model of multiple sclerosis. Front Cell Neurosci 2023; 17:1186110. [PMID: 37323584 PMCID: PMC10264580 DOI: 10.3389/fncel.2023.1186110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Visual evoked potentials (VEPs) are a non-invasive technique routinely used in clinical and preclinical practice. Discussion about inclusion of VEPs in McDonald criteria, used for Multiple Sclerosis (MS) diagnosis, increased the importance of VEP in MS preclinical models. While the interpretation of the N1 peak is recognized, less is known about the first and second positive VEP peaks, P1 and P2, and the implicit time of the different segments. Our hypothesis is that P2 latency delay describes intracortical neurophysiological dysfunction from the visual cortex to the other cortical areas. Methods In this work, we analyzed VEP traces that were included in our two recently published papers on Experimental Autoimmune Encephalomyelitis (EAE) mouse model. Compared with these previous publications other VEP peaks, P1 and P2, and the implicit time of components P1-N1, N1-P2 and P1-P2, were analyzed in blind. Results Latencies of P2, P1-P2, P1-N1 and N1-P2 were increased in all EAE mice, including group without N1 latency change delay at early time points. In particular, at 7 dpi the P2 latency delay change was significantly higher compared with N1 latency change delay. Moreover, new analysis of these VEP components under the influence of neurostimulation revealed a decrease in P2 delay in stimulated animals. Discussion P2 latency delay, P1-P2, P1-N1, and N1-P2 latency changes which reflect intracortical dysfunction, were consistently detected across all EAE groups before N1 change. Results underline the importance of analyzing all VEP components for a complete overview of the neurophysiological visual pathway dysfunction and treatment efficacy.
Collapse
Affiliation(s)
- Silvia Marenna
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE)–IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Elena Rossi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE)–IRCCS-Scientific Institute San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE)–IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE)–IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Giancarlo Comi
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE)–IRCCS-Scientific Institute San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
5
|
Marenna S, Huang SC, Rossi E, Castoldi V, Comi G, Leocani L. Transcranial direct current stimulation as a preventive treatment in multiple sclerosis? Preclinical evidence. Exp Neurol 2022; 357:114201. [PMID: 35963325 DOI: 10.1016/j.expneurol.2022.114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system, presenting with optic neuritis in about 20-30% of cases. Optic nerve demyelination, associated with delay of visual evoked potentials (VEPs), is also observed prior to motor signs in the preclinical MS model Experimental Autoimmune Encephalomyelitis (EAE). Transcranial direct current stimulation (tDCS), inducing polarity-dependent changes in neuronal excitability, is widely used to promote neuroplasticity in several neurological disorders. However, its potential effects on inflammation and demyelination are largely unknown. We tested the effectiveness of a preventive, 5-day tDCS treatment started 3 days post-immunization, in reducing the severity of VEP delays observed in early EAE. In mice undergoing cathodal tDCS (n = 6/26 eyes) VEPs were significantly less delayed compared with eyes from EAE-Sham (n = 24/32 eyes) and EAE-Anodal (n = 22/32 eyes). Optic nerve immunohistochemistry revealed a significantly lower cell density of microglia/macrophages, and less axonal loss in EAE-Cathodal vs EAE-Sham and EAE-Anodal, while the percent demyelination with Luxol-fast blue staining was comparable among EAE groups. Considering the latter result, immunofluorescence paranodal staining was performed, revealing a significantly higher number of complete paranode domains in EAE-Cathodal, closer to healthy mice, compared with EAE-Sham and EAE-Anodal groups. These results were reflected by the negative correlation between the number of complete paranode domains and VEP latency increase with respect to pre-immunization. Finally, cathodal tDCS was associated with a lower number, closer to healthy, of single paranodes in contrast to EAE-Sham. The effects of cathodal stimulation in preventing VEPs delays and optic nerve myelin damage were already observed in the pre-motor onset EAE stage, and were associated with a lower density of inflammatory cells. These findings suggest that tDCS may exert an anti-inflammatory effect with potential therapeutic application to be further explored in autoimmune demyelinating diseases.
Collapse
Affiliation(s)
- Silvia Marenna
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy.
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy.
| | - Elena Rossi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy.
| | - Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy.
| | - Giancarlo Comi
- Università Vita-Salute, San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy; Casa di Cura del Policlinico, Milan, Italy.
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy; Università Vita-Salute, San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
6
|
Early Application of Ipsilateral Cathodal-tDCS in a Mouse Model of Brain Ischemia Results in Functional Improvement and Perilesional Microglia Modulation. Biomolecules 2022; 12:biom12040588. [PMID: 35454177 PMCID: PMC9027610 DOI: 10.3390/biom12040588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Early stroke therapeutic approaches rely on limited options, further characterized by a narrow therapeutic time window. In this context, the application of transcranial direct current stimulation (tDCS) in the acute phases after brain ischemia is emerging as a promising non-invasive tool. Despite the wide clinical application of tDCS, the cellular mechanisms underlying its positive effects are still poorly understood. Here, we explored the effects of cathodal tDCS (C-tDCS) 6 h after focal forelimb M1 ischemia in Cx3CR1GFP/+ mice. C-tDCS improved motor functionality of the affected forelimb, as assessed by the cylinder and foot-fault tests at 48 h, though not changing the ischemic volume. In parallel, histological analysis showed that motor recovery is associated with decreased microglial cell density in the area surrounding the ischemic core, while astrocytes were not affected. Deeper analysis of microglia morphology within the perilesional area revealed a shift toward a more ramified healthier state, with increased processes’ complexity and a less phagocytic anti-inflammatory activity. Taken together, our findings suggest a positive role for early C-tDCS after ischemia, which is able to modulate microglia phenotype and morphology in parallel to motor recovery.
