1
|
Zhang E, Yan X, Shen H, Zhao M, Gao X, Huang Y. Intracranial Aneurysm Biomarkers: A Convergence of Genetics, Inflammation, Oxidative Stress, and the Extracellular Matrix. Int J Mol Sci 2025; 26:3316. [PMID: 40244203 PMCID: PMC11989888 DOI: 10.3390/ijms26073316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Intracranial aneurysm (IA) is a common cerebrovascular disease in which sacral aneurysms occurring in the Wills ring region can lead to devastating subarachnoid hemorrhage. Despite advances in research, the underlying mechanisms of IA formation and rupture remain incompletely understood, hindering early diagnosis and effective treatment. This review comprehensively summarizes the current landscape of IA biomarkers, encompassing genetic markers, DNA, RNA, inflammatory molecules, oxidative stress proteins, and extracellular matrix (ECM) components. Accumulating evidence suggests that various biomarkers are associated with different stages of IA pathogenesis, including initiation, progression, and rupture. Aberrant ECM composition and remodeling have been observed in IA patients, and extracellular matrix-degrading enzymes are implicated in IA growth and rupture. Biomarker research in IA holds great potential for improving clinical outcomes. Future studies should focus on validating the existing biomarkers, identifying novel ones, and investigating their underlying mechanisms to facilitate the development of personalized preventive and therapeutic strategies for IA.
Collapse
Affiliation(s)
- Enhao Zhang
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
| | - Xu Yan
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
| | - Hangyu Shen
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
| | - Mingyue Zhao
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
| | - Xiang Gao
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| | - Yi Huang
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| |
Collapse
|
2
|
Transcriptomic Studies on Intracranial Aneurysms. Genes (Basel) 2023; 14:genes14030613. [PMID: 36980884 PMCID: PMC10048068 DOI: 10.3390/genes14030613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Intracranial aneurysm (IA) is a relatively common vascular malformation of an intracranial artery. In most cases, its presence is asymptomatic, but IA rupture causing subarachnoid hemorrhage is a life-threating condition with very high mortality and disability rates. Despite intensive studies, molecular mechanisms underlying the pathophysiology of IA formation, growth, and rupture remain poorly understood. There are no specific biomarkers of IA presence or rupture. Analysis of expression of mRNA and other RNA types offers a deeper insight into IA pathobiology. Here, we present results of published human studies on IA-focused transcriptomics.
Collapse
|
3
|
Zhao G, Zhao Y, Lu H, Chang Z, Liu H, Wang H, Liang W, Liu Y, Zhu T, Rom O, Guo Y, Chang L, Yang B, Garcia-Barrio MT, Lin JD, Chen YE, Zhang J. BAF60c prevents abdominal aortic aneurysm formation through epigenetic control of vascular smooth muscle cell homeostasis. J Clin Invest 2022; 132:e158309. [PMID: 36066968 PMCID: PMC9621131 DOI: 10.1172/jci158309] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/01/2022] [Indexed: 01/19/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease. BAF60c, a unique subunit of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, is critical for cardiac and skeletal myogenesis, yet little is known about its function in the vasculature and, specifically, in AAA pathogenesis. Here, we found that BAF60c was downregulated in human and mouse AAA tissues, with primary staining to vascular smooth muscle cells (VSMCs), confirmed by single-cell RNA-sequencing. In vivo studies revealed that VSMC-specific knockout of Baf60c significantly aggravated both angiotensin II- (Ang II-) and elastase-induced AAA formation in mice, with a significant increase in elastin degradation, inflammatory cell infiltration, VSMC phenotypic switch, and apoptosis. In vitro studies showed that BAF60c knockdown in VSMCs resulted in loss of contractile phenotype, increased VSMC inflammation, and apoptosis. Mechanistically, we demonstrated that BAF60c preserved VSMC contractile phenotype by strengthening serum response factor (SRF) association with its coactivator P300 and the SWI/SNF complex and suppressing VSMC inflammation by promoting a repressive chromatin state of NF-κB target genes as well as preventing VSMC apoptosis through transcriptional activation of KLF5-dependent B cell lymphoma 2 (BCL2) expression. Our identification of the essential role of BAF60c in preserving VSMC homeostasis expands its therapeutic potential in preventing and treating AAA.
Collapse
Affiliation(s)
- Guizhen Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yang Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Haocheng Lu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Ziyi Chang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Hongyu Liu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Huilun Wang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Wenying Liang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yuhao Liu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Tianqing Zhu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Oren Rom
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Science Center–Shreveport, Shreveport, Louisiana, USA
| | - Yanhong Guo
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Lin Chang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Minerva T. Garcia-Barrio
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Y. Eugene Chen
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jifeng Zhang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Xu H, Stamova B, Ander BP, Waldau B, Jickling GC, Sharp FR, Ko NU. mRNA Expression Profiles from Whole Blood Associated with Vasospasm in Patients with Subarachnoid Hemorrhage. Neurocrit Care 2021; 33:82-89. [PMID: 31595394 PMCID: PMC7392923 DOI: 10.1007/s12028-019-00861-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Though there are many biomarker studies of plasma and serum in patients with aneurysmal subarachnoid hemorrhage (SAH), few have examined blood cells that might contribute to vasospasm. In this study, we evaluated inflammatory and prothrombotic pathways by examining mRNA expression in whole blood of SAH patients with and without vasospasm. Methods Adult SAH patients with vasospasm (n = 29) and without vasospasm (n = 21) were matched for sex, race/ethnicity, and aneurysm treatment method. Diagnosis of vasospasm was made by angiography. mRNA expression was measured by Affymetrix Human Exon 1.0 ST Arrays. SAH patients with vasospasm were compared to those without vasospasm by ANCOVA to identify differential gene, exon, and alternatively spliced transcript expression. Analyses were adjusted for age, batch, and time of blood draw after SAH. Results At the gene level, there were 259 differentially expressed genes between SAH patients with vasospasm compared to patients without (false discovery rate < 0.05, |fold change| ≥ 1.2). At the exon level, 1210 exons representing 1093 genes were differentially regulated between the two groups (P < 0.005, ≥ 1.2 |fold change|). Principal components analysis segregated SAH patients with and without vasospasm. Signaling pathways for the 1093 vasospasm-related genes included adrenergic, P2Y, ET-1, NO, sildenafil, renin–angiotensin, thrombin, CCR3, CXCR4, MIF, fMLP, PKA, PKC, CRH, PPARα/RXRα, and calcium. Genes predicted to be alternatively spliced included IL23A, RSU1, PAQR6, and TRIP6. Conclusions This is the first study to demonstrate that mRNA expression in whole blood distinguishes SAH patients with vasospasm from those without vasospasm and supports a role of coagulation and immune systems in vasospasm. Electronic supplementary material The online version of this article (10.1007/s12028-019-00861-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huichun Xu
- Department of Medicine, University of Maryland, College Park, USA
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, 2805 50th St., Sacramento, CA, 95817, USA
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, 2805 50th St., Sacramento, CA, 95817, USA
| | - Ben Waldau
- Neurosurgery, University of California at Davis, Sacramento, USA
| | - Glen C Jickling
- Department of Neurology, University of California at Davis, 2805 50th St., Sacramento, CA, 95817, USA.,Department of Neurology, University of Alberta, Edmonton, Canada
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, 2805 50th St., Sacramento, CA, 95817, USA.
| | - Nerissa U Ko
- Department of Neurology, University of California at San Francisco, San Francisco, USA
| |
Collapse
|
5
|
Zheng Z, Chen Y, Wang Y, Li Y, Cheng Q. MicroRNA-513b-5p targets COL1A1 and COL1A2 associated with the formation and rupture of intracranial aneurysm. Sci Rep 2021; 11:14897. [PMID: 34290266 PMCID: PMC8295310 DOI: 10.1038/s41598-021-94116-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Collagen-type I alpha 1 chain (COL1A1) and COL1A2 are abnormally expressed in intracranial aneurysm (IA), but their mechanism of action remains unclear. This study was performed to investigate the mechanism of COL1A1 and COL1A2 affecting the occurrence and rupture of IA. Quantitative real-time polymerase chain reaction was used to measure the expression of hsa-miR-513b-5p, COL1A1, COL1A2, TNF-α, IL-6, MMP2, MMP3, MMP9 and TIMP4 in patients with ruptured IA (RA) (n = 100), patients with un-ruptured IA (UA) (n = 100), and controls (n = 100). Then, human vascular smooth muscle cells (HASMCs) were cultured, and dual luciferase reporter assay was performed to analyse the targeting relationship between miR-513b-5p and COL1A1 or COL1A2. The effects of the miR-513b-5p mimic and inhibitor on the proliferation, apoptosis, and death of HASMC and the RIP1-RIP3-MLKL and matrix metalloproteinase pathways were also explored. The effect of silencing and over-expression of COL1A1 and COL1A2 on the role of miR-513b-5p were also evaluated. Finally, the effects of TNF-α on miR-513b-5p targeting COL1A1 and COL1A2 were tested. Compared with those in the control group, the serum mRNA levels of miR-513b-5p, IL-6 and TIMP4 were significantly decreased in the RA and UA groups, but COL1A1, COL1A2, TNF-α, IL-1β, MMP2, MMP3 and MMP9 were significantly increased (p < 0.05). Compared with those in the UA group, the expression of COL1A1, COL1A2, TNF-α, IL-1β and MMP9 was significantly up-regulated in the RA group (p < 0.05). Results from the luciferase reporter assay showed that COL1A1 and COL1A were the direct targets of miR-513b-5p. Further studies demonstrated that miR-513b-5p targeted COL1A1/2 to regulate the RIP1-RIP3-MLKL and MMP pathways, thereby enhancing cell death and apoptosis. Over-expression of COL1A1 or COL1A2, rather than silencing COL1A1/2, could improve the inhibitory effect of miR-513b-5p on cell activity by regulating the RIP1-RIP3-MLKL and MMP pathways. Furthermore, over-expression of miR-513b-5p and/or silencing COL1A1/2 inhibited the TNF-α-induced cell proliferation and enhanced the TNF-α-induced cell death and apoptosis. The mechanism may be related to the inhibition of collagen I and TIMP4 expression and promotion of the expression of RIP1, p-RIP1, p-RIP3, p-MLKL, MMP2 and MMP9. MiR-513b-5p targeted the inhibition of COL1A1/2 expression and affected HASMC viability and extracellular mechanism remodelling by regulating the RIP1-RIP3-MLKL and MMP pathways. This process might be involved in the formation and rupture of IA.
