1
|
Grove CR, Klatt BN, Wagner AR, Anson ER. Vestibular perceptual testing from lab to clinic: a review. Front Neurol 2023; 14:1265889. [PMID: 37859653 PMCID: PMC10583719 DOI: 10.3389/fneur.2023.1265889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Not all dizziness presents as vertigo, suggesting other perceptual symptoms for individuals with vestibular disease. These non-specific perceptual complaints of dizziness have led to a recent resurgence in literature examining vestibular perceptual testing with the aim to enhance clinical diagnostics and therapeutics. Recent evidence supports incorporating rehabilitation methods to retrain vestibular perception. This review describes the current field of vestibular perceptual testing from scientific laboratory techniques that may not be clinic friendly to some low-tech options that may be more clinic friendly. Limitations are highlighted suggesting directions for additional research.
Collapse
Affiliation(s)
- Colin R. Grove
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Physical Therapy, Department of Physical Medicine and Rehabilitation School of Medicine, Emory University, Atlanta, GA, United States
| | - Brooke N. Klatt
- Physical Therapy Department, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew R. Wagner
- Department of Otolaryngology—Head and Neck Surgery, Ohio State University Wexner Medical Center, Columbus, OH, United States
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH, United States
| | - Eric R. Anson
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
- Physical Therapy Department, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| |
Collapse
|
2
|
How much I moved: Robust biases in self-rotation perception. Atten Percept Psychophys 2022; 84:2670-2683. [PMID: 36261764 PMCID: PMC9630243 DOI: 10.3758/s13414-022-02589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/16/2022]
Abstract
Vestibular cues are crucial to sense the linear and angular acceleration of our head in three-dimensional space. Previous literature showed that vestibular information precociously combines with other sensory modalities, such as proprioceptive and visual, to facilitate spatial navigation. Recent studies suggest that auditory cues may improve self-motion perception as well. The present study investigated the ability to estimate passive rotational displacements with and without virtual acoustic landmarks to determine how vestibular and auditory information interact in processing self-motion information. We performed two experiments. In both, healthy participants sat on a Rotational-Translational Chair. They experienced yaw rotations along the earth-vertical axis and performed a self-motion discrimination task. Their goal was to estimate both clockwise and counterclockwise rotations’ amplitude, with no visual information available, reporting whether they felt to be rotated more or less than 45°. According to the condition, vestibular-only or audio-vestibular information was present. Between the two experiments, we manipulated the procedure of presentation of the auditory cues (passive vs. active production of sounds). We computed the point of subjective equality (PSE) as a measure of accuracy and the just noticeable difference (JND) as the precision of the estimations for each condition and direction of rotations. Results in both experiments show a strong overestimation bias of the rotations, regardless of the condition, the direction, and the sound generation conditions. Similar to previously found heading biases, this bias in rotation estimation may facilitate the perception of substantial deviations from the most relevant directions in daily navigation activities.
Collapse
|
3
|
Anson E, Ehrenburg MR, Simonsick EM, Agrawal Y. Association between vestibular function and rotational spatial orientation perception in older adults. J Vestib Res 2021; 31:469-478. [PMID: 33579887 PMCID: PMC11172369 DOI: 10.3233/ves-201582] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Spatial orientation is a complex process involving vestibular sensory input and possibly cognitive ability. Previous research demonstrated that rotational spatial orientation was worse for individuals with profound bilateral vestibular dysfunction. OBJECTIVE Determine whether rotational and linear vestibular function were independently associated with large amplitude rotational spatial orientation perception in healthy aging. METHODS Tests of rotational spatial orientation accuracy and vestibular function [vestibulo-ocular reflex (VOR), ocular and cervical vestibular evoked myogenic potentials (VEMP)] were administered to 272 healthy community-dwelling adults participating in the Baltimore Longitudinal Study of Aging. Using a mixed model multiple linear regression we regressed spatial orientation errors on lateral semicircular canal function, utricular function (ocular VEMP), and saccular function (cervical VEMP) in a single model controlling for rotation size, age, and sex. RESULTS After adjusting for age, and sex, individuals with bilaterally low VOR gain (β= 20.9, p = 0.014) and those with bilaterally absent utricular function (β= 9.32, p = 0.017) made significantly larger spatial orientation errors relative to individuals with normal vestibular function. CONCLUSIONS The current results demonstrate for the first time that either bilateral lateral semicircular canal dysfunction or bilateral utricular dysfunction are associated with worse rotational spatial orientation. We also demonstrated in a healthy aging cohort that increased age also contributes to spatial orientation ability.