Collapse
|
7
|
Preisig BC, Hervais-Adelman A. The Predictive Value of Individual Electric Field Modeling for Transcranial Alternating Current Stimulation Induced Brain Modulation. Front Cell Neurosci 2022; 16:818703. [PMID: 35273479 PMCID: PMC8901488 DOI: 10.3389/fncel.2022.818703] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
There is considerable individual variability in the reported effectiveness of non-invasive brain stimulation. This variability has often been ascribed to differences in the neuroanatomy and resulting differences in the induced electric field inside the brain. In this study, we addressed the question whether individual differences in the induced electric field can predict the neurophysiological and behavioral consequences of gamma band tACS. In a within-subject experiment, bi-hemispheric gamma band tACS and sham stimulation was applied in alternating blocks to the participants' superior temporal lobe, while task-evoked auditory brain activity was measured with concurrent functional magnetic resonance imaging (fMRI) and a dichotic listening task. Gamma tACS was applied with different interhemispheric phase lags. In a recent study, we could show that anti-phase tACS (180° interhemispheric phase lag), but not in-phase tACS (0° interhemispheric phase lag), selectively modulates interhemispheric brain connectivity. Using a T1 structural image of each participant's brain, an individual simulation of the induced electric field was computed. From these simulations, we derived two predictor variables: maximal strength (average of the 10,000 voxels with largest electric field values) and precision of the electric field (spatial correlation between the electric field and the task evoked brain activity during sham stimulation). We found considerable variability in the individual strength and precision of the electric fields. Importantly, the strength of the electric field over the right hemisphere predicted individual differences of tACS induced brain connectivity changes. Moreover, we found in both hemispheres a statistical trend for the effect of electric field strength on tACS induced BOLD signal changes. In contrast, the precision of the electric field did not predict any neurophysiological measure. Further, neither strength, nor precision predicted interhemispheric integration. In conclusion, we found evidence for the dose-response relationship between individual differences in electric fields and tACS induced activity and connectivity changes in concurrent fMRI. However, the fact that this relationship was stronger in the right hemisphere suggests that the relationship between the electric field parameters, neurophysiology, and behavior may be more complex for bi-hemispheric tACS.
Collapse
Affiliation(s)
- Basil C. Preisig
- Department of Psychology, Neurolinguistics, University of Zurich, Zurich, Switzerland
- Donders Institute for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Neuroscience Center Zurich, Eidgenössische Technische Hochschule Zurich, University of Zurich, Zurich, Switzerland
| | - Alexis Hervais-Adelman
- Department of Psychology, Neurolinguistics, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Eidgenössische Technische Hochschule Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Castoldi V, Marenna S, Huang SC, d'Isa R, Chaabane L, Comi G, Leocani L. Dose-dependent effect of myelin oligodendrocyte glycoprotein on visual function and optic nerve damage in experimental autoimmune encephalomyelitis. J Neurosci Res 2022; 100:855-868. [PMID: 35043454 DOI: 10.1002/jnr.25007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Female Dark Agouti rats were immunized with increasing doses of myelin oligodendrocyte glycoprotein (MOG) to develop experimental autoimmune encephalomyelitis (EAE), a preclinical model of multiple sclerosis. Typical EAE motor impairments were assessed daily and noninvasive visual evoked potentials (VEPs) were recorded at baseline and 5 weeks after immunization, with final histopathology of optic nerves (ONs). Immunized rats exhibited a relapsing-remitting clinical course. Both VEP and histological abnormalities were detected in a MOG dose-dependent gradient. Increasing MOG dosage augmented visual function impairment in EAE, which could be monitored with VEP recording to assess demyelination and axonal loss along ONs.
Collapse
Affiliation(s)
- Valerio Castoldi
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Marenna
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaele d'Isa
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Linda Chaabane
- INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Giancarlo Comi
- Vita-Salute San Raffaele University, Milan, Italy.,Casa di Cura del Policlinico, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
9
|
Castoldi V, d'Isa R, Marenna S, Comi G, Leocani L. Non-invasive visual evoked potentials under sevoflurane versus ketamine-xylazine in rats. Heliyon 2021; 7:e08360. [PMID: 34816047 PMCID: PMC8591496 DOI: 10.1016/j.heliyon.2021.e08360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/19/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Background Visual Evoked Potential (VEP) quantifies electrical signals produced in visual cortex in response to visual stimuli. VEP elicited by light flashes is a useful biomarker to evaluate visual function in preclinical models and it can be recorded in awake or anaesthetised state. Different types of anaesthesia influence VEP properties, such as latency, which measures the propagation speed along nerve fibers, and amplitude that quantifies the power of electrical signal. Aim The goal of this work is to compare VEPs elicited in Dark Agouti rats under two types of anaesthesia: volatile sevoflurane or injectable ketamine-xylazine. Methods VEP latency, amplitude, signal-to-noise ratio and recording duration were measured in Dark Agouti rats randomly assigned to two groups, the first subjected to volatile sevoflurane and the second to injectable ketamine-xylazine. Taking advantage of non-invasive flash-VEP recording through epidermal cup electrodes, three time points of VEP recordings were assessed in two weeks intervals. Results VEP recorded under ketamine-xylazine showed longer latency and higher amplitude compared with sevoflurane, with analogous repeatability over time. However, sevoflurane tended to suppress electrical signals from visual cortex, resulting in a lower signal-to-noise ratio. Moreover, VEP procedure duration lasted longer in rats anaesthetised with sevoflurane than ketamine-xylazine. Conclusions In Dark Agouti rats, the use of different anaesthesia can influence VEP components in terms of latency and amplitude. Notably, sevoflurane and ketamine-xylazine revealed satisfying repeatability over time, which is critical to perform reliable follow-up studies. Ketamine-xylazine allowed to obtain more clearly discernible VEP components and less background noise, together with a quicker recording procedure and a consequently improved animal safety and welfare.
Collapse
Affiliation(s)
- Valerio Castoldi
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaele d'Isa
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Marenna
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Giancarlo Comi
- Vita-Salute San Raffaele University, Milan, Italy.,Casa di Cura del Policlinico, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
10
|
The Amygdala Responds Rapidly to Flashes Linked to Direct Retinal Innervation: A Flash-evoked Potential Study Across Cortical and Subcortical Visual Pathways. Neurosci Bull 2021; 37:1107-1118. [PMID: 34086263 DOI: 10.1007/s12264-021-00699-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/27/2021] [Indexed: 12/20/2022] Open
Abstract
Rapid detection and response to visual threats are critical for survival in animals. The amygdala (AMY) is hypothesized to be involved in this process, but how it interacts with the visual system to do this remains unclear. By recording flash-evoked potentials simultaneously from the superior colliculus (SC), lateral posterior nucleus of the thalamus, AMY, lateral geniculate nucleus (LGN) and visual cortex, which belong to the cortical and subcortical pathways for visual fear processing, we investigated the temporal relationship between these regions in visual processing in rats. A quick flash-evoked potential (FEP) component was identified in the AMY. This emerged as early as in the LGN and was approximately 25 ms prior to the earliest component recorded in the SC, which was assumed to be an important area in visual fear. This quick P1 component in the AMY was not affected by restraint stress or corticosterone injection, but was diminished by RU38486, a glucocorticoid receptor blocker. By injecting a monosynaptic retrograde AAV tracer into the AMY, we found that it received a direct projection from the retina. These results confirm the existence of a direct connection from the retina to the AMY, that the latency in the AMY to flashes is equivalent to that in the sensory thalamus, and that the response is modulated by glucocorticoids.