Collapse
Affiliation(s)
- Zheng Zheng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, People's Republic of China
- The Department of Neurology, Fujian Provincial Hospital, Fuzhou, No. 134, Dongjie road, Fuzhou, 350001, People's Republic of China
| | - Yan Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, People's Republic of China
- The Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yinzhou Wang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, People's Republic of China
- The Department of Neurology, Fujian Provincial Hospital, Fuzhou, No. 134, Dongjie road, Fuzhou, 350001, People's Republic of China
| | - Yongkun Li
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, People's Republic of China
- The Department of Neurology, Fujian Provincial Hospital, Fuzhou, No. 134, Dongjie road, Fuzhou, 350001, People's Republic of China
| | - Qiong Cheng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, People's Republic of China.
- The Department of Neurology, Fujian Provincial Hospital, Fuzhou, No. 134, Dongjie road, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
6
|
Liu Y, Song Y, Liu P, Li S, Shi Y, Yu G, Quan K, Fan Z, Li P, An Q, Zhu W. Comparative bioinformatics analysis between proteomes of rabbit aneurysm model and human intracranial aneurysm with label-free quantitative proteomics. CNS Neurosci Ther 2021; 27:101-112. [PMID: 33389819 PMCID: PMC7804895 DOI: 10.1111/cns.13570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Aims This study aimed to find critical proteins involved in the development of intracranial aneurysm by comparing proteomes of rabbit aneurysm model and human aneurysms. Methods Five human intracranial aneurysm samples and 5 superficial temporal artery samples, and 4 rabbit aneurysm samples and 4 control samples were collected for protein mass spectrometry. Four human intracranial aneurysm samples and 4 superficial temporal artery samples, and 6 rabbit aneurysm samples and 6 control samples were used for immunochemistry. Results Proteomic analysis revealed 180 significantly differentially expressed proteins in human intracranial aneurysms and 716 significantly differentially expressed proteins in rabbit aneurysms. Among them, 57 proteins were differentially expressed in both species, in which 24 were increased and 33 were decreased in aneurysms compared to the control groups. Proteins were involved in focal adhesion and extracellular matrix‐receptor interaction pathways. We found that COL4A2, MYLK, VCL, and TAGLN may be related to aneurysm development. Conclusion Proteomics analysis provided fundamental insights into the pathogenesis of aneurysm. Proteins related to focal adhesion and extracellular matrix‐receptor interaction pathways play an important role in the occurrence and development of intracranial aneurysm.
Collapse
Affiliation(s)
- Yingjun Liu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Yaying Song
- Department of Neurology, Renji Hospital of Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Peixi Liu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Sichen Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Yuan Shi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Guo Yu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Kai Quan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Zhiyuan Fan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Peiliang Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Qingzhu An
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| |
Collapse
|
7
|
Ehrhart F, Coort SL, Eijssen L, Cirillo E, Smeets EE, Bahram Sangani N, Evelo CT, Curfs LMG. Integrated analysis of human transcriptome data for Rett syndrome finds a network of involved genes. World J Biol Psychiatry 2020; 21:712-725. [PMID: 30907210 DOI: 10.1080/15622975.2019.1593501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Rett syndrome (RTT) is a rare disorder causing severe intellectual and physical disability. The cause is a mutation in the gene coding for the methyl-CpG binding protein 2 (MECP2), a multifunctional regulator protein. Purpose of the study was integration and investigation of multiple gene expression profiles in human cells with impaired MECP2 gene to obtain a robust, data-driven insight in molecular disease mechanisms. METHODS Information about changed gene expression was extracted from five previously published studies, integrated and the resulting differentially expressed genes were analysed using overrepresentation analysis of biological pathways and gene ontology, and network analysis. RESULTS We identified a set of genes, which are significantly changed not in all but several transcriptomics datasets and were not mentioned in the context of RTT before. We found that these genes are involved in several processes and molecular pathways known to be affected in RTT. Integrating transcription factors we identified a possible link how MECP2 regulates cytoskeleton organisation via MEF2C and CAPG. CONCLUSIONS Integrative analysis of omics data and prior knowledge databases is a powerful approach to identify links between mutation and phenotype especially in rare disease research where little data is available.
Collapse
Affiliation(s)
- Friederike Ehrhart
- GCK - Rett Expertise Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Susan L Coort
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Lars Eijssen
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Elisa Cirillo
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Eric E Smeets
- GCK - Rett Expertise Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Pediatrics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Nasim Bahram Sangani
- GCK - Rett Expertise Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Chris T Evelo
- GCK - Rett Expertise Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Leopold M G Curfs
- GCK - Rett Expertise Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
8
|
Landry AP, Balas M, Spears J, Zador Z. Microenvironment of ruptured cerebral aneurysms discovered using data driven analysis of gene expression. PLoS One 2019; 14:e0220121. [PMID: 31329646 PMCID: PMC6645676 DOI: 10.1371/journal.pone.0220121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/09/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND It is well known that ruptured intracranial aneurysms are associated with substantial morbidity and mortality, yet our understanding of the genetic mechanisms of rupture remains poor. We hypothesize that applying novel techniques to the genetic analysis of aneurysmal tissue will yield key rupture-associated mechanisms and novel drug candidates for the prevention of rupture. METHODS We applied weighted gene co-expression networks (WGCNA) and population-specific gene expression analysis (PSEA) to transcriptomic data from 33 ruptured and unruptured aneurysm domes. Mechanisms were annotated using Gene Ontology, and gene network/population-specific expression levels correlated with rupture state. We then used computational drug repurposing to identify plausible drug candidates for the prevention of aneurysm rupture. RESULTS Network analysis of bulk tissue identified multiple immune mechanisms to be associated with aneurysm rupture. Targeting these processes with computational drug repurposing revealed multiple candidates for preventing rupture including Btk inhibitors and modulators of hypoxia inducible factor. In the macrophage-specific analysis, we identify rupture-associated mechanisms MHCII antigen processing, cholesterol efflux, and keratan sulfate catabolism. These processes map well onto several of highly ranked drug candidates, providing further validation. CONCLUSIONS Our results are the first to demonstrate population-specific expression levels and intracranial aneurysm rupture, and propose novel drug candidates based on network-based transcriptomics.
Collapse
Affiliation(s)
- Alexander P. Landry
- Division of Neurosurgery, Department of Surgery, St. Michael’s Hospital, Toronto, ON, Canada
| | - Michael Balas
- Division of Neurosurgery, Department of Surgery, St. Michael’s Hospital, Toronto, ON, Canada
| | - Julian Spears
- Division of Neurosurgery, Department of Surgery, St. Michael’s Hospital, Toronto, ON, Canada
| | - Zsolt Zador
- Division of Neurosurgery, Department of Surgery, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
9
|
Aoki T, Koseki H, Miyata H, Itoh M, Kawaji H, Takizawa K, Kawashima A, Ujiie H, Higa T, Minamimura K, Kimura T, Kasuya H, Nozaki K, Morita A, Sano H, Narumiya S. RNA sequencing analysis revealed the induction of CCL3 expression in human intracranial aneurysms. Sci Rep 2019; 9:10387. [PMID: 31316152 PMCID: PMC6637171 DOI: 10.1038/s41598-019-46886-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/08/2019] [Indexed: 11/10/2022] Open
Abstract
Intracranial aneurysm (IA) is a socially important disease as a major cause of subarachnoid hemorrhage. Recent experimental studies mainly using animal models have revealed a crucial role of macrophage-mediated chronic inflammatory responses in its pathogenesis. However, as findings from comprehensive analysis of unruptured human IAs are limited, factors regulating progression and rupture of IAs in humans remain unclear. Using surgically dissected human unruptured IA lesions and control arterial walls, gene expression profiles were obtained by RNA sequence analysis. RNA sequencing analysis was done with read count about 60~100 million which yielded 6~10 billion bases per sample. 79 over-expressed and 329 under-expressed genes in IA lesions were identified. Through Gene Ontology analysis, ‘chemokine activity’, ‘defense response’ and ‘extracellular region’ were picked up as over-represented terms which included CCL3 and CCL4 in common. Among these genes, quantitative RT-PCR analysis using another set of samples reproduced the above result. Finally, increase of CCL3 protein compared with that in control arterial walls was clarified in IA lesions. Findings of the present study again highlight importance of macrophage recruitment via CCL3 in the pathogenesis of IA progression.
