1
|
Han Y, Sun Y, Peng S, Tang T, Zhang B, Yu R, Sun X, Guo S, Ma L, Li P, Yang P. PI3K/AKT pathway: A potential therapeutic target in cerebral ischemia-reperfusion injury. Eur J Pharmacol 2025; 998:177505. [PMID: 40118329 DOI: 10.1016/j.ejphar.2025.177505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
Cerebral ischemia is a prevalent cerebrovascular disorder, with the restoration of blocked blood vessels serving as the current standard clinical treatment. However, reperfusion can exacerbate neuronal damage and neurological dysfunction, resulting in cerebral ischemia-reperfusion (I/R) injury. Presently, clinical treatment strategies for cerebral I/R injury are limited, creating an urgent need to identify new effective therapeutic targets. The PI3K/AKT signaling pathway, a pro-survival pathway associated with cerebral I/R injury, has garnered significant attention. We conducted a comprehensive review of the literature on the PI3K/AKT pathway in the context of cerebral I/R. Our findings indicate that activation of the PI3K/AKT signaling pathway following cerebral I/R can alleviate oxidative stress, reduce endoplasmic reticulum stress (ERS), inhibit inflammatory responses, decrease neuronal apoptosis, autophagy, and pyroptosis, mitigate blood-brain barrier (BBB) damage, and promote neurological function recovery. Consequently, this pathway ultimately reduces neuronal death, alleviates brain tissue damage, decreases the volume of cerebral infarction, and improves behavioral impairments. These results suggest that the PI3K/AKT signaling pathway is a promising therapeutic target for further research and drug development, holding significant potential for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Yiming Han
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yu Sun
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Shiyu Peng
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Tingting Tang
- First Clinical College, Xinxiang Medical University, Xinxiang, China
| | - Beibei Zhang
- First Clinical College, Xinxiang Medical University, Xinxiang, China
| | - Ruonan Yu
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Xiaoyan Sun
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Shanshan Guo
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China; Staff Hospital of Henan Fifth Construction Group Co., Ltd, Zhengzhou, Henan, China
| | - Lijuan Ma
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| | - Pengfei Yang
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| |
Collapse
|
2
|
Liu Z, Yin M, Li J, Wang J, Jin X, Zhou X, Gao W. Buyang Huanwu Decoction restores the balance of mitochondrial dynamics after cerebral ischemia-reperfusion through calcium overload reduction by the PKCε-Nampt-Sirt5 axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119003. [PMID: 39528118 DOI: 10.1016/j.jep.2024.119003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stroke is a common condition that poses a significant threat to human health. Buyang Huanwu Decoction (BYHWD) is a traditional treatment used for stroke management. However, the exact mechanism by which BYHWD mitigates cerebral ischemia-reperfusion by regulating calcium overload and restoring mitochondrial function is not yet fully understood. AIM The objective of this research was to examine the neuroprotective properties of BYHWD in reducing the damage produced by cerebral ischemia/reperfusion (I/R) injury via the modulation of calcium overload and mitochondrial dynamics (MD). METHODS MCAO/R model success was evaluated via PSI laser scatter flowmetry. The neurological function scores were assessed. The cerebral infarct (CI) volume was detected via TTC staining. NeuN expression was detected via immunohistochemistry, and degenerated neurons were observed via FJC staining. The mitochondrial permeability transition pore (mPTP), the mitochondrial membrane potential (MMP), and ATP were detected. The reactive oxygen species (ROS) content and the NAD+/NADH ratio were determined. The glutamate (Glu) and glutamine (Gln) contents as well as the Ca2+ concentration were determined. The expression of PKCε, p-PKCε, namely, Sirt5, GLS, Drp1, p-Drp1 616, Fis1, Opa1, and Mfn2 was determined via Western blotting. Immunohistochemistry was used to detect p-PKCε, which is expressed at high levels. Immunofluorescence was used to detect p-Drp1 616, Opa1 and Sirt5 fluorescence intensity. RESULTS BYHWD treatment enhanced neurological function, decreased the amount of CI, mitigated neuronal damage, decreased mPTP opening, restored the MMP, increased ATP synthesis, and decreased the ROS content after brain I/R. It also increased PKCε, p-PKCε, Sirt5, GLS, Opa1 and Mfn2 expression; downregulated p-Drp1 616, Drp1 and Fis1 expression; elevated the NAD+/NADH ratio and Gln content; and decreased the Glu content and Ca2+ concentration. The effects of BYHWD were reversed by the administration of the PKCε inhibitor εV1-2. BYHWD administration led to increased PKCε mRNA expression. CONCLUSIONS BYHWD modulates MD by diminishing calcium overload through the PKCε-Nampt-Sirt5 axis, which restores mitochondrial function and mitigates brain I/R damage.