Collapse
Affiliation(s)
- E Anson
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Otolaryngology, University of Rochester, Rochester, NY, USA
| | - M R Ehrenburg
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - E M Simonsick
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD, USA
| | - Y Agrawal
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Blouin J, Saradjian AH, Pialasse JP, Manson GA, Mouchnino L, Simoneau M. Two Neural Circuits to Point Towards Home Position After Passive Body Displacements. Front Neural Circuits 2019; 13:70. [PMID: 31736717 PMCID: PMC6831616 DOI: 10.3389/fncir.2019.00070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/15/2019] [Indexed: 12/02/2022] Open
Abstract
A challenge in motor control research is to understand the mechanisms underlying the transformation of sensory information into arm motor commands. Here, we investigated these transformation mechanisms for movements whose targets were defined by information issued from body rotations in the dark (i.e., idiothetic information). Immediately after being rotated, participants reproduced the amplitude of their perceived rotation using their arm (Experiment 1). The cortical activation during movement planning was analyzed using electroencephalography and source analyses. Task-related activities were found in regions of interest (ROIs) located in the prefrontal cortex (PFC), dorsal premotor cortex, dorsal region of the anterior cingulate cortex (ACC) and the sensorimotor cortex. Importantly, critical regions for the cognitive encoding of space did not show significant task-related activities. These results suggest that arm movements were planned using a sensorimotor-type of spatial representation. However, when a 8 s delay was introduced between body rotation and the arm movement (Experiment 2), we found that areas involved in the cognitive encoding of space [e.g., ventral premotor cortex (vPM), rostral ACC, inferior and superior posterior parietal cortex (PPC)] showed task-related activities. Overall, our results suggest that the use of a cognitive-type of representation for planning arm movement after body motion is necessary when relevant spatial information must be stored before triggering the movement.
Collapse
Affiliation(s)
- Jean Blouin
- Aix-Marseille Univ, CNRS, Laboratoire de Neurosciences Cognitives, Marseille, France
| | - Anahid H Saradjian
- Aix-Marseille Univ, CNRS, Laboratoire de Neurosciences Cognitives, Marseille, France
| | | | - Gerome A Manson
- Aix-Marseille Univ, CNRS, Laboratoire de Neurosciences Cognitives, Marseille, France.,Centre for Motor Control, University of Toronto, Toronto, ON, Canada
| | - Laurence Mouchnino
- Aix-Marseille Univ, CNRS, Laboratoire de Neurosciences Cognitives, Marseille, France
| | - Martin Simoneau
- Faculté de Médecine, Département de Kinésiologie, Université Laval, Québec, QC, Canada.,Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS), Québec, QC, Canada
| |
Collapse
|
5
|
Mackrous I, Carriot J, Simoneau M. Learning to use vestibular sense for spatial updating is context dependent. Sci Rep 2019; 9:11154. [PMID: 31371770 PMCID: PMC6671975 DOI: 10.1038/s41598-019-47675-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/22/2019] [Indexed: 11/09/2022] Open
Abstract
As we move, perceptual stability is crucial to successfully interact with our environment. Notably, the brain must update the locations of objects in space using extra-retinal signals. The vestibular system is a strong candidate as a source of information for spatial updating as it senses head motion. The ability to use this cue is not innate but must be learned. To date, the mechanisms of vestibular spatial updating generalization are unknown or at least controversial. In this paper we examine generalization patterns within and between different conditions of vestibular spatial updating. Participants were asked to update the position of a remembered target following (offline) or during (online) passive body rotation. After being trained on a single spatial target position within a given task, we tested generalization of performance for different spatial targets and an unpracticed spatial updating task. The results demonstrated different patterns of generalization across the workspace depending on the task. Further, no transfer was observed from the practiced to the unpracticed task. We found that the type of mechanism involved during learning governs generalization. These findings provide new knowledge about how the brain uses vestibular information to preserve its spatial updating ability.
Collapse
Affiliation(s)
| | - Jérôme Carriot
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Martin Simoneau
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS), Québec, QC, Canada. .,Département de kinésiologie, Faculté de médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
6
|
Mackrous I, Simoneau M. Improving spatial updating accuracy in absence of external feedback. Neuroscience 2015; 300:155-62. [PMID: 25987200 DOI: 10.1016/j.neuroscience.2015.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/23/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
Updating the position of an earth-fixed target during whole-body rotation seems to rely on cognitive processes such as the utilization of external feedback. According to perceptual learning models, improvement in performance can also occur without external feedback. The aim of this study was to assess spatial updating improvement in the absence and in the presence of external feedback. While being rotated counterclockwise (CCW), participants had to predict when their body midline had crossed the position of a memorized target. Four experimental conditions were tested: (1) Pre-test: the target was presented 30° in the CCW direction from participant's midline. (2) Practice: the target was located 45° in the CCW direction from participant's midline. One group received external feedback about their spatial accuracy (Mackrous and Simoneau, 2014) while the other group did not. (3) Transfer T(30)CCW: the target was presented 30° in the CCW direction to evaluate whether improvement in performance, during practice, generalized to other target eccentricity. (4) Transfer T(30)CW: the target was presented 30° in the clockwise (CW) direction and participants were rotated CW. This transfer condition evaluated whether improvement in performance generalized to the untrained rotation direction. With practice, performance improved in the absence of external feedback (p=0.004). Nonetheless, larger improvement occurred when external feedback was provided (ps=0.002). During T(30)CCW, performance remained better for the feedback than the no-feedback group (p=0.005). However, no group difference was observed for the untrained direction (p=0.22). We demonstrated that spatial updating improved without external feedback but less than when external feedback was given. These observations are explained by a mixture of calibration processes and supervised vestibular learning.