Collapse
Affiliation(s)
- Tomohiro Aoki
- Innovation Center for Immunoregulation Technologies and Drugs (AK project), Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan. .,Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Osaka, 565-8565, Japan. .,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.
| | - Hirokazu Koseki
- Innovation Center for Immunoregulation Technologies and Drugs (AK project), Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.,Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Osaka, 565-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.,Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, 116-8567, Japan
| | - Haruka Miyata
- Innovation Center for Immunoregulation Technologies and Drugs (AK project), Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.,Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Osaka, 565-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.,Department of Neurosurgery, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Masayoshi Itoh
- RIKEN Preventive Medicine and Innovation Program, Saitama, 351-0198, Japan
| | - Hideya Kawaji
- RIKEN Preventive Medicine and Innovation Program, Saitama, 351-0198, Japan
| | - Katsumi Takizawa
- Department of Neurosurgery, Japanese Red Cross Asahikawa Hospital, Hokkaido, 070-8530, Japan
| | - Akitsugu Kawashima
- Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, 276-8524, Japan
| | - Hiroshi Ujiie
- Department of Neurosurgery, Tokyo Rosai Hospital, Tokyo, 143-0013, Japan
| | - Takashi Higa
- Department of Neurosurgery, Tokyo Rosai Hospital, Tokyo, 143-0013, Japan
| | - Kenzo Minamimura
- Department of Neurosurgery, Shinkawahashi Hospital, Kanagawa, 210-0013, Japan
| | - Toshikazu Kimura
- Department of Neurosurgery, NTT Medical Center Tokyo, Tokyo, 141-8625, Japan.,Department of Neurosurgery, Japanese Red Cross Medical Center, Tokyo, 150-8935, Japan
| | - Hidetoshi Kasuya
- Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, 116-8567, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Akio Morita
- Department of Neurosurgery, NTT Medical Center Tokyo, Tokyo, 141-8625, Japan.,Department of Neurological Surgery, Nippon Medical School, Tokyo, 113-8603, Japan
| | - Hirotoshi Sano
- Department of Neurosurgery, Shinkawahashi Hospital, Kanagawa, 210-0013, Japan
| | - Shuh Narumiya
- Innovation Center for Immunoregulation Technologies and Drugs (AK project), Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| |
Collapse
|
10
|
Jiang P, Wu J, Chen X, Ning B, Liu Q, Li Z, Li M, Yang F, Cao Y, Wang R, Wang S. Quantitative proteomics analysis of differentially expressed proteins in ruptured and unruptured cerebral aneurysms by iTRAQ. J Proteomics 2018; 182:45-52. [PMID: 29729990 DOI: 10.1016/j.jprot.2018.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/01/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
The underlying pathophysiological mechanisms involved in cerebral aneurysms rupture remain unclear. This study was performed to investigate the differentially expressed proteins between ruptured and unruptured aneurysms using quantitative proteomics. The aneurysmal walls of six ruptured aneurysms and six unruptured aneurysms were collected during the surgical operation. The isobaric tags for relative and absolute quantification (iTRAQ) were used to identify the differentially expressed proteins and western blotting was performed to validate the expression of the proteins of interest. Bioinformatics analysis of the differentially expressed proteins was also performed using the KEGG database and GO database. Between ruptured and unruptured aneurysms, 169 proteins were found differently expressed, including 74 up-regulated proteins and 95 down-regulated proteins with a fold change ≥ 2 and p value ≤ .05. KEGG pathway analysis revealed that phagosome, focal adhesion and ECM-receptor interaction were the most common pathways involved in aneurysm rupture. In addition, the differential expressions of ITGB3, CRABP1 and S100A9 were validated by western blotting. Through the iTRAQ method, we found that inflammatory responses and cell-matrix interactions may play a significant role in the rupture of cerebral aneurysms. These findings provide a basis for better understanding of pathophysiological mechanisms associated with aneurysm rupture. BIOLOGICAL SIGNIFICANCE Intracranial aneurysm is the leading cause of life-threating subarachnoid hemorrhage which can cause 45% patients die within 30 days and severe morbidity in long-term survivors. With a high prevalence ranging from 1% to 5% in general population, cerebral aneurysm has become a widespread health hazard over past decades. Though great advances have been achieved in the diagnosis and treatment of this disease, the underlying pathophysiological mechanisms of aneurysm rupture remains undetermined and a lot of uncertainty still exists surrounding the treatment of unruptured cerebral aneurysms. Clarifying the mechanism associated with aneurysm rupture is important for estimating the rupture risk, as well as the development of new treatment strategy. Some previous studies have analyzed the molecular differences between ruptured and unruptured IAs at gene and mRNA levels, but further comprehensive proteomic studies are relatively rare. Here we performed a comparative proteomics study to investigate the differentially expressed proteins between ruptured IAs (RIAs) and unruptured IAs (UIAs). Results of our present study will provide more insights into the pathogenesis of aneurysm rupture at protein level. With a better understanding of pathophysiological mechanisms associated with aneurysm rupture, some noninvasive treatment strategies may be developed in the future.
Collapse
Affiliation(s)
- Pengjun Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, PR China
| | - Jun Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, PR China
| | - Xin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, PR China
| | - Bo Ning
- Department of neurosurgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong Province, PR China
| | - Qingyuan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, PR China
| | - Zhengsong Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, PR China
| | - Maogui Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, PR China
| | - Fan Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, PR China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, PR China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, PR China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, PR China.
| |
Collapse
|
11
|
Zhou S, Dion PA, Rouleau GA. Genetics of Intracranial Aneurysms. Stroke 2018; 49:780-787. [DOI: 10.1161/strokeaha.117.018152] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Sirui Zhou
- From the Montréal Neurological Institute and Hospital (S.Z., P.A.D., G.A.R.) and Department of Neurology and Neurosurgery (P.A.D., G.A.R.), McGill University, Québec, Canada; and Department of Medicine, Université de Montréal, Québec, Canada (S.Z.)
| | - Patrick A. Dion
- From the Montréal Neurological Institute and Hospital (S.Z., P.A.D., G.A.R.) and Department of Neurology and Neurosurgery (P.A.D., G.A.R.), McGill University, Québec, Canada; and Department of Medicine, Université de Montréal, Québec, Canada (S.Z.)
| | - Guy A. Rouleau
- From the Montréal Neurological Institute and Hospital (S.Z., P.A.D., G.A.R.) and Department of Neurology and Neurosurgery (P.A.D., G.A.R.), McGill University, Québec, Canada; and Department of Medicine, Université de Montréal, Québec, Canada (S.Z.)
| |
Collapse
|
12
|
Bo L, Wei B, Wang Z, Kong D, Gao Z, Miao Z. Screening of Critical Genes and MicroRNAs in Blood Samples of Patients with Ruptured Intracranial Aneurysms by Bioinformatic Analysis of Gene Expression Data. Med Sci Monit 2017; 23:4518-4525. [PMID: 28930970 PMCID: PMC5618721 DOI: 10.12659/msm.902953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background This study aimed to identify more potential genes and miRNAs associated with the pathogenesis of intracranial aneurysms (IAs). Material/Methods The dataset of GSE36791 (accession number) was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened for in the blood samples from patients with ruptured IAs and controls, followed by functional and pathway enrichment analyses. In addition, gene co-expression network was constructed and significant modules were extracted from the network by WGCNA R package. Screening for miRNAs that could regulate DEGs in the modules was performed and an analysis of regulatory relationships was conducted. Results A total of 304 DEGs (167 up-regulated and 137 down-regulated genes) were screened for in blood samples from patients with ruptured IAs compared with those from controls. Functional enrichment analysis showed that the up-regulated genes were mainly associated with immune response and the down-regulated DEGs were mainly concerned with the structure of ribosome and translation. Besides, six functional modules were significantly identified, including four modules enriched by up-regulated genes and two modules enriched by down-regulated genes. Thereinto, the blue, yellow, and turquoise modules of up-regulated genes were all linked with immune response. Additionally, 16 miRNAs were predicted to regulate DEGs in the three modules associated with immune response, such as hsa-miR-1304, hsa-miR-33b, hsa-miR-125b, and hsa-miR-125a-5p. Conclusions Several genes and miRNAs (such as miR-1304, miR-33b, IRS2 and KCNJ2) may take part in the pathogenesis of IAs.
Collapse
Affiliation(s)
- Lijuan Bo
- Department of Infections, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Bo Wei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Zhanfeng Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Daliang Kong
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Zheng Gao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Zhuang Miao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
13
|
Meeuwsen JAL, van ´t Hof FNG, van Rheenen W, Rinkel GJE, Veldink JH, Ruigrok YM. Circulating microRNAs in patients with intracranial aneurysms. PLoS One 2017; 12:e0176558. [PMID: 28459827 PMCID: PMC5411042 DOI: 10.1371/journal.pone.0176558] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/12/2017] [Indexed: 12/31/2022] Open
Abstract
Introduction We compared circulating microRNA (miRNA) levels in plasma of patients with intracranial aneurysms (IA) to those of controls as a first step towards finding potential biomarkers for individuals at high risk of IA development and its subsequent rupture. Patients and methods Using a PCR array we measured 370 miRNAs in plasma of 15 patients with prior aneurysmal subarachnoid hemorrhage (aSAH), of whom 11 had an additional unruptured IA (UIA), and of 15 controls. MiRNAs with a difference in levels with an absolute fold change (FC) > 1.2 and p<0.01 were further tested using real-time (RT) PCR in an additional independent set of 15 aSAH patients, 15 untreated UIA patients and 15 controls for replication (absolute FC >1.2 and p<0.05). We used receiver operating characteristic (ROC) curves to illustrate the diagnostic potential of these miRNAs. Results Three of five miRNAs with a difference in levels in the PCR array study were replicated with miRNA-183-5p decreased in all patients (FC = -2.2, p = 1.7x10-3), miRNA-200a-3p increased in aSAH patients (FC = 1.8, p = 2.8x10-2) and miRNA-let7b-5p decreased in UIA patients (FC = -1.7, p = 1.27x10-3) as compared to controls. In distinguishing aSAH patients from controls, the area under the ROC curve (AUC) was 0.80 (95% confidence interval (95% CI) 0.63–0.97) for miRNA-183-5p, and 0.74 (95% CI 0.55–0.94) for miRNA-200a-3p. In distinguishing untreated UIA patients from controls, AUC was 0.83 (95% CI 0.69–0.98) for miRNA-183-5p and 0.92 (95% CI 0.81–1) for miRNA-let-7b. Discussion/Conclusions We identified three specific circulating miRNAs that are able to discriminate between IA patients and controls. Follow-up studies should assess if these miRNAs may be used biomarkers for identifying individuals at high risk of IA development and its subsequent rupture.
Collapse
Affiliation(s)
- John A. L. Meeuwsen
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Femke N. G. van ´t Hof
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Wouter van Rheenen
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Gabriel J. E. Rinkel
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Jan H. Veldink
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Ynte M. Ruigrok
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
14
|
Xu Z, Li H, Song J, Han B, Wang Z, Cao Y, Wang S, Zhao J. Meta-Analysis of Microarray-Based Expression Profiles to Identify Differentially Expressed Genes in Intracranial Aneurysms. World Neurosurg 2016; 97:661-668.e7. [PMID: 27989982 DOI: 10.1016/j.wneu.2016.10.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To gain comprehensive insight into the molecular mechanism of formation and rupture of intracranial aneurysms (IAs). METHODS All publicly accessible microarray-based whole-genome gene expression profiles on IAs were retrieved. The significance analysis of microarrays method was applied to identify differentially expressed genes (DEGs). Functional annotation was performed using gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Expression of DEGs was examined using quantitative polymerase chain reaction. RESULTS Six data sets of 3 microarray platforms were qualified and analyzed. Comparing expression profiles between aneurysmal wall and control vessels, 5232 significant DEGs were identified among 3 platforms, and MMP12 was shown to have the largest fold change of upregulation. In all 3 platforms, 46 DEGs were shared, and 1297 DEGs were commonly resolved in at least 2 microarray platforms. Among these 1297 concordant DEGs, the 512 upregulated genes were mainly enriched in inflammatory and immune response processes, whereas the 785 downregulated genes were primarily concentrated in smooth muscle cell contraction and development pathways. Comparison between expression profiles of ruptured and unruptured IAs revealed that a few angiogenic factors, including HIF1A, VEGFA, and ANGPTL4, were upregulated in ruptured aneurysms. Subsequently, the upregulation of MMP12, HIF1A, and VEGFA was partially confirmed using quantitative polymerase chain reaction among independent samples. CONCLUSIONS Inflammation, immune response, and loss of contractile vascular smooth muscle cells could potentially contribute to the formation of IAs, whereas the role of angiogenesis and vascular remodeling in IA formation and rupture needs further exploration.
Collapse
Affiliation(s)
- Zhe Xu
- Monogenic Disease Research Center for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Core Laboratory for Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiangman Song
- Department of Neurology, People's Hospital, Peking University, Beijing, China
| | - Bing Han
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Zheng Wang
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
15
|
Stylli SS, Adamides AA, Koldej RM, Luwor RB, Ritchie DS, Ziogas J, Kaye AH. miRNA expression profiling of cerebrospinal fluid in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 2016; 126:1131-1139. [PMID: 27128592 DOI: 10.3171/2016.1.jns151454] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) regulate gene expression and therefore play important roles in many physiological and pathological processes. The aim of this pilot study was to determine the feasibility of extraction and subsequent profiling of miRNA from CSF samples in a pilot population of aneurysmal subarachnoid hemorrhage patients and establish if there is a distinct CSF miRNA signature between patients who develop cerebral vasospasm and those who do not. METHODS CSF samples were taken at various time points during the clinical management of a subset of SAH patients (SAH patient samples without vasospasm, n = 10; SAH patient samples with vasospasm, n = 10). CSF obtained from 4 patients without SAH was also included in the analysis. The miRNA was subsequently isolated and purified and then analyzed on an nCounter instrument using the Human V2 and V3 miRNA assay kits. The data were imported into the nSolver software package for differential miRNA expression analysis. RESULTS From a total of 800 miRNAs that could be detected with each version of the miRNA assay kit, a total of 691 miRNAs were communal to both kits. There were 36 individual miRNAs that were differentially expressed (p < 0.01) based on group analyses, with a number of miRNAs showing significant changes in more than one group analysis. The changes largely reflected differences between non-SAH and SAH groups. These included miR-204-5p, miR-223-3p, miR-337-5p, miR-451a, miR-489, miR-508-3p, miR-514-3p, miR-516-5p, miR-548 m, miR-599, miR-937, miR-1224-3p, and miR-1301. However, a number of miRNAs did exclusively differ between the vasospasm and nonvasospasm SAH groups including miR-27a-3p, miR-516a-5p, miR-566, and miR-1197. CONCLUSIONS The findings indicate that temporal miRNA profiling can detect differences between CSF from aneurysmal SAH and non-SAH patients. Moreover, the miRNA profile of CSF samples from patients who develop cerebral vasopasm may be distinguishable from those who do not. These results provide a foundation for future research at identifying novel CSF biomarkers that might predispose to the development of cerebral vasospasm after SAH and therefore influence subsequent clinical management.
Collapse
Affiliation(s)
- Stanley S Stylli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital.,Department of Neurosurgery, The Royal Melbourne Hospital
| | - Alexios A Adamides
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital.,Department of Neurosurgery, The Royal Melbourne Hospital
| | - Rachel M Koldej
- ACRF Translational Research Laboratory, The Department of Research, The Royal Melbourne Hospital; and
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital
| | - David S Ritchie
- ACRF Translational Research Laboratory, The Department of Research, The Royal Melbourne Hospital; and
| | - James Ziogas
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew H Kaye
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital.,Department of Neurosurgery, The Royal Melbourne Hospital
| |
Collapse
|
16
|
Rogic S, Wong A, Pavlidis P. Meta-Analysis of Gene Expression Patterns in Animal Models of Prenatal Alcohol Exposure Suggests Role for Protein Synthesis Inhibition and Chromatin Remodeling. Alcohol Clin Exp Res 2016; 40:717-27. [PMID: 26996386 PMCID: PMC5310543 DOI: 10.1111/acer.13007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 01/11/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) can result in an array of morphological, behavioral, and neurobiological deficits that can range in their severity. Despite extensive research in the field and a significant progress made, especially in understanding the range of possible malformations and neurobehavioral abnormalities, the molecular mechanisms of alcohol responses in development are still not well understood. There have been multiple transcriptomic studies looking at the changes in gene expression after PAE in animal models; however, there is a limited apparent consensus among the reported findings. In an effort to address this issue, we performed a comprehensive re-analysis and meta-analysis of all suitable, publically available expression data sets. METHODS We assembled 10 microarray data sets of gene expression after PAE in mouse and rat models consisting of samples from a total of 63 ethanol (EtOH)-exposed and 80 control animals. We re-analyzed each data set for differential expression and then used the results to perform meta-analyses considering all data sets together or grouping them by time or duration of exposure (pre- and postnatal, acute and chronic, respectively). We performed network and Gene Ontology enrichment analysis to further characterize the identified signatures. RESULTS For each subanalysis, we identified signatures of differential expressed genes that show support from multiple studies. Overall, the changes in gene expression were more extensive after acute EtOH treatment during prenatal development than in other models. Considering the analysis of all the data together, we identified a robust core signature of 104 genes down-regulated after PAE, with no up-regulated genes. Functional analysis reveals over representation of genes involved in protein synthesis, mRNA splicing, and chromatin organization. CONCLUSIONS Our meta-analysis shows that existing studies, despite superficial dissimilarity in findings, share features that allow us to identify a common core signature set of transcriptome changes in PAE. This is an important step to identifying the biological processes that underlie the etiology of fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Sanja Rogic
- Department of Psychiatry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Albertina Wong
- Department of Psychiatry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Paul Pavlidis
- Department of Psychiatry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Kleinloog R, Verweij BH, van der Vlies P, Deelen P, Swertz MA, de Muynck L, Van Damme P, Giuliani F, Regli L, van der Zwan A, Berkelbach van der Sprenkel JW, Han KS, Gosselaar P, van Rijen PC, Korkmaz E, Post JA, Rinkel GJE, Veldink JH, Ruigrok YM. RNA Sequencing Analysis of Intracranial Aneurysm Walls Reveals Involvement of Lysosomes and Immunoglobulins in Rupture. Stroke 2016; 47:1286-93. [PMID: 27026628 DOI: 10.1161/strokeaha.116.012541] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/08/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Analyzing genes involved in development and rupture of intracranial aneurysms can enhance knowledge about the pathogenesis of aneurysms, and identify new treatment strategies. We compared gene expression between ruptured and unruptured aneurysms and control intracranial arteries. METHODS We determined expression levels with RNA sequencing. Applying a multivariate negative binomial model, we identified genes that were differentially expressed between 44 aneurysms and 16 control arteries, and between 22 ruptured and 21 unruptured aneurysms. The differential expression of 8 relevant and highly significant genes was validated using digital polymerase chain reaction. Pathway analysis was used to identify enriched pathways. We also analyzed genes with an extreme pattern of differential expression: only expressed in 1 condition without any expression in the other. RESULTS We found 229 differentially expressed genes in aneurysms versus controls and 1489 in ruptured versus unruptured aneurysms. The differential expression of all 8 genes selected for digital polymerase chain reaction validation was confirmed. Extracellular matrix pathways were enriched in aneurysms versus controls, whereas pathways involved in immune response and the lysosome pathway were enriched in ruptured versus unruptured aneurysms. Immunoglobulin genes were expressed in aneurysms, but showed no expression in controls. CONCLUSIONS For rupture of intracranial aneurysms, we identified the lysosome pathway as a new pathway and found further evidence for the role of the immune response. Our results also point toward a role for immunoglobulins in the pathogenesis of aneurysms. Immune-modifying drugs are, therefore, interesting candidate treatment strategies in the prevention of aneurysm development and rupture.
Collapse
Affiliation(s)
- Rachel Kleinloog
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.).
| | - Bon H Verweij
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.)
| | - Pieter van der Vlies
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.)
| | - Patrick Deelen
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.)
| | - Morris A Swertz
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.)
| | - Louis de Muynck
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.)
| | - Philip Van Damme
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.)
| | - Fabrizio Giuliani
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.)
| | - Luca Regli
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.)
| | - Albert van der Zwan
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.)
| | - Jan W Berkelbach van der Sprenkel
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.)
| | - K Sen Han
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.)
| | - Peter Gosselaar
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.)
| | - Peter C van Rijen
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.)
| | - Emine Korkmaz
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.)
| | - Jan A Post
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.)
| | - Gabriel J E Rinkel
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.)
| | - Jan H Veldink
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.)
| | - Ynte M Ruigrok
- From the Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (R.K., B.H.V., F.G., A.v.d.Z., J.W.B.v.d.S., K.S.H., P.G., P.C.v.R., G.J.E.R., J.H.V., Y.M.R.); Department of Genetics (P.v.d.V., P.D., M.A.S.) and Genomics Coordination Center (P.D., M.A.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium (L.d.M., P.V.D.); Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland (L.R.); and Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands (E.K., J.A.P.)
| |
Collapse
|
18
|
Bekelis K, Kerley-Hamilton JS, Teegarden A, Tomlinson CR, Kuintzle R, Simmons N, Singer RJ, Roberts DW, Kellis M, Hendrix DA. MicroRNA and gene expression changes in unruptured human cerebral aneurysms. J Neurosurg 2016; 125:1390-1399. [PMID: 26918470 DOI: 10.3171/2015.11.jns151841] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The molecular mechanisms behind cerebral aneurysm formation and rupture remain poorly understood. In the past decade, microRNAs (miRNAs) have been shown to be key regulators in a host of biological processes. They are noncoding RNA molecules, approximately 21 nucleotides long, that posttranscriptionally inhibit mRNAs by attenuating protein translation and promoting mRNA degradation. The miRNA and mRNA interactions and expression levels in cerebral aneurysm tissue from human subjects were profiled. METHODS A prospective case-control study was performed on human subjects to characterize the differential expression of mRNA and miRNA in unruptured cerebral aneurysms in comparison with control tissue (healthy superficial temporal arteries [STA]). Ion Torrent was used for deep RNA sequencing. Affymetrix miRNA microarrays were used to analyze miRNA expression, whereas NanoString nCounter technology was used for validation of the identified targets. RESULTS Overall, 7 unruptured cerebral aneurysm and 10 STA specimens were collected. Several differentially expressed genes were identified in aneurysm tissue, with MMP-13 (fold change 7.21) and various collagen genes (COL1A1, COL5A1, COL5A2) being among the most upregulated. In addition, multiple miRNAs were significantly differentially expressed, with miR-21 (fold change 16.97) being the most upregulated, and miR-143-5p (fold change -11.14) being the most downregulated. From these, miR-21, miR-143, and miR-145 had several significantly anticorrelated target genes in the cohort that are associated with smooth muscle cell function, extracellular matrix remodeling, inflammation signaling, and lipid accumulation. All these processes are crucial to the pathophysiology of cerebral aneurysms. CONCLUSIONS This analysis identified differentially expressed genes and miRNAs in unruptured human cerebral aneurysms, suggesting the possibility of a role for miRNAs in aneurysm formation. Further investigation for their importance as therapeutic targets is needed.
Collapse
Affiliation(s)
| | - Joanna S Kerley-Hamilton
- Dartmouth Genomics and Microarray Laboratory, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | | - Craig R Tomlinson
- Dartmouth Genomics and Microarray Laboratory, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | | - Nathan Simmons
- Section of Neurosurgery and.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Robert J Singer
- Section of Neurosurgery and.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - David W Roberts
- Section of Neurosurgery and.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Manolis Kellis
- MIT Computational Biology Group and.,Computer Science and Artificial Intelligence Lab, MIT, Cambridge; and.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - David A Hendrix
- Department of Biochemistry and Biophysics and.,School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
19
|
Arning A, Jeibmann A, Köhnemann S, Brokinkel B, Ewelt C, Berger K, Wellmann J, Nowak-Göttl U, Stummer W, Stoll M, Holling M. ADAMTS genes and the risk of cerebral aneurysm. J Neurosurg 2016; 125:269-74. [PMID: 26745484 DOI: 10.3171/2015.7.jns154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Cerebral aneurysms (CAs) affect 2%-5% of the population, and familial predisposition plays a significant role in CA pathogenesis. Several lines of evidence suggest that genetic variations in matrix metalloproteinase genes (MMP) are involved in the etiopathology of CAs. The authors performed a case-control study to investigate the effect of 4 MMP variants from the ADAMTS family on the pathogenesis of CAs. METHODS To identify susceptible genetic variants, the authors investigated 8 single nucleotide polymorphisms (SNPs) in 4 genes from the ADAMTS family (ADAMTS2, -7, -12, and -13) known to be associated with vascular diseases. The study included 353 patients with CAs and 1055 healthy adults. RESULTS The authors found significant associations between CA susceptibility and genetic variations in 3 members of the ADAMTS family. The largest risk for CA (OR 1.32, p = 0.006) was observed in carriers of the ADAMTS2 variant rs11750568, which has been previously associated with pediatric stroke. Three SNPs under investigation are associated with a protective effect in CA pathogenesis (ADAMTS12 variant rs1364044: OR 0.65, p = 0.0001; and ADAMTS13 variants rs739469 and rs4962153: OR 0.77 and 0.63, p = 0.02 and 0.0006, respectively), while 2 other ADAMTS13 variants may confer a significant risk (rs2301612: OR 1.26, p = 0.011; rs2285489: OR 1.24, p = 0.02). CONCLUSIONS These results suggest that reduced integrity of the endothelial wall, as conferred by ADAMTS variants, together with inflammatory processes and defective vascular remodeling plays an important role in CA pathogenesis, although the mechanism of action remains unknown. The authors' findings may lead to specific screening of at-risk populations in the future.
Collapse
Affiliation(s)
| | | | | | | | - Christian Ewelt
- Department of Neurosurgery, University Hospital Münster; and
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster
| | - Jürgen Wellmann
- Institute of Epidemiology and Social Medicine, University of Münster
| | - Ulrike Nowak-Göttl
- Institute of Clinical Chemistry, Thrombosis and Hemostasis Treatment Center, Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster; and
| | - Monika Stoll
- Institute of Human Genetics, Genetic Epidemiology
| | - Markus Holling
- Department of Neurosurgery, University Hospital Münster; and
| |
Collapse
|
20
|
|
21
|
Rouchaud A, Johnson C, Thielen E, Schroeder D, Ding YH, Dai D, Brinjikji W, Cebral J, Kallmes DF, Kadirvel R. Differential Gene Expression in Coiled versus Flow-Diverter-Treated Aneurysms: RNA Sequencing Analysis in a Rabbit Aneurysm Model. AJNR Am J Neuroradiol 2015; 37:1114-21. [PMID: 26721773 DOI: 10.3174/ajnr.a4648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/10/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE The biologic mechanisms leading to aneurysm healing or rare complications such as delayed aneurysm ruptures after flow-diverter placement remain poorly understood. We used RNA sequencing following implantation of coils or flow diverters in elastase aneurysms in rabbits to identify genes and pathways of potential interest. MATERIALS AND METHODS Aneurysms were treated with coils (n = 5) or flow diverters (n = 4) or were left untreated for controls (n = 6). Messenger RNA was isolated from the aneurysms at 4 weeks following treatment. RNA samples were processed by using RNA-sequencing technology and were analyzed by using the Ingenuity Pathway Analysis tool. RESULTS With RNA sequencing for coiled versus untreated aneurysms, 464/9990 genes (4.6%) were differentially expressed (58 down-regulated, 406 up-regulated). When we compared flow-diverter versus untreated aneurysms, 177/10,041 (1.8%) genes were differentially expressed (8 down-regulated, 169 up-regulated). When we compared flow-diverter versus coiled aneurysms, 13/9982 (0.13%) genes were differentially expressed (8 down-regulated, 5 up-regulated). Keratin 8 was overexpressed in flow diverters versus coils. This molecule may potentially play a critical role in delayed ruptures due to plasmin production. We identified overregulation of apelin in flow diverters, supporting the preponderance of endothelialization, whereas we found overexpression of molecules implicated in wound healing (dectin 1 and hedgehog interacting protein) for coiled aneurysms. Furthermore, we identified metallopeptidases 1, 12, and 13 as overexpressed in coiled versus untreated aneurysms. CONCLUSIONS We observed different physiopathologic responses after endovascular treatment with various devices. Flow diverters promote endothelialization but express molecules that could potentially explain the rare delayed ruptures. Coils promote wound healing and express genes potentially implicated in the recurrence of coiled aneurysms.
Collapse
Affiliation(s)
- A Rouchaud
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| | - C Johnson
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| | - E Thielen
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| | - D Schroeder
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| | - Y-H Ding
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| | - D Dai
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| | - W Brinjikji
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.) Department of Radiology (W.B., D.F.K.), Mayo Clinic, Rochester, Minnesota
| | - J Cebral
- Department of Bioengineering (J.C.), George Mason University, Fairfax, Virginia
| | - D F Kallmes
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.) Department of Radiology (W.B., D.F.K.), Mayo Clinic, Rochester, Minnesota
| | - R Kadirvel
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| |
Collapse
|
22
|
van ’t Hof FNG, Ruigrok YM, Medic J, Sanjabi B, van der Vlies P, Rinkel GJE, Veldink JH. Whole Blood Gene Expression Profiles of Patients with a Past Aneurysmal Subarachnoid Hemorrhage. PLoS One 2015; 10:e0139352. [PMID: 26439625 PMCID: PMC4595144 DOI: 10.1371/journal.pone.0139352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/11/2015] [Indexed: 11/19/2022] Open
Abstract
Background The pathogenesis of development and rupture of intracranial aneurysms (IA) is largely unknown. Also, screening for IA to prevent aneurysmal subarachnoid hemorrhage (aSAH) is inefficient, as disease markers are lacking. We investigated gene expression profiles in blood of previous aSAH patients, who are still at risk for future IA, aiming to gain insight into the pathogenesis of IA and aSAH, and to make a first step towards improvement of aSAH risk prediction. Methods and Results We collected peripheral blood of 119 patients with aSAH at least two years prior, and 118 controls. We determined gene expression profiles using Illumina HumanHT-12v4 BeadChips. After quality control, we divided the dataset in a discovery (2/3) and replication set (1/3), identified differentially expressed genes, and applied (co-)differential co-expression to identify disease-related gene networks. No genes with a significant (false-discovery rate <5%) differential expression were observed. We detected one gene network with significant differential co-expression, but did not find biologically meaningful gene networks related to a history of aSAH. Next, we applied prediction analysis of microarrays to find a gene set that optimally predicts absence or presence of a history of aSAH. We found no gene sets with a correct disease state prediction higher than 40%. Conclusions No gene expression differences were present in blood of previous aSAH patients compared to controls, besides one differentially co-expressed gene network without a clear relevant biological function. Our findings suggest that gene expression profiles, as detected in blood of previous aSAH patients, do not reveal the pathogenesis of IA and aSAH, and cannot be used for aSAH risk prediction.
Collapse
Affiliation(s)
- Femke N. G. van ’t Hof
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| | - Ynte M. Ruigrok
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jelena Medic
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bahram Sanjabi
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Pieter van der Vlies
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Gabriel J. E. Rinkel
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan H. Veldink
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
23
|
Bourcier R, Redon R, Desal H. Genetic investigations on intracranial aneurysm: update and perspectives. J Neuroradiol 2015; 42:67-71. [PMID: 25676693 DOI: 10.1016/j.neurad.2015.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/26/2014] [Accepted: 01/12/2015] [Indexed: 11/30/2022]
Abstract
Detection of an intracranial aneurysm (IA) is a common finding in MRI practice. Nowadays, the incidence of unruptured IA seems to be increasing with the continuous evolution of imaging techniques. Important modifiable risk factors for SAH are well defined, but familial history of IA is the best risk marker for the presence of IA. Numerous heritable conditions are associated with IA formation but these syndromes account for less than 1% of all IAs in the population. No diagnostic test based on genetic knowledge is currently available to identify theses mutations and patients who are at higher risk for developing IAs. In the longer term, a more comprehensive understanding of independent and interdependent molecular pathways germane to IA formation and rupture may guide the physician in developing targeted therapies and optimizing prognostic risk assessment.
Collapse
Affiliation(s)
- Romain Bourcier
- Department of neuroradiology, CHU Nantes, boulevard J.-Monod, 44000 Nantes, France; 1087 Inserm unit, institut du thorax, 44000 Nantes, France.
| | - Richard Redon
- 1087 Inserm unit, institut du thorax, 44000 Nantes, France
| | - Hubert Desal
- Department of neuroradiology, CHU Nantes, boulevard J.-Monod, 44000 Nantes, France; 1087 Inserm unit, institut du thorax, 44000 Nantes, France
| |
Collapse
|
24
|
Wang C, Qu B, Wang Z, Ju J, Wang Y, Wang Z, Cao P, Wang D. Proteomic identification of differentially expressed proteins in vascular wall of patients with ruptured intracranial aneurysms. Atherosclerosis 2015; 238:201-6. [DOI: 10.1016/j.atherosclerosis.2014.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/19/2014] [Accepted: 11/27/2014] [Indexed: 01/23/2023]
|
25
|
Abstract
Intracranial aneurysms, also called cerebral aneurysms, are dilatations in the arteries that supply blood to the brain. Rupture of an intracranial aneurysm leads to a subarachnoid hemorrhage, which is fatal in about 50% of the cases. Intracranial aneurysms can be repaired surgically or endovascularly, or by combining these two treatment modalities. They are relatively common with an estimated prevalence of unruptured aneurysms of 2%-6% in the adult population, and are considered a complex disease with both genetic and environmental risk factors. Known risk factors include smoking, hypertension, increasing age, and positive family history for intracranial aneurysms. Identifying the molecular mechanisms underlying the pathogenesis of intracranial aneurysms is complex. Genome-wide approaches such as DNA linkage and genetic association studies, as well as microarray-based mRNA expression studies, provide unbiased approaches to identify genetic risk factors and dissecting the molecular pathobiology of intracranial aneurysms. The ultimate goal of these studies is to use the information in clinical practice to predict an individual's risk for developing an aneurysm or monitor its growth or rupture risk. Another important goal is to design new therapies based on the information on mechanisms of disease processes to prevent the development or halt the progression of intracranial aneurysms.
Collapse
Affiliation(s)
- Gerard Tromp
- The Sigfried and Janet Weis Center for Research, Geisinger Health System , Danville, Pennsylvania , USA
| | | | | | | |
Collapse
|
26
|
Liu D, Han L, Wu X, Yang X, Zhang Q, Jiang F. Genome-wide microRNA changes in human intracranial aneurysms. BMC Neurol 2014; 14:188. [PMID: 25300531 PMCID: PMC4210474 DOI: 10.1186/s12883-014-0188-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 09/22/2014] [Indexed: 01/14/2023] Open
Abstract
Background Intracranial aneurysms are pathological dilatations of the cerebral artery, while rupture of intracranial aneurysms causes life-threatening subarachnoid hemorrhage. The molecular mechanisms of pathogenesis of intracranial aneurysms are poorly understood. MicroRNAs have fundamental roles in modulating vascular biology and disease. In the present study, we carried out a genome-wide characterization on expressions of microRNAs, and performed integrative analyses in conjunction with changes of the transcriptome in human intracranial aneurysms. Methods Genome-wide microRNA screening was performed in 6 intracranial aneurysmal samples and 6 normal superficial temporal arteries. Each case and control pair was individually matched with gender, age (±5 years), and high blood pressure history. Microarray analysis was performed using Agilent Human miRNA arrays. Results As compared to normal arteries, we identified 157 microRNAs that were differentially expressed in the aneurysmal tissue (P < 0.05 and fold change ≥ 2), including 72 upregulated and 85 downregulated. The changed microRNAs included endothelium-enriched microRNAs such as members of the let-7 family, miR-17, miR-23b, miR-126, hsa-miR-24-1 and miR-222, and vascular smooth muscle-enriched miRNAs such as miR-143 and miR-145. Moreover, miR-1, miR-10a, miR-125b, and miR-26a, which were implicated in modulating vascular smooth muscle cell functions such as proliferation, apoptosis and shift of phenotype, were also changed. In contrast, microRNAs involved in monocyte and macrophage functions, such as miR-155, miR-146a, miR-223, and miR-124a, were not significantly changed. Bioinformatic analysis revealed that the changed microRNAs were associated with several biological processes related to aneurysm formation, including inflammation, dysregulation of extracellular matrix, smooth muscle cell proliferation, programmed cell death, and response to oxidative stress. Interestingly, we found that a subset of the potential microRNA target genes belonged to the protein translation machinery, including various eukaryotic translation initiation factors and ribosomal proteins, and this finding was highly correlated with our previous transcriptome data showing that multiple genes of the ribosomal proteins and translation initiation and elongation factors were significantly downregulated in human intracranial aneurysms. Conclusions Our results support that dysregulated microRNAs may have a pathogenic role in intracranial aneurysms. Disruption of the protein translation process may have a pathogenic role in the development of intracranial aneurysms. Electronic supplementary material The online version of this article (doi:10.1186/s12883-014-0188-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, 107 Wenhuaxi Road, Jinan 250012, Shandong Province, China.
| | | |
Collapse
|
27
|
Li P, Zhang Q, Wu X, Yang X, Zhang Y, Li Y, Jiang F. Circulating microRNAs serve as novel biological markers for intracranial aneurysms. J Am Heart Assoc 2014; 3:e000972. [PMID: 25249297 PMCID: PMC4323791 DOI: 10.1161/jaha.114.000972] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Biological markers that can be used to predict the risk of intracranial aneurysms (IAs) are not available. Methods and Results To clarify whether circulating microRNAs could be used as biomarkers for IA, we carried out microarray assays in a screening cohort of 40 IA patients (20 unruptured and 20 ruptured) and 20 healthy volunteers. We identified 20 microRNAs that were unanimously changed in both ruptured and unruptured patients. We confirmed 60% of these changed microRNAs by a separate microarray test with an independent validation cohort (n=143 including 93 IA patients). To identify potential biomarkers, we combined the 2 cohorts and performed quantitative real‐time polymerase chain reactions for selected target microRNAs. Logistic regression analysis demonstrated that miR‐16 and miR‐25 were independent factors for IA occurrence (P<0.001). After controlling for age, sex, smoking, and history of hypertension, the contributions of miR‐16 and miR‐25 were still highly significant (P<0.001). The adjusted odds ratio values for miR‐16 and miR‐25 were 1.52 (95% CI 1.31 to 1.77) and 1.53 (1.30 to 1.79). Combining both miR‐16 and miR‐25 in a single model did not improve the performance of risk association. Conclusions Our data suggest that circulating miRNAs may be novel biological markers that are useful in assessing the likelihood of IA occurrence.
Collapse
Affiliation(s)
- Pengxiang Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong Province, China (P.L., Q.Z., X.W., Y.Z., F.J.) Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (P.L., X.Y., Y.L.)
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong Province, China (P.L., Q.Z., X.W., Y.Z., F.J.)
| | - Xiao Wu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong Province, China (P.L., Q.Z., X.W., Y.Z., F.J.)
| | - Xinjian Yang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (P.L., X.Y., Y.L.)
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong Province, China (P.L., Q.Z., X.W., Y.Z., F.J.)
| | - Youxiang Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (P.L., X.Y., Y.L.)
| | - Fan Jiang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong Province, China (P.L., Q.Z., X.W., Y.Z., F.J.)
| |
Collapse
|
28
|
Frösen J. Smooth Muscle Cells and the Formation, Degeneration, and Rupture of Saccular Intracranial Aneurysm Wall—a Review of Current Pathophysiological Knowledge. Transl Stroke Res 2014; 5:347-56. [DOI: 10.1007/s12975-014-0340-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
|
29
|
MicroRNA/mRNA profiling and regulatory network of intracranial aneurysm. BMC Med Genomics 2013; 6:36. [PMID: 24079748 PMCID: PMC3849943 DOI: 10.1186/1755-8794-6-36] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 09/25/2013] [Indexed: 12/30/2022] Open
Abstract
Background Intracranial aneurysm (IA) is one of the most lethal forms of cerebrovascular diseases characterized by endothelial dysfunction, vascular smooth muscle cell phenotypic modulation, inflammation and consequently loss of vessel cells and extracellular matrix degradation. Besides environmental factors, genetics seem to be a very important factor in the genesis of this disease. Previous mRNA expression studies revealed a large number of differentially expressed genes between IA and control tissue. However, microRNAs (miRNA), small non-coding RNAs which are post-transcriptional regulators of gene expression, have been barely studied. Studying miRNAs could provide a hypothetical mechanism underlying rupture of IA. Methods A microarray study was carried out to determine difference in microRNAs and mRNA between patients’ IA tissues and controls. Quantitative RT-PCR assay compared the expression level between two groups (14 IA domes vs. 14 controls) were used for validation. Validated miRNAs were analyzed using Ingenuity Pathway Analysis (IPA) to identify the networks and pathways. Results 18 miRNAs were confirmed by qPCR to be robustly down-regulated in 14 ruptured IA patients including hsa-mir-133b, hsa-mir-133a, hsa-mir-1, hsa-mir-143-3p, hsa-mir-145-3p, hsa-mir-145-5p, hsa-mir-455-5p, hsa-mir-143-5p, hsa-mir-23b-3p etc., of which 11 miRNAs are clusters: hsa-mir-1/has-mir-133a, hsa-mir-143/hsa-mir-145, hsa-mir-23b/hsa-mir-24-1, and hsa-mir-29b-2/hsa-mir-29c. 12 predicted functions were generated using IPA which showed significant associations with migration of phagocytes, proliferation of mononuclear leukocytes, cell movement of mononuclear leukocytes, cell movement of smooth muscle cells etc. Conclusion These data support common disease mechanisms that may be under miRNA control and provide exciting directions for further investigations aimed at elucidating the miRNA mechanisms and targets that may yield new therapies for IA.
Collapse
|
30
|
Hussain I, Duffis EJ, Gandhi CD, Prestigiacomo CJ. Genome-Wide Association Studies of Intracranial Aneurysms. Stroke 2013; 44:2670-5. [DOI: 10.1161/strokeaha.113.001753] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ibrahim Hussain
- From the Departments of Neurological Surgery (I.H., E.J.D., C.D.G., C.J.P.), Radiology (E.J.D., C.D.G., C.J.P.), Neurology and Neurosciences (E.J.D., C.J.P.), and Cerebrovascular Center (I.H., E.J.D., C.D.G., C.J.P.), Neurologic Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ
| | - Ennis Jesus Duffis
- From the Departments of Neurological Surgery (I.H., E.J.D., C.D.G., C.J.P.), Radiology (E.J.D., C.D.G., C.J.P.), Neurology and Neurosciences (E.J.D., C.J.P.), and Cerebrovascular Center (I.H., E.J.D., C.D.G., C.J.P.), Neurologic Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ
| | - Chirag D. Gandhi
- From the Departments of Neurological Surgery (I.H., E.J.D., C.D.G., C.J.P.), Radiology (E.J.D., C.D.G., C.J.P.), Neurology and Neurosciences (E.J.D., C.J.P.), and Cerebrovascular Center (I.H., E.J.D., C.D.G., C.J.P.), Neurologic Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ
| | - Charles J. Prestigiacomo
- From the Departments of Neurological Surgery (I.H., E.J.D., C.D.G., C.J.P.), Radiology (E.J.D., C.D.G., C.J.P.), Neurology and Neurosciences (E.J.D., C.J.P.), and Cerebrovascular Center (I.H., E.J.D., C.D.G., C.J.P.), Neurologic Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ
| |
Collapse
|
31
|
Zheng S, Su A, Sun H, You C. The association between interleukin-6 gene polymorphisms and intracranial aneurysms: a meta-analysis. Hum Immunol 2013; 74:1679-83. [PMID: 23993981 DOI: 10.1016/j.humimm.2013.08.274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 06/30/2013] [Accepted: 08/10/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND Interleukin-6 (IL-6) is an important proinflammatory cytokine, and some studies have demonstrated that IL-6 promoter polymorphisms (-174G/C and -572G/C) may be associated with intracranial aneurysms. A meta-analysis based on the evidence currently available from the literature was conducted to make a more precise estimation of this relationship. METHODS Electronic databases (the National Library of Medline and Embase databases) were searched before June 2013. Odds ratio (OR) and 95% confidence interval (CI) were calculated in fixed- or random-effects models when appropriate. Subgroup analyses were performed by race. This meta-analysis included six case-control studies, which included 1188 intracranial aneurysms cases and 4099 controls. RESULTS The combined results based on all studies showed that intracranial aneurysms cases had a significantly lower frequency of -572CC [OR (Recessive model) = 0.47, 95% CI = 0.36, 0.60, P < 0.001; OR (Codominant model) = 0.29, 95% CI = 0.20, 0.44, P < 0.001], -572GC [OR (Codominant model) = 0.73, 95% CI = 0.55, 0.98, P = 0.04] and -174CC [OR (Recessive model) = 0.73, 95% CI = 0.54, 0.98, P = 0.03; OR (Codominant model) = 0.70, 95% CI = 0.51, 0.97, P = 0.03] genotype. In the subgroup analysis by race, we found that (1) intracranial aneurysms cases had a significantly lower frequency of -572CC [OR (Recessive model) = 0.41, 95% CI = 0.32, 0.53, P < 0.001; OR (Codominant model) = 0.18, 95% CI = 0.12, 0.29, P < 0.001] and -572GC [OR (Codominant model) = 0.61, 95% CI = 0.42, 0.88, P = 0.009] genotype in Asians; (2) intracranial aneurysms cases had a significantly higher frequency of -572CC [OR (Recessive model) = 4.41, 95% CI = 1.35, 14.36, P = 0.01; OR (Codominant model) = 4.41, 95% CI = 1.35, 14.38, P = 0.01] genotype and lower frequency of -174CC [OR (Recessive model) = 0.73, 95% CI = 0.54, 0.98, P = 0.03; OR (Codominant model) = 0.70, 95% CI = 0.51, 0.97, P = 0.03] genotype in Caucasians. CONCLUSIONS Our meta-analysis suggested that IL-6 promoter polymorphisms (-174G/C and -572G/C) were associated with intracranial aneurysms. However, due to the small subjects included in analysis and the selection bias in some studies, the results should be interpreted with caution.
Collapse
Affiliation(s)
- Songping Zheng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | |
Collapse
|
32
|
Starke RM, Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Koch WJ, Dumont AS. The role of oxidative stress in cerebral aneurysm formation and rupture. Curr Neurovasc Res 2013; 10:247-55. [PMID: 23713738 PMCID: PMC3845363 DOI: 10.2174/15672026113109990003] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/17/2013] [Accepted: 05/08/2013] [Indexed: 02/07/2023]
Abstract
Oxidative stress is known to contribute to the progression of cerebrovascular disease. Additionally, oxidative stress may be increased by, but also augment inflammation, a key contributor to cerebral aneurysm development and rupture. Oxidative stress can induce important processes leading to cerebral aneurysm formation including direct endothelial injury as well as smooth muscle cell phenotypic switching to an inflammatory phenotype and ultimately apoptosis. Oxidative stress leads to recruitment and invasion of inflammatory cells through upregulation of chemotactic cytokines and adhesion molecules. Matrix metalloproteinases can be activated by free radicals leading to vessel wall remodeling and breakdown. Free radicals mediate lipid peroxidation leading to atherosclerosis and contribute to hemodynamic stress and hypertensive pathology, all integral elements of cerebral aneurysm development. Preliminary studies suggest that therapies targeted at oxidative stress may provide a future beneficial treatment for cerebral aneurysms, but further studies are indicated to define the role of free radicals in cerebral aneurysm formation and rupture. The goal of this review is to assess the role of oxidative stress in cerebral aneurysm pathogenesis.
Collapse
Affiliation(s)
- Robert M. Starke
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - Nohra Chalouhi
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| | - Muhammad S. Ali
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| | - Pascal M. Jabbour
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| | - Stavropoula I. Tjoumakaris
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| | - L. Fernando Gonzalez
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| | - Robert H. Rosenwasser
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| | - Walter J. Koch
- Center for Translational Medicine and Department of Pharmacology, Temple University, Philadelphia, Pennsylvania USA
| | - Aaron S. Dumont
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Pera J, Korostynski M, Golda S, Piechota M, Dzbek J, Krzyszkowski T, Dziedzic T, Moskala M, Przewlocki R, Szczudlik A, Slowik A. Gene expression profiling of blood in ruptured intracranial aneurysms: in search of biomarkers. J Cereb Blood Flow Metab 2013; 33:1025-31. [PMID: 23512133 PMCID: PMC3705426 DOI: 10.1038/jcbfm.2013.37] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/07/2013] [Accepted: 02/15/2013] [Indexed: 11/09/2022]
Abstract
The molecular mechanisms underlying the systemic response to subarachnoid hemorrhage (SAH) from ruptured intracranial aneurysms (RAs) are not fully understood. We investigated whether the analysis of gene expression in peripheral blood could provide clinically relevant information regarding the biologic consequences of SAH. Transcriptomics were performed using Illumina HumanHT-12v4 microarrays for 43 RA patients and 18 controls (C). Differentially expressed transcripts were analyzed for overrepresented functional groups and blood cell type-specific gene expression. The set of differentially expressed transcripts was validated using quantitative polymerase chain reaction in an independent group of subjects (15 RA patients and 14 C). There were 135 differentially expressed genes (false discovery rate 1%, absolute fold change 1.7): the abundant levels of 78 mRNAs increased and 57 mRNAs decreased. Among RA patients, transcripts specific to T lymphocyte subpopulations were downregulated, whereas those related to monocytes and neutrophils were upregulated. Expression profiles of a set of 16 genes and lymphocyte-to-monocyte-and-neutrophil gene expression ratios distinguished RA patients from C. These results indicate that SAH from RAs strongly influences the transcription profiles of blood cells. A specific pattern of these changes suggests suppression in lymphocyte response and enhancements in monocyte and neutrophil activities. This is probably related to the immunodepression observed in SAH.
Collapse
Affiliation(s)
- Joanna Pera
- Department of Neurology, Jagiellonian University Medical College, Krakow, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gläsker S, Schatlo B, Klingler JH, Braun V, Spangenberg P, Kim IS, van Velthoven V, Zentner J, Neumann HPH. Associations of collagen type I α2 polymorphisms with the presence of intracranial aneurysms in patients from Germany. J Stroke Cerebrovasc Dis 2013; 23:356-60. [PMID: 23800505 DOI: 10.1016/j.jstrokecerebrovasdis.2013.04.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/18/2013] [Accepted: 04/27/2013] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Subarachnoid hemorrhage from ruptured intracranial aneurysms is associated with a severe prognosis. Preventive treatment of unruptured intracranial aneurysms is possible and recommended. However, the identification of risk patients by genetic analyses is not possible because of lack of candidate genes. Collagen type I α2 (COL1A2) has been associated with the presence of aneurysms in patients from Japan, China, and Korea. In this study, we investigate whether COL1A2 is a possible aneurysm candidate gene in the German population. METHODS Patients admitted with intracranial aneurysms to our department and collaborating departments were enrolled. Three single-nucleotide polymorphisms (SNPs) of the COL1A2 gene, namely rs42524 in exon 28, rs1800238 in exon 32, and rs2621215 in intron 46 were investigated using restriction enzymes and sequencing. HapMap data were used for comparison of allelic frequencies with the normal population by χ2 test to identify significant associations between genotypes and the presence of aneurysms. RESULTS Two hundred sixty-nine patients were enrolled into the study. There was a significant correlation with the presence of aneurysms for the GC allele of the SNP rs42524 in exon 28 (P = .02). The other polymorphisms did not show significant correlations. CONCLUSIONS The COL1A2 gene is associated with intracranial aneurysms in a subset of the German population. However, it is not responsible for the majority of aneurysms, and further candidate genes need to be identified to develop sensitive genetic screening for patients at risk.
Collapse
Affiliation(s)
- Sven Gläsker
- Department of Neurosurgery, Freiburg University Medical Center, Freiburg, Germany.
| | - Bawarjan Schatlo
- Department of Neurosurgery, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Jan-Helge Klingler
- Department of Neurosurgery, Freiburg University Medical Center, Freiburg, Germany
| | - Veit Braun
- Department of Neurosurgery, Jung-Stilling Hospital, Siegen, Germany
| | | | - In-Se Kim
- Department of Neurosurgery, Dr. Horst Schmidt Hospital, Wiesbaden, Germany
| | - Vera van Velthoven
- Department of Neurosurgery, Freiburg University Medical Center, Freiburg, Germany
| | - Josef Zentner
- Department of Neurosurgery, Freiburg University Medical Center, Freiburg, Germany
| | - Hartmut P H Neumann
- Department of Internal Medicine, Freiburg University Medical Center, Freiburg, Germany
| |
Collapse
|
35
|
Analyzing illumina gene expression microarray data from different tissues: methodological aspects of data analysis in the metaxpress consortium. PLoS One 2012; 7:e50938. [PMID: 23236413 PMCID: PMC3517598 DOI: 10.1371/journal.pone.0050938] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/22/2012] [Indexed: 01/08/2023] Open
Abstract
Microarray profiling of gene expression is widely applied in molecular biology and functional genomics. Experimental and technical variations make meta-analysis of different studies challenging. In a total of 3358 samples, all from German population-based cohorts, we investigated the effect of data preprocessing and the variability due to sample processing in whole blood cell and blood monocyte gene expression data, measured on the Illumina HumanHT-12 v3 BeadChip array. Gene expression signal intensities were similar after applying the log2 or the variance-stabilizing transformation. In all cohorts, the first principal component (PC) explained more than 95% of the total variation. Technical factors substantially influenced signal intensity values, especially the Illumina chip assignment (33–48% of the variance), the RNA amplification batch (12–24%), the RNA isolation batch (16%), and the sample storage time, in particular the time between blood donation and RNA isolation for the whole blood cell samples (2–3%), and the time between RNA isolation and amplification for the monocyte samples (2%). White blood cell composition parameters were the strongest biological factors influencing the expression signal intensities in the whole blood cell samples (3%), followed by sex (1–2%) in both sample types. Known single nucleotide polymorphisms (SNPs) were located in 38% of the analyzed probe sequences and 4% of them included common SNPs (minor allele frequency >5%). Out of the tested SNPs, 1.4% significantly modified the probe-specific expression signals (Bonferroni corrected p-value<0.05), but in almost half of these events the signal intensities were even increased despite the occurrence of the mismatch. Thus, the vast majority of SNPs within probes had no significant effect on hybridization efficiency. In summary, adjustment for a few selected technical factors greatly improved reliability of gene expression analyses. Such adjustments are particularly required for meta-analyses.
Collapse
|