Collapse
|
11
|
Sánchez-León CA, Cordones I, Ammann C, Ausín JM, Gómez-Climent MA, Carretero-Guillén A, Sánchez-Garrido Campos G, Gruart A, Delgado-García JM, Cheron G, Medina JF, Márquez-Ruiz J. Immediate and after effects of transcranial direct-current stimulation in the mouse primary somatosensory cortex. Sci Rep 2021; 11:3123. [PMID: 33542338 PMCID: PMC7862679 DOI: 10.1038/s41598-021-82364-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/24/2020] [Indexed: 01/30/2023] Open
Abstract
Transcranial direct-current stimulation (tDCS) is a non-invasive brain stimulation technique consisting in the application of weak electric currents on the scalp. Although previous studies have demonstrated the clinical value of tDCS for modulating sensory, motor, and cognitive functions, there are still huge gaps in the knowledge of the underlying physiological mechanisms. To define the immediate impact as well as the after effects of tDCS on sensory processing, we first performed electrophysiological recordings in primary somatosensory cortex (S1) of alert mice during and after administration of S1-tDCS, and followed up with immunohistochemical analysis of the stimulated brain regions. During the application of cathodal and anodal transcranial currents we observed polarity-specific bidirectional changes in the N1 component of the sensory-evoked potentials (SEPs) and associated gamma oscillations. On the other hand, 20 min of cathodal stimulation produced significant after-effects including a decreased SEP amplitude for up to 30 min, a power reduction in the 20-80 Hz range and a decrease in gamma event related synchronization (ERS). In contrast, no significant changes in SEP amplitude or power analysis were observed after anodal stimulation except for a significant increase in gamma ERS after tDCS cessation. The polarity-specific differences of these after effects were corroborated by immunohistochemical analysis, which revealed an unbalance of GAD 65-67 immunoreactivity between the stimulated versus non-stimulated S1 region only after cathodal tDCS. These results highlight the differences between immediate and after effects of tDCS, as well as the asymmetric after effects induced by anodal and cathodal stimulation.
Collapse
Affiliation(s)
- Carlos A. Sánchez-León
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Isabel Cordones
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Claudia Ammann
- grid.428486.40000 0004 5894 9315HM CINAC, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - José M. Ausín
- grid.157927.f0000 0004 1770 5832Instituto de Investigación E Innovación en Bioingeniería, Universidad Politécnica de Valencia, Valencia, Spain
| | - María A. Gómez-Climent
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Alejandro Carretero-Guillén
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Guillermo Sánchez-Garrido Campos
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Agnès Gruart
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - José M. Delgado-García
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Guy Cheron
- grid.8364.90000 0001 2184 581XLaboratory of Electrophysiology, Université de Mons, Mons, Belgium ,grid.4989.c0000 0001 2348 0746Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Javier F. Medina
- grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Javier Márquez-Ruiz
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| |
Collapse
|
12
|
Tanaka T, Isomura Y, Kobayashi K, Hanakawa T, Tanaka S, Honda M. Electrophysiological Effects of Transcranial Direct Current Stimulation on Neural Activity in the Rat Motor Cortex. Front Neurosci 2020; 14:495. [PMID: 32714126 PMCID: PMC7340144 DOI: 10.3389/fnins.2020.00495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/20/2020] [Indexed: 02/04/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive technique that modulates the neuronal membrane potential. We have previously documented a sustainable increase in extracellular dopamine levels in the rat striatum of cathodal tDCS, suggesting that cathodal tDCS enhances the neuronal excitability of the cortex. In the present study, we investigated changes in neuronal activity in the cerebral cortex induced by tDCS at the point beneath the stimulus electrode in anesthetized rats in vivo. Multiunit recordings were performed to examine changes in neuronal activity before and after the application of tDCS. In the cathodal tDCS group, multiunit activity (indicating the collective firing rate of recorded neuronal populations) increased in the cerebral cortex. Both anodal and cathodal tDCS increased the firing rate of isolated single units in the cerebral cortex. Significant differences in activity were observed immediately following stimulation and persisted for more than an hour after stimulation. The primary finding of this study was that both anodal and cathodal tDCS increased in vivo neuronal activity in the rat cerebral cortex underneath the stimulus electrode.
Collapse
Affiliation(s)
- Tomoko Tanaka
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan.,Department of Information Medicine, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira, Japan
| | - Yoshikazu Isomura
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takashi Hanakawa
- Department of Information Medicine, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira, Japan.,Department of Advanced Neuroimaging, Integrative Brain Imaging Centre, National Centre of Neurology and Psychiatry, Kodaira, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Manabu Honda
- Department of Information Medicine, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
13
|
d'Isa R, Castoldi V, Marenna S, Santangelo R, Comi G, Leocani L. A new electrophysiological non-invasive method to assess retinocortical conduction time in the Dark Agouti rat through the simultaneous recording of electroretinogram and visual evoked potential. Doc Ophthalmol 2020; 140:245-255. [PMID: 31832898 DOI: 10.1007/s10633-019-09741-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/06/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE To develop a non-invasive method exploiting simultaneous recording of epidermal visual evoked potential (VEP) and epicorneal electroretinogram (ERG) to study retinocortical function and to evaluate its reliability and repeatability over time. METHODS Female wild-type DA rats were anesthetized with ketamine/xylazine (40/5 mg/kg). Epidermal VEP (Ag/AgCl cup electrode on scalp) and epicorneal ERG (gold ring electrode on eye surface) were recorded simultaneously in response to flash stimulation. RESULTS ANOVA for repeated measures showed that peak times of ERG b-wave and of VEP N1 and P2 were stable across 6 weekly time-points, as well as the corresponding amplitudes. Mean retinocortical time from b-wave to N1 (RCT1) was 7.6 ms and remained comparable across the 6 time-points. Mean retinocortical time from b-wave to P2 (RCT2) was 28.7 ms and did not show significant variations over time. Coefficient of variation (CoV%) and CoV% adjusted for sample size, namely relative standard error (RSE%), were calculated as indexes of repeatability. Good RSE% over time was obtained (< 5% for b-wave, N1 and P2 peak times; < 20% and < 7% for RCT1 and RCT2, respectively). CONCLUSIONS Simultaneous recording of ERG and VEP has been previously achieved through invasive methods requiring surgery. Here, we present a new non-invasive method, which allowed to obtain peak and retinocortical times that were constant across a long period and had a good repeatability over time. This method will ensure not only a gain in animal welfare, but will also avoid stress and eye or brain lesions which can interfere with experimental variables.