Collapse
Affiliation(s)
- I Mackrous
- Département de kinésiologie, Faculté de médecine, Université Laval, Québec, QC, Canada; Centre de recherche du CHU de Québec, Québec, QC, Canada
| | - M Simoneau
- Département de kinésiologie, Faculté de médecine, Université Laval, Québec, QC, Canada; Centre de recherche du CHU de Québec, Québec, QC, Canada.
| |
Collapse
|
7
|
Mackrous I, Simoneau M. Generalization of vestibular learning to earth-fixed targets is possible but limited when the polarity of afferent vestibular information is changed. Neuroscience 2014; 260:12-22. [DOI: 10.1016/j.neuroscience.2013.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
|
8
|
Tremblay L, Kennedy A, Paleressompoulle D, Borel L, Mouchnino L, Blouin J. Biases in the perception of self-motion during whole-body acceleration and deceleration. Front Integr Neurosci 2013; 7:90. [PMID: 24379764 PMCID: PMC3864246 DOI: 10.3389/fnint.2013.00090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/21/2013] [Indexed: 11/13/2022] Open
Abstract
Several studies have investigated whether vestibular signals can be processed to determine the magnitude of passive body motions. Many of them required subjects to report their perceived displacements offline, i.e., after being submitted to passive displacements. Here, we used a protocol that allowed us to complement these results by asking subjects to report their introspective estimation of their displacement continuously, i.e., during the ongoing body rotation. To this end, participants rotated the handle of a manipulandum around a vertical axis to indicate their perceived change of angular position in space at the same time as they were passively rotated in the dark. The rotation acceleration (Acc) and deceleration (Dec) lasted either 1.5 s (peak of 60°/s2, referred to as being “High”) or 3 s (peak of 33°/s2, referred to as being “Low”). The participants were rotated either counter-clockwise or clockwise, and all combinations of acceleration and deceleration were tested (i.e., AccLow-DecLow; AccLow-DecHigh; AccHigh-DecLow; AccHigh-DecHigh). The participants’ perception of body rotation was assessed by computing the gain, i.e., ratio between the amplitude of the perceived rotations (as measured by the rotating manipulandum’s handle) and the amplitude of the actual chair rotations. The gain was measured at the end of the rotations, and was also computed separately for the acceleration and deceleration phases. Three salient findings resulted from this experiment: (i) the gain was much greater during body acceleration than during body deceleration, (ii) the gain was greater during High compared to Low accelerations and (iii) the gain measured during the deceleration was influenced by the preceding acceleration (i.e., Low or High). These different effects of the angular stimuli on the perception of body motion can be interpreted in relation to the consequences of body acceleration and deceleration on the vestibular system and on higher-order cognitive processes.
Collapse
Affiliation(s)
- Luc Tremblay
- Faculty of Kinesiology and Physical Education, University of Toronto Toronto, ON, Canada
| | - Andrew Kennedy
- Faculty of Kinesiology and Physical Education, University of Toronto Toronto, ON, Canada
| | - Dany Paleressompoulle
- Fédération de Recherche 3C Comportement-Cerveau-Cognition, Centre National de la Recherche Scientifique - Aix-Marseille University Marseille, France
| | - Liliane Borel
- Fédération de Recherche 3C Comportement-Cerveau-Cognition, Centre National de la Recherche Scientifique - Aix-Marseille University Marseille, France ; Laboratoire de Neurosciences Intégratives et Adaptatives, Centre National de la Recherche Scientifique - Aix-Marseille University Marseille, France
| | - Laurence Mouchnino
- Fédération de Recherche 3C Comportement-Cerveau-Cognition, Centre National de la Recherche Scientifique - Aix-Marseille University Marseille, France ; Laboratoire de Neurosciences Cognitives, Centre National de la Recherche Scientifique - Aix-Marseille University Marseille, France
| | - Jean Blouin
- Fédération de Recherche 3C Comportement-Cerveau-Cognition, Centre National de la Recherche Scientifique - Aix-Marseille University Marseille, France ; Laboratoire de Neurosciences Cognitives, Centre National de la Recherche Scientifique - Aix-Marseille University Marseille, France
| |
Collapse
|