Collapse
Affiliation(s)
- Zhenyi Liu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, 050000, Shijiazhuang, PR China.
| | - Meijuan Yin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, 050000, Shijiazhuang, PR China.
| | - Jing Li
- Hebei Province Traditional Chinese Medicine Hospital, 050000, Shijiazhuang, PR China.
| | - Jing Wang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, 050000, Shijiazhuang, PR China.
| | - Xiaofei Jin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, 050000, Shijiazhuang, PR China.
| | - Xiaohong Zhou
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, 050000, Shijiazhuang, PR China.
| | - Weijuan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, 050000, Shijiazhuang, PR China.
| |
Collapse
|
3
|
Zhong J, Yu X, Lin Z. Phosphodiesterase 4 inhibition as a novel treatment for stroke. PeerJ 2025; 13:e18905. [PMID: 39897494 PMCID: PMC11786714 DOI: 10.7717/peerj.18905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
The incidence of stroke ranks third among the leading causes of mortality worldwide. It has the characteristics of high morbidity, high disability rate and high recurrence rate. The current risk associated with stroke surgery is exceedingly high. It may potentially outweigh the benefits and fail to ameliorate the cerebral tissue damage following ischemia. Therefore, pharmacological intervention assumes paramount importance. The use of thrombolytic drugs is most common in the treatment of stroke; however, its efficacy is limited due to its time-sensitive nature and propensity for increased bleeding. Over the past few years, the treatment of stroke has witnessed a surge in interest towards neuroprotective drugs that possess the potential to enhance neurological function. The PDE4D gene has been demonstrated to have a positive correlation with the risk of ischemic stroke. Additionally, the utilization of phosphodiesterase 4 inhibitors can enhance synaptic plasticity within the neural circuitry, regulate cellular metabolism, and prevent secondary brain injury caused by impaired blood flow. These mechanisms collectively facilitate the recovery of functional neurons, thereby serving as potential therapeutic interventions. Therefore, the comprehensive investigation of phosphodiesterase 4 as an innovative pharmacological target for stroke injury provides valuable insights into the development of therapeutic interventions in stroke treatment. This review is intended for, but not limited to, pharmacological researchers, drug target researchers, neurologists, neuromedical researchers, and behavioral scientists.
Collapse
Affiliation(s)
- Jiahong Zhong
- Department of Clinical Pharmacy, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Xihui Yu
- Department of Pharmacy, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhuomiao Lin
- Department of Clinical Pharmacy, Meizhou People’s Hospital, Meizhou, Guangdong, China
| |
Collapse
|
4
|
Rahmati-Dehkordi F, Khanifar H, Zare-Hoseinabadi A, Dadgostar E, Jafarpour H, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. Potential of Edaravone Dexborneol in the treatment of cerebral ischemia: focus on cell death-related signaling pathways. Mol Biol Rep 2024; 51:1007. [PMID: 39312062 DOI: 10.1007/s11033-024-09952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 02/06/2025]
Abstract
Cerebral ischemia has the highest global rate of morbidity and mortality. It occurs when a sudden occlusion develops in the arterial system, and consequently some parts of the brain are deprived from glucose and oxygen due to the cessation of blood flow. The ensuing reperfusion of the ischemic area results in a cascade of pathological alternations like neuronal apoptosis by producing excessive reactive oxygen species (ROS), oxidative stress and neuroinflammation. Edaravone Dexborneol is a novel agent, comprised of Edaravone and Dexborneol in a 4:1 ratio. It has documented neuroprotective effects against cerebral ischemia injury. Edaravone Dexborneol improves neurobehavioral and sensorimotor function, cognitive function, brain edema, and blood-brain barrier (BBB) integrity in experimental models. It at dosages ranging between 0.375 and 15 mg/kg (from immediately after ischemia until the 28th post-ischemic days) has shown neuroprotective effects in experimental models of cerebral ischemia by inhibiting cell death-signaling pathways. For example, it inhibits apoptosis by increasing Bcl2, and reducing Bax and caspase-3 expression. Edaravone Dexborneol also inhibits pyroptosis by attenuating NF-κB/NLRP3/GSDMD signaling, as well as ferroptosis by activating the Nrf-2/HO-1/GPX4 signaling pathway. It also inhibits autophagy by targeting PI3K/Akt/mTOR signaling pathway. Here, we provide a review on the impacts of Edaravone Dexborneol on cerebral ischemia.