Collapse
Affiliation(s)
- Raffaele d'Isa
- Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Valerio Castoldi
- Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Silvia Marenna
- Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Roberto Santangelo
- Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Giancarlo Comi
- Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Letizia Leocani
- Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
14
|
Castoldi V, Marenna S, d'Isa R, Huang SC, De Battista D, Chirizzi C, Chaabane L, Kumar D, Boschert U, Comi G, Leocani L. Non-invasive visual evoked potentials to assess optic nerve involvement in the dark agouti rat model of experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein. Brain Pathol 2019; 30:137-150. [PMID: 31267597 DOI: 10.1111/bpa.12762] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the primary disease model of multiple sclerosis (MS), one of the most diffused neurological diseases characterized by fatigue, muscle weakness, vision loss, anxiety and depression. EAE can be induced through injection of myelin peptides to susceptible mouse or rat strains. In particular, EAE elicited by the autoimmune reaction against myelin oligodendrocyte glycoprotein (MOG) presents the common features of human MS: inflammation, demyelination and axonal loss. Optic neuritis affects visual pathways in both MS and in several EAE models. Neurophysiological evaluation through visual evoked potential (VEP) recording is useful to check visual pathway dysfunctions and to test the efficacy of innovative treatments against optic neuritis. For this purpose, we investigate the extent of VEP abnormalities in the dark agouti (DA) rat immunized with MOG, which develops a relapsing-remitting disease course. Together with the detection of motor signs, we acquired VEPs during both early and late stages of EAE, taking advantage of a non-invasive recording procedure that allows long follow-up studies. The validation of VEP outcomes was determined by comparison with ON histopathology, aimed at revealing inflammation, demyelination and nerve fiber loss. Our results indicate that the first VEP latency delay in MOG-EAE DA rats appeared before motor deficits and were mainly related to an inflammatory state. Subsequent VEP delays, detected during relapsing EAE phases, were associated with a combination of inflammation, demyelination and axonal loss. Moreover, DA rats with atypical EAE clinical course tested at extremely late time points, manifested abnormal VEPs although motor signs were mild. Overall, our data demonstrated that non-invasive VEPs are a powerful tool to detect visual involvement at different stages of EAE, prompting their validation as biomarkers to test novel treatments against MS optic neuritis.
Collapse
Affiliation(s)
- Valerio Castoldi
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Silvia Marenna
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Raffaele d'Isa
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Davide De Battista
- INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Chirizzi
- INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Linda Chaabane
- INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Deepak Kumar
- EMD Serono Research and Development Institute, Billerica, MA
| | - Ursula Boschert
- Ares Trading S.A., Affiliate of Merck Serono S.A, Eysins, Switzerland
| | - Giancarlo Comi
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
15
|
Tsapa D, Ahmadlou M, Heimel JA. Long-term enhancement of visual responses by repeated transcranial electrical stimulation of the mouse visual cortex. Brain Stimul 2019; 12:1421-1428. [PMID: 31331791 DOI: 10.1016/j.brs.2019.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Transcranial electrical stimulation (tES) is a popular method to modulate brain activity by sending a weak electric current through the head. Despite its popularity, long-term effects are poorly understood. OBJECTIVE We wanted to test if anodal tES immediately changes cerebral responses to visual stimuli, and if repeated sessions of tES produce plasticity in these responses. METHODS We applied repeated anodal tES, like transcranial direct current stimulation (tDCS), but pulsed (8 s on, 10 s off), to the visual cortex of mice while visually presenting gratings. We measured the responses to these visual stimuli in the visual cortex using the genetically encoded calcium indicator GCaMP3. RESULTS We found an increase in the visual response when concurrently applying tES on the bone without skin (epicranially). This increase was only transient when tES was applied through the skin (transcutaneous). There was no immediate after-effect of tES. However, repeated transcutaneous tES for four sessions at two-day intervals increased the visual response in the visual cortex. This increase was not specific to the grating stimulus coupled to tES and also occurred for an orthogonal grating presented in the same sessions but without concurrent tES. No increase was found in mice that received no tES. CONCLUSION Our study provides evidence that tES induces long-term changes in the mouse brain. Results in mice do not directly translate to humans, because of differences in stimulation protocols and the way current translates to electric field strength in vastly different heads.
Collapse
Affiliation(s)
- Despoina Tsapa
- Cortical Structure & Function Group, Netherlands Institute for Neuroscience, Institute of the Royal Academy for Arts and Sciences, Amsterdam, the Netherlands
| | - Mehran Ahmadlou
- Cortical Structure & Function Group, Netherlands Institute for Neuroscience, Institute of the Royal Academy for Arts and Sciences, Amsterdam, the Netherlands
| | - J Alexander Heimel
- Cortical Structure & Function Group, Netherlands Institute for Neuroscience, Institute of the Royal Academy for Arts and Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Alekseichuk I, Mantell K, Shirinpour S, Opitz A. Comparative modeling of transcranial magnetic and electric stimulation in mouse, monkey, and human. Neuroimage 2019; 194:136-148. [PMID: 30910725 PMCID: PMC6536349 DOI: 10.1016/j.neuroimage.2019.03.044] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/08/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) and transcranial electric stimulation (TES) are increasingly popular methods to noninvasively affect brain activity. However, their mechanism of action and dose-response characteristics remain under active investigation. Translational studies in animals play a pivotal role in these efforts due to a larger neuroscientific toolset enabled by invasive recordings. In order to translate knowledge gained in animal studies to humans, it is crucial to generate comparable stimulation conditions with respect to the induced electric field in the brain. Here, we conduct a finite element method (FEM) modeling study of TMS and TES electric fields in a mouse, capuchin and macaque monkeys, and a human model. We systematically evaluate the induced electric fields and analyze their relationship to head and brain anatomy. We find that with increasing head size, TMS-induced electric field strength first increases and then decreases according to a two-term exponential function. TES-induced electric field strength strongly decreases from smaller to larger specimen with up to 100x fold differences across species. Our results can serve as a basis to compare and match stimulation parameters across studies in animals and humans.
Collapse
Affiliation(s)
- Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Kathleen Mantell
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
17
|
Marenna S, Castoldi V, d'Isa R, Marco C, Comi G, Leocani L. Semi-invasive and non-invasive recording of visual evoked potentials in mice. Doc Ophthalmol 2019; 138:169-179. [PMID: 30840173 DOI: 10.1007/s10633-019-09680-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/19/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Visual evoked potentials (VEPs) are used to assess visual function in preclinical models of neurodegenerative diseases. VEP recording with epidural screw electrodes is a common method to study visual function in rodents, despite being an invasive procedure that can damage the tissue under the skull. The present study was performed to test a semi-invasive (epicranial) and a non-invasive (epidermal) VEP recording technique, comparing them with the classic epidural acquisition method. METHODS Flash VEPs were recorded from C57BL/6 mice on three separate days within 2 weeks. Waveforms, latencies and amplitudes of the components were compared between the three different methods, utilizing coefficient of repeatability, coefficient of variation and intersession standard deviation to evaluate reproducibility. RESULTS While epidural electrodes succeeded in recording two negative peaks (N1 and N2), epicranial and epidermal electrodes recorded a single peak (N1). Statistical indexes showed a comparable reproducibility between the three techniques, with a greater stability of N1 latency recorded through epicranial electrodes. Moreover, N1 amplitudes recorded with the new less-invasive methods were more reproducible compared to the invasive gold-standard technique. CONCLUSIONS These results demonstrate the reliability of semi- and non-invasive VEP recordings, which can be useful to evaluate murine models of neurological diseases.
Collapse
Affiliation(s)
- Silvia Marenna
- University Vita-Salute San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Valerio Castoldi
- Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Raffaele d'Isa
- Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Cursi Marco
- Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Giancarlo Comi
- University Vita-Salute San Raffaele, Via Olgettina 60, 20132, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Letizia Leocani
- University Vita-Salute San Raffaele, Via Olgettina 60, 20132, Milan, Italy. .,Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
18
|
Castoldi V, Marenna S, Santangelo R, d'Isa R, Cursi M, Chaabane L, Quattrini A, Comi G, Leocani L. Optic nerve involvement in experimental autoimmune encephalomyelitis to homologous spinal cord homogenate immunization in the dark agouti rat. J Neuroimmunol 2018; 325:1-9. [PMID: 30340030 DOI: 10.1016/j.jneuroim.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Dark-Agouti rats were immunized with spinal cord homogenate to develop Experimental Autoimmune Encephalomyelitis, a model of multiple sclerosis. We assessed motor signs and recorded VEPs for five or eight weeks with epidural or epidermal electrodes, respectively, with final histopathology of optic nerves (ONs). Injected rats exhibited motor deficits a week after immunization. VEP delays arose from the 2nd to the 5th week, when a recovery occurred in epidermal-recorded rats. ON damage appeared in epidural-, but not in epidermal-recorded rats, probably due to a remyelination process. VEP could be exploited as neurophysiological marker to test novel treatments against neurodegeneration involving ONs.
Collapse
Affiliation(s)
- Valerio Castoldi
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Silvia Marenna
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | | | - Raffaele d'Isa
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Marco Cursi
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Linda Chaabane
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Angelo Quattrini
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Giancarlo Comi
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Letizia Leocani
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
19
|
Sánchez-León CA, Ammann C, Medina JF, Márquez-Ruiz J. Using animal models to improve the design and application of transcranial electrical stimulation in humans. Curr Behav Neurosci Rep 2018; 5:125-135. [PMID: 30013890 DOI: 10.1007/s40473-018-0149-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Purpose of Review Transcranial electrical stimulation (tES) is a non-invasive stimulation technique used for modulating brain function in humans. To help tES reach its full therapeutic potential, it is necessary to address a number of critical gaps in our knowledge. Here, we review studies that have taken advantage of animal models to provide invaluable insight about the basic science behind tES. Recent Findings Animal studies are playing a key role in elucidating the mechanisms implicated in tES, defining safety limits, validating computational models, inspiring new stimulation protocols, enhancing brain function and exploring new therapeutic applications. Summary Animal models provide a wealth of information that can facilitate the successful utilization of tES for clinical interventions in human subjects. To this end, tES experiments in animals should be carefully designed to maximize opportunities for applying discoveries to the treatment of human disease.
Collapse
Affiliation(s)
| | - Claudia Ammann
- CINAC, University Hospital HM Puerta del Sur, CEU - San Pablo University, 28938-Móstoles, Madrid, Spain
| | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Javier Márquez-Ruiz
- Division of Neurosciences, Pablo de Olavide University, 41013-Seville, Spain
| |
Collapse
|
20
|
Santangelo R, Castoldi V, D'Isa R, Marenna S, Huang SC, Cursi M, Comi G, Leocani L. Visual evoked potentials can be reliably recorded using noninvasive epidermal electrodes in the anesthetized rat. Doc Ophthalmol 2018; 136:165-175. [PMID: 29623523 DOI: 10.1007/s10633-018-9630-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/27/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE Visual evoked potentials (VEPs) are a powerful tool to evaluate nervous conduction along the visual pathways, both in humans and in animal models. Traditionally, epidural screw electrodes are used to record VEPs in preclinical research. Here we tested the feasibility in the preclinical setting of the same noninvasive technique used for clinical VEP acquisition, by using epidermal cup electrodes with no surgical procedures. METHODS Monocular flash VEPs were recorded bilaterally under sevoflurane anesthesia once a week for 6 weeks in 14 dark Agouti rats, 7 with implanted epidural screws and 7 with epidermal 6 mm Ø Ag/AgCl cups. RESULTS VEP traces obtained with the two techniques were morphologically comparable. There were no significant differences in latency of the main visual component between screw-recorded VEPs (sVEPs) and cup-recorded VEPs (cVEPs). Amplitude values with epidermal cups were significantly lower than those with epidural screws. Both techniques provided latencies and amplitudes which were stable over time. Furthermore, with regard to latency both methods ensured highly repeatable measurements over time, with epidermal cups even providing slightly better results. On the other hand, considering amplitudes, cVEPs and sVEPs provided fairly acceptable repeatability. CONCLUSIONS Epidermal cup electrodes can provide comparable results to those obtained with the "gold standard" epidural screws, while representing a simpler and less invasive technique to test nervous conduction along the visual pathways in the preclinical setting.
Collapse
Affiliation(s)
- Roberto Santangelo
- Department of Neurology and Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.,University Vita-Salute San Raffaele - IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Valerio Castoldi
- Department of Neurology and Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.,University Vita-Salute San Raffaele - IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Raffaele D'Isa
- Department of Neurology and Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Silvia Marenna
- Department of Neurology and Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.,University Vita-Salute San Raffaele - IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Su-Chun Huang
- Department of Neurology and Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.,University Vita-Salute San Raffaele - IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Marco Cursi
- Department of Neurology and Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology and Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.,University Vita-Salute San Raffaele - IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Letizia Leocani
- Department of Neurology and Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy. .,University Vita-Salute San Raffaele - IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
21
|
Abstract
Transcranial electrical brain stimulation can modulate cortical excitability and plasticity in humans and rodents. The most common form of stimulation in humans is transcranial direct current stimulation (tDCS). Less frequently, transcranial alternating current stimulation (tACS) or transcranial random noise stimulation (tRNS), a specific form of tACS using an electrical current applied randomly within a pre-defined frequency range, is used. The increase of noninvasive electrical brain stimulation research in humans, both for experimental and clinical purposes, has yielded an increased need for basic, mechanistic, safety studies in animals. This article describes a model for transcranial electrical brain stimulation (tES) through the intact skull targeting the motor system in alert rodents. The protocol provides step-by-step instructions for the surgical set-up of a permanent epicranial electrode socket combined with an implanted counter electrode on the chest. By placing a stimulation electrode into the epicranial socket, different electrical stimulation types, comparable to tDCS, tACS, and tRNS in humans, can be delivered. Moreover, the practical steps for tES in alert rodents are introduced. The applied current density, stimulation duration, and stimulation type may be chosen depending on the experimental needs. The caveats, advantages, and disadvantages of this set-up are discussed, as well as safety and tolerability aspects.
Collapse
Affiliation(s)
- Brita Fritsch
- Department of Neurology, Albert-Ludwigs-University Freiburg;
| | | | - Janine Reis
- Department of Neurology, Albert-Ludwigs-University Freiburg
| |
Collapse
|
22
|
Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells. Int J Mol Sci 2017; 18:ijms18010098. [PMID: 28067793 PMCID: PMC5297732 DOI: 10.3390/ijms18010098] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/20/2016] [Accepted: 12/24/2016] [Indexed: 01/06/2023] Open
Abstract
Nerve growth factor (NGF) is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC) degenerate following optic-nerve crush (ONC), even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75NTR, TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac) by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75NTR enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75NTR contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration.
Collapse
|
23
|
Jackson MP, Rahman A, Lafon B, Kronberg G, Ling D, Parra LC, Bikson M. Animal models of transcranial direct current stimulation: Methods and mechanisms. Clin Neurophysiol 2016; 127:3425-3454. [PMID: 27693941 PMCID: PMC5083183 DOI: 10.1016/j.clinph.2016.08.016] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022]
Abstract
The objective of this review is to summarize the contribution of animal research using direct current stimulation (DCS) to our understanding of the physiological effects of transcranial direct current stimulation (tDCS). We comprehensively address experimental methodology in animal studies, broadly classified as: (1) transcranial stimulation; (2) direct cortical stimulation in vivo and (3) in vitro models. In each case advantages and disadvantages for translational research are discussed including dose translation and the overarching "quasi-uniform" assumption, which underpins translational relevance in all animal models of tDCS. Terminology such as anode, cathode, inward current, outward current, current density, electric field, and uniform are defined. Though we put key animal experiments spanning decades in perspective, our goal is not simply an exhaustive cataloging of relevant animal studies, but rather to put them in context of ongoing efforts to improve tDCS. Cellular targets, including excitatory neuronal somas, dendrites, axons, interneurons, glial cells, and endothelial cells are considered. We emphasize neurons are always depolarized and hyperpolarized such that effects of DCS on neuronal excitability can only be evaluated within subcellular regions of the neuron. Findings from animal studies on the effects of DCS on plasticity (LTP/LTD) and network oscillations are reviewed extensively. Any endogenous phenomena dependent on membrane potential changes are, in theory, susceptible to modulation by DCS. The relevance of morphological changes (galvanotropy) to tDCS is also considered, as we suggest microscopic migration of axon terminals or dendritic spines may be relevant during tDCS. A majority of clinical studies using tDCS employ a simplistic dose strategy where excitability is singularly increased or decreased under the anode and cathode, respectively. We discuss how this strategy, itself based on classic animal studies, cannot account for the complexity of normal and pathological brain function, and how recent studies have already indicated more sophisticated approaches are necessary. One tDCS theory regarding "functional targeting" suggests the specificity of tDCS effects are possible by modulating ongoing function (plasticity). Use of animal models of disease are summarized including pain, movement disorders, stroke, and epilepsy.
Collapse
Affiliation(s)
- Mark P Jackson
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Asif Rahman
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Belen Lafon
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Gregory Kronberg
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Doris Ling
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA.
| |
Collapse
|
24
|
Transcranial Direct Current Stimulation Modulates Neurogenesis and Microglia Activation in the Mouse Brain. Stem Cells Int 2016; 2016:2715196. [PMID: 27403166 PMCID: PMC4925996 DOI: 10.1155/2016/2715196] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/14/2016] [Accepted: 05/24/2016] [Indexed: 11/18/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been suggested as an adjuvant tool to promote recovery of function after stroke, but the mechanisms of its action to date remain poorly understood. Moreover, studies aimed at unraveling those mechanisms have essentially been limited to the rat, where tDCS activates resident microglia as well as endogenous neural stem cells. Here we studied the effects of tDCS on microglia activation and neurogenesis in the mouse brain. Male wild-type mice were subjected to multisession tDCS of either anodal or cathodal polarity; sham-stimulated mice served as control. Activated microglia in the cerebral cortex and neuroblasts generated in the subventricular zone as the major neural stem cell niche were assessed immunohistochemically. Multisession tDCS at a sublesional charge density led to a polarity-dependent downregulation of the constitutive expression of Iba1 by microglia in the mouse cortex. In contrast, both anodal and, to an even greater extent, cathodal tDCS induced neurogenesis from the subventricular zone. Data suggest that tDCS elicits its action through multifacetted mechanisms, including immunomodulation and neurogenesis, and thus support the idea of using tDCS to induce regeneration and to promote recovery of function. Furthermore, data suggest that the effects of tDCS may be animal- and polarity-specific.
Collapse
|
25
|
Strigaro G, Mayer I, Chen JC, Cantello R, Rothwell JC. Transcranial Direct Current Stimulation Effects on Single and Paired Flash Visual Evoked Potentials. Clin EEG Neurosci 2015; 46:208-13. [PMID: 25253432 DOI: 10.1177/1550059414539481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/20/2014] [Indexed: 11/16/2022]
Abstract
Transcranial direct current stimulation (tDCS) applied over the occipital cortex has a controversial effect on the visual cortex excitability. Paired flash visual evoked potentials (paired F-VEPs) offer a unique method to express neural inhibition within the visual system. However, no studies have explored the effects of tDCS on F-VEPs in humans. The aim of this study was to evaluate the changes of single- and paired-F-VEPs during and after tDCS in healthy humans. Twenty-six healthy volunteers participated. F-VEPs were recorded from occipital electrodes with closed eyes. Stimuli were single flashes, intermingled to flash pairs at the interstimulus interval of 125, 62.5, 50, 33.3, 16.6, and 11.1 ms (internal frequency of 8, 16, 20, 30, 60, and 90 Hz). The single F-VEP was split into a "main complex" and a "late response." As to paired stimuli, the "test" F-VEP emerged from electronic subtraction of the single-F-VEP to the paired-F-VEP. In experiment 1, the return electrode was located on the scalp and we studied changes in F-VEPs after anodal, cathodal (1 mA, 15 min) and sham stimulation. A second experiment was performed in which F-VEPs were recorded before, during and after tDCS stimulation (anodal and cathodal) with the return electrode on the neck. F-VEPs recorded in experiment 1 did not detect any significant change after tDCS. In experiment 2 anodal polarization significantly increased the P2 latency (P = .031) and reduced the amplitude of the "late response" of the single F-VEP (P = .008). As for the paired F-VEPs, no significant changes were detected. In conclusion, low-intensity anodal tDCS has weak inhibitory aftereffects on the single F-VEP and no effects on the paired F-VEPs. Further methodological studies are needed to improve polarization efficacy.
Collapse
Affiliation(s)
- Gionata Strigaro
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, UK Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Isabella Mayer
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, UK Department of Neurology, University Clinic Ulm, Ulm, Germany
| | - Jui-Cheng Chen
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, UK Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan School of Medicine, China Medical University, Taichung, Taiwan
| | - Roberto Cantello
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, UK
| |
Collapse
|
26
|
Makowiecki K, Garrett A, Clark V, Graham SL, Rodger J. Reliability of VEP Recordings Using Chronically Implanted Screw Electrodes in Mice. Transl Vis Sci Technol 2015; 4:15. [PMID: 25938003 DOI: 10.1167/tvst.4.2.15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/09/2015] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Visual evoked potentials (VEPs) are widely used to objectively assess visual system function in animal models of ophthalmological diseases. Although use of chronically implanted electrodes is common in longitudinal VEP studies using rodent models, reliability of recordings over time has not been assessed. We compared VEPs 1 and 7 days after electrode implantation in the adult mouse. We also examined stimulus-independent changes over time, by assessing electroencephalogram (EEG) power and approximate entropy of the EEG signal. METHODS Stainless steel screws (600-μm diameter) were implanted into the skull overlying the right visual cortex and the orbitofrontal cortex of adult mice (C57Bl/6J, n = 7). Animals were reanesthetized 1 and 7 days after implantation to record VEP responses (flashed gratings) and EEG activity. Brain sections were stained for glial activation (GFAP) and cell death (TUNEL). RESULTS Reliability analysis, using intraclass correlation coefficients, showed VEP recordings had high reliability within the same session, regardless of time after electrode implantation and peak latencies and approximate entropy of the EEG did not change significantly with time. However, there was poorer reliability between recordings obtained on different days, and a significant decrease in VEP amplitudes and EEG power. This amplitude decrease could be normalized by scaling to EEG power (within-subjects). Furthermore, glial activation was present at both time points but there was no evidence of cell death. CONCLUSIONS These results indicate that VEP responses can be reliably recorded even after a relatively short recovery period but decrease response peak amplitude over time. Although scaling the VEP trace to EEG power normalized this decrease, our results highlight that time-dependent cortical excitability changes are an important consideration in longitudinal VEP studies. TRANSLATIONAL RELEVANCE This study shows changes in VEP characteristics over time in chronically implanted mice. Thus, future preclinical longitudinal studies should consider time in addition to amplitude and latency when designing and interpreting research.
Collapse
Affiliation(s)
- Kalina Makowiecki
- Experimental and Regenerative Neurosciences School of Animal Biology, The University of Western Australia, Crawley WA, Australia
| | - Andrew Garrett
- Experimental and Regenerative Neurosciences School of Animal Biology, The University of Western Australia, Crawley WA, Australia
| | - Vince Clark
- Experimental and Regenerative Neurosciences School of Animal Biology, The University of Western Australia, Crawley WA, Australia
| | - Stuart L Graham
- Australian School Advanced Medicine Macquarie University, New South Wales, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences School of Animal Biology, The University of Western Australia, Crawley WA, Australia
| |
Collapse
|
27
|
Pelletier SJ, Cicchetti F. Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models. Int J Neuropsychopharmacol 2015; 18:pyu047. [PMID: 25522391 PMCID: PMC4368894 DOI: 10.1093/ijnp/pyu047] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcranial direct current stimulation is a noninvasive technique that has been experimentally tested for a number of psychiatric and neurological conditions. Preliminary observations suggest that this approach can indeed influence a number of cellular and molecular pathways that may be disease relevant. However, the mechanisms of action underlying its beneficial effects are largely unknown and need to be better understood to allow this therapy to be used optimally. In this review, we summarize the physiological responses observed in vitro and in vivo, with a particular emphasis on cellular and molecular cascades associated with inflammation, angiogenesis, neurogenesis, and neuroplasticity recruited by direct current stimulation, a topic that has been largely neglected in the literature. A better understanding of the neural responses to transcranial direct current stimulation is critical if this therapy is to be used in large-scale clinical trials with a view of being routinely offered to patients suffering from various conditions affecting the central nervous system.
Collapse
Affiliation(s)
| | - Francesca Cicchetti
- Centre Hospitalier Universitaire de Québec, Axe Neuroscience, Québec, QC, Canada (Mr Pelletier and Dr Cicchetti); Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada (Mr Pelletier and Dr Cicchetti).
| |
Collapse
|
28
|
Ruffini G, Wendling F, Merlet I, Molaee-Ardekani B, Mekonnen A, Salvador R, Soria-Frisch A, Grau C, Dunne S, Miranda PC. Transcranial current brain stimulation (tCS): models and technologies. IEEE Trans Neural Syst Rehabil Eng 2014; 21:333-45. [PMID: 22949089 DOI: 10.1109/tnsre.2012.2200046] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this paper, we provide a broad overview of models and technologies pertaining to transcranial current brain stimulation (tCS), a family of related noninvasive techniques including direct current (tDCS), alternating current (tACS), and random noise current stimulation (tRNS). These techniques are based on the delivery of weak currents through the scalp (with electrode current intensity to area ratios of about 0.3-5 A/m2) at low frequencies (typically < 1 kHz) resulting in weak electric fields in the brain (with amplitudes of about 0.2-2 V/m). Here we review the biophysics and simulation of noninvasive, current-controlled generation of electric fields in the human brain and the models for the interaction of these electric fields with neurons, including a survey of in vitro and in vivo related studies. Finally, we outline directions for future fundamental and technological research.
Collapse
Affiliation(s)
- Giulio Ruffini
- Starlab Neuroscience Research, Starlab Barcelona, 08022 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
De Rojas JO, Saunders JA, Luminais C, Hamilton RH, Siegel SJ. Electroencephalographic changes following direct current deep brain stimulation of auditory cortex: a new model for investigating neuromodulation. Neurosurgery 2013; 72:267-75; discussion 275. [PMID: 23149971 DOI: 10.1227/neu.0b013e31827b93c0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Although deep brain (DBS) and transcranial direct current stimulation (tDCS) are used as investigative tools and therapies for a variety of neurological and psychiatric conditions, their mechanisms of action remain poorly understood. Therefore, there is a need for new animal models of neuromodulation. OBJECTIVE To introduce and validate a direct current DBS (DC-DBS) model that will use the anatomic precision of intracranial electrodes, as used in DBS, to apply direct current, as used in tDCS, over primary auditory cortex (A1) and induce electroencephalographic (EEG) changes. METHODS Twenty-four mice were assigned to 1 of 2 stimulation groups or a sham group and were implanted with electrodes in A1. Stimulation groups underwent DC-DBS stimulation for 20 minutes at 20 μA. Auditory EEG was recorded before stimulation and at 1 hour, 1 week, and 2 weeks poststimulation. EEG was analyzed for changes in N1 (N100 in humans, N40 in mice) amplitude and latency as well as delta and theta power. RESULTS DC-DBS led to significant EEG changes (all P values < .05). Among the stimulated animals, there were durable reductions in delta and theta power. There were no differences within the sham group, and neither N40 latencies nor amplitudes changed across time. CONCLUSION Our results show DC-DBS-induced reductions in slow-wave activity consistent with recent tDCS studies. We propose that this model will provide a means to explore basic mechanisms of neuromodulation and could facilitate future application of DC-DBS in humans.
Collapse
Affiliation(s)
- Joaquin O De Rojas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
30
|
Postoperative Analgesic Effect of Transcranial Direct Current Stimulation in Lumbar Spine Surgery. Clin J Pain 2013; 29:696-701. [DOI: 10.1097/ajp.0b013e31826fb302] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Abstract
Noninvasive brain stimulation, particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), are emerging as realistic tools for seizure control. Numerous open-label trials and a few recent randomized controlled trials suggest the capacity of both techniques to suppress seizures. Additionally, specialized TMS protocols aimed to map cortical function and to measure cortical excitability may have realistic roles as diagnostic tools in epilepsy. As the prevalence of drug-resistant epilepsy has not changed in recent years, TMS and tDCS offer noninvasive and nonpharmacological options to improve control of intractable seizures.
Collapse
Affiliation(s)
- Alexander Rotenberg
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Children's Hospital and Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Bikson M, Reato D, Rahman A. Cellular and Network Effects of Transcranial Direct Current Stimulation. TRANSCRANIAL BRAIN STIMULATION 2012. [DOI: 10.1201/b14174-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proc Natl Acad Sci U S A 2012; 109:6710-5. [PMID: 22493252 DOI: 10.1073/pnas.1121147109] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcranial direct-current stimulation (tDCS) is a noninvasive brain stimulation technique that has been successfully applied for modulation of cortical excitability. tDCS is capable of inducing changes in neuronal membrane potentials in a polarity-dependent manner. When tDCS is of sufficient length, synaptically driven after-effects are induced. The mechanisms underlying these after-effects are largely unknown, and there is a compelling need for animal models to test the immediate effects and after-effects induced by tDCS in different cortical areas and evaluate the implications in complex cerebral processes. Here we show in behaving rabbits that tDCS applied over the somatosensory cortex modulates cortical processes consequent to localized stimulation of the whisker pad or of the corresponding area of the ventroposterior medial (VPM) thalamic nucleus. With longer stimulation periods, poststimulation effects were observed in the somatosensory cortex only after cathodal tDCS. Consistent with the polarity-specific effects, the acquisition of classical eyeblink conditioning was potentiated or depressed by the simultaneous application of anodal or cathodal tDCS, respectively, when stimulation of the whisker pad was used as conditioned stimulus, suggesting that tDCS modulates the sensory perception process necessary for associative learning. We also studied the putative mechanisms underlying immediate effects and after-effects of tDCS observed in the somatosensory cortex. Results when pairs of pulses applied to the thalamic VPM nucleus (mediating sensory input) during anodal and cathodal tDCS suggest that tDCS modifies thalamocortical synapses at presynaptic sites. Finally, we show that blocking the activation of adenosine A1 receptors prevents the long-term depression (LTD) evoked in the somatosensory cortex after cathodal tDCS.
Collapse
|
34
|
Kabakov AY, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A. Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. J Neurophysiol 2012; 107:1881-9. [PMID: 22219028 PMCID: PMC3331663 DOI: 10.1152/jn.00715.2011] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 01/03/2012] [Indexed: 11/22/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a method for modulating cortical excitability by weak constant electrical current that is applied through scalp electrodes. Although often described in terms of anodal or cathodal stimulation, depending on which scalp electrode pole is proximal to the cortical region of interest, it is the orientation of neuronal structures relative to the direct current (DC) vector that determines the effect of tDCS. To investigate the contribution of neural pathway orientation, we studied DCS-mediated neuromodulation in an in vitro rat hippocampal slice preparation. We examined the contribution of dendritic orientation to the direct current stimulation (DCS) neuromodulatory effect by recording field excitatory postsynaptic potentials (fEPSPs) in apical and basal dendrites of CA1 neurons within a constant DC field. In addition, we assessed the contribution of axonal orientation by recording CA1 and CA3 apical fEPSPs generated by stimulation of oppositely oriented Schaffer collateral and mossy fiber axons, respectively, during DCS. Finally, nonsynaptic excitatory signal propagation was measured along antidromically stimulated CA1 axons at different DCS amplitudes and polarity. We find that modulation of both the fEPSP and population spike depends on axonal orientation relative to the electric field vector. Axonal orientation determines whether the DC field is excitatory or inhibitory and dendritic orientation affects the magnitude, but not the overall direction, of the DC effect. These data suggest that tDCS may oppositely affect neurons in a stimulated cortical volume if these neurons are excited by oppositely orientated axons in a constant electrical field.
Collapse
Affiliation(s)
- Anatoli Y Kabakov
- Department of Neurology, Children's Hospital Boston, 300 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|