Collapse
Affiliation(s)
- Fatemeh Rahmati-Dehkordi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hadi Khanifar
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Islamic Republic of Iran
| | - Alireza Zare-Hoseinabadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Hamed Jafarpour
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Islamic Republic of Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Omid Reza Tamtaji
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
5
|
Wu Y, Yang H, Chen F, Li B, Meng X. RNA sequencing reveals the potential mechanism of exercise preconditioning for cerebral ischemia reperfusion injury in rats. Brain Behav 2024; 14:e3608. [PMID: 38956886 PMCID: PMC11219470 DOI: 10.1002/brb3.3608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
INTRODUCTION Cerebral ischemia reperfusion injury (CIRI) often leads to deleterious complications after stroke patients receive reperfusion therapy. Exercise preconditioning (EP) has been reported to facilitate brain function recovery. We aim to explore the specific mechanism of EP in CIRI. METHODS Sprague-Dawley rats were randomized into Sham, middle cerebral artery occlusion (MCAO), and EP groups (n = 11). The rats in the EP group received adaptive training for 3 days (10 m/min, 20 min/day, with a 0° incline) and formal training for 3 weeks (6 days/week, 25 m/min, 30 min/day, with a 0° incline). Then, rats underwent MCAO surgery to establish CIRI models. After 48 h, neurological deficits and cerebral infarction of the rats were measured. Neuronal death and apoptosis in the cerebral cortices were detected. Furthermore, RNA sequencing was conducted to investigate the specific mechanism of EP on CIRI, and qPCR and Western blotting were further applied to confirm RNA sequencing results. RESULTS EP improved neurological deficit scores and reduced cerebral infarction in MCAO rats. Additionally, pre-ischemic exercise also alleviated neuronal death and apoptosis of the cerebral cortices in MCAO rats. Importantly, 17 differentially expressed genes (DEGs) were identified through RNA sequencing, and these DEGs were mainly enriched in the HIF-1 pathway, cellular senescence, proteoglycans in cancer, and so on. qPCR and Western blotting further confirmed that EP could suppress TIMP1, SOCS3, ANGPTL4, CDO1, and SERPINE1 expressions in MCAO rats. CONCLUSION EP can improve CIRI in vivo, the mechanism may relate to TIMP1 expression and HIF-1 pathway, which provided novel targets for CIRI treatment.
Collapse
Affiliation(s)
- Yan Wu
- Department of Rehabilitation MedicineHangzhou First People's HospitalHangzhouZhejiangChina
| | - Hui Yang
- Department of NeurologyHangzhou First People's HospitalHangzhouZhejiangChina
| | - Feifeng Chen
- Department of Rehabilitation MedicineHangzhou First People's HospitalHangzhouZhejiangChina
| | - Baohua Li
- Department of NeurologyHangzhou First People's HospitalHangzhouZhejiangChina
| | - Xiangbo Meng
- Department of Rehabilitation MedicineThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
6
|
Atallah M, Yamashita T, Hu X, Hu X, Abe K. Edaravone Confers Neuroprotective, Anti-inflammatory, and Antioxidant Effects on the Fetal Brain of a Placental-ischemia Mouse Model. J Neuroimmune Pharmacol 2023; 18:640-656. [PMID: 37924374 DOI: 10.1007/s11481-023-10095-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
Reduced uterine perfusion pressure (RUPP) is a well-established model which mimics many clinical features of preeclampsia (PE). Edaravone is a free radical scavenger with neuroprotective, antioxidant and anti-inflammatory effects against different models of cerebral ischemia. Therefore, we aimed to elucidate the different potential mechanisms through which PE affects fetal brain development using our previously established RUPP-placental ischemia mouse model. In addition, we investigated the neuroprotective effect of edaravone against the RUPP-induced fetal brain development alterations. On gestation day (GD) 13, pregnant mice were divided into four groups; sham (SV), edaravone (SE), RUPP (RV), and RUPP+edaravone (RE). SV and SE groups underwent sham surgeries, however, RV and RE groups were subjected to RUPP surgery via bilateral uterine ligation. Edaravone (3mg/kg) was injected via tail i.v. injection from GD 14-18. The fetal brains from different groups were collected on GD 18 and subjected to further investigations. The results showed that RUPP altered the structure of fetal brain cortex, induced neurodegeneration, increased the expression of the investigated pro-inflammatory markers; TNF-α, IL-6, IL-1β, and MMP-9. RUPP resulted in microglial and astrocyte activation in the fetal brains, in addition to upregulation of Hif-1α and iNOS. Edaravone conferred a neuroprotective effect via alleviating the inflammatory response, restoring the neuronal structure and decreasing oxidative stress in the developing fetal brain. In conclusion, RUPP-placental ischemia mouse model could be a useful tool to further understand the underlying mechanisms of PE-induced child neuronal alterations. Edaravone could be a potential adjuvant therapy during PE to protect the developing fetal brain. The current study investigated the effects of a placenta-induced ischemia mouse model using reduced uterine perfusion pressure (RUPP) surgery on the fetal brain development and the potential neuroprotective effects of the drug edaravone. The study found that the RUPP model caused neurodegeneration and a pro-inflammatory response in the developing fetal brain, as well as hypoxia and oxidative stress. However, maternal injection of edaravone showed a strong ability to protect against these detrimental effects and target multiple pathways associated with neuronal damage. The current study suggests that the RUPP model could be useful for further study of the impact of preeclampsia on fetal brain development and that edaravone may have potential as a therapy for protecting against this damage.
Collapse
Affiliation(s)
- Marwa Atallah
- Vertebrates Comparative Anatomy and Embryology, Zoology Department, Faculty of Science, Menoufia University, Shibin El-Koom, Egypt.
| | - Toru Yamashita
- Department of Neurology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Xiao Hu
- Department of Neurology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Xinran Hu
- Department of Neurology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
- National Center of Neurology and Psychiatry (NCNP), National Center Hospital, Tokyo, Japan
| |
Collapse
|
7
|
Tang H, Li Y, Tang W, Zhu J, Parker GC, Zhang JH. Endogenous Neural Stem Cell-induced Neurogenesis after Ischemic Stroke: Processes for Brain Repair and Perspectives. Transl Stroke Res 2023; 14:297-303. [PMID: 36057034 DOI: 10.1007/s12975-022-01078-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Ischemic stroke is a very common cerebrovascular accident that occurred in adults and causes higher risk of neural deficits. After ischemic stroke, patients are often left with severe neurological deficits. Therapeutic strategies for ischemic stroke might mitigate neuronal loss due to delayed neural cell death in the penumbra or seek to replace dead neural cells in the ischemic core. Currently, stem cell therapy is the most promising approach for inducing neurogenesis for neural repair after ischemic stroke. Stem cell treatments include transplantation of exogenous stem cells but also stimulating endogenous neural stem cells (NSCs) proliferation and differentiation into neural cells. In this review, we will discuss endogenous NSCs-induced neurogenesis after ischemic stroke and provide perspectives for the therapeutic effects of endogenous NSCs in ischemic stroke. Our review would inform future therapeutic development not only for patients with ischemic stroke but also with other neurological deficits.
Collapse
Affiliation(s)
- Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China.
| | - Graham C Parker
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92354, USA.
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA.
| |
Collapse
|
8
|
Zhao R, Zhao H, Guo Q, Mu Y, Zhang J, Su Y, Han Q. Edaravone protects against liver fibrosis progression via decreasing the IL-1β secretion of macrophages. Chem Biol Interact 2022; 368:110251. [PMID: 36343683 DOI: 10.1016/j.cbi.2022.110251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/22/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Edaravone (EDA), a strong novel free radical scavenger, have been demonstrated to exert neurovascular protective effects clinically. Furthermore, EDA can suppress the lung injury, pulmonary fibrosis and skin fibrosis, while the precise effects and mechanisms of EDA on liver injury and fibrosis remain unclear. The effects of EDA on the Thioacetamide (TAA)-induced liver fibrosis were evaluated by sirius red staining, α-SMA immunohistochemistry. The percentages of immune cell subsets were analyzed by flow cytometry. Immunofluorescence assay was performed to identify the fibrotic properties of hepatic stellate cells (HSCs). Western blot and qPCR were used to detect the levels of liver fibrosis-related molecules and IL-1β. EDA displayed a hepatic protective role in TAA-induced chronic liver fibrosis via inhibiting monocyte/macrophages recruitment and IL-1β production of macrophages. Mechanically, EDA inhibited of NF-κB signal pathway and reactive oxygen species (ROS) production in macrophages. Moreover, EDA treatment indirectly suppressed the activation of HSCs by decreasing the IL-1β secretion of macrophages. Together, EDA protects against TAA-induced liver fibrosis via decreasing the IL-1β production of macrophages, thereby providing a feasible solution for clinical treatment of liver fibrosis.
Collapse
Affiliation(s)
- Rongrong Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Quanjuan Guo
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Yongliang Mu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Yuhang Su
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
9
|
Kong XM, Song D, Li J, Jiang Y, Zhang XY, Wu XJ, Ge MJ, Xu JJ, Gao XM, Zhao Q. Preliminary verification of the anti-hypoxia mechanism of Gentiana straminea maxim based on UPLC-triple TOF MS/MS and network pharmacology. BMC Complement Med Ther 2022; 22:310. [PMID: 36434600 PMCID: PMC9700950 DOI: 10.1186/s12906-022-03773-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/29/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Anoxia is characterized by changes in the morphology, metabolism, and function of tissues and organs due to insufficient oxygen supply or oxygen dysfunction. Gentiana straminea Maxim (G.s Maxim) is a traditional Tibetan medicine. Our previous work found that G.s Maxim mediates resistance to hypoxia, and we found that the ethyl acetate extract had the best effect. Nevertheless, the primary anti-hypoxia components and mechanisms of action remain unclear. METHODS Compounds from the ethyl acetate extraction of G.s Maxim were identified using UPLC-Triple TOF MS/MS. Then Traditional Chinese Medicine Systematic Pharmacology Database was used to filtrate them. Network pharmacology was used to forecast the mechanisms of these compounds. Male specific pathogen-free Sprague Dawley rats were randomly divided into six groups: (1) Control; (2) Model; (3) 228 mg/kg body weight Rhodiola capsules; (4) 6.66 g/kg body weight the G.s Maxim's ethyl acetate extraction; (5) 3.33 g/kg body weight the G.s Maxim's ethyl acetate extraction; (6) 1.67 g/kg body weight the G.s Maxim's ethyl acetate extraction. After administering intragastric ally for 15 consecutive days, an anoxia model was established using a hypobaric oxygen chamber (7000 m, 24 h). Then Histology, enzyme-linked immunosorbent assays, and western blots were performed to determine these compounds' anti-hypoxic effects and mechanisms. Finally, we performed a molecular docking test to test these compounds using Auto Dock. RESULTS Eight drug-like compounds in G.s Maxim were confirmed using UPLC-Triple TOF MS/MS and Lipinski's rule. The tumor necrosis factor (TNF) signaling pathway, the hypoxia-inducible factor 1 (HIF-1) signaling pathway, and the nuclear factor kappa-B (NF-κB) signaling pathway was signaling pathways that G.s Maxim mediated anti-anoxia effects. The critical targets were TNF, Jun proto-oncogene (JUN), tumor protein p53 (TP53), and threonine kinase 1 (AKT1). Animal experiments showed that the ethyl acetate extraction of G.s Maxim ameliorated the hypoxia-induced damage of hippocampal nerve cells in the CA1 region and reversed elevated serum expression of TNF-α, IL-6, and NF-κ B in hypoxic rats. The compound also reduced the expression of HIF-1α and p65 and increased the Bcl-2/Bax ratio in brain tissue. These findings suggest that G.s Maxim significantly protects against brain tissue damage in hypoxic rats by suppressing hypoxia-induced apoptosis and inflammation. Ccorosolic acid, oleanolic acid, and ursolic acid had a strong affinity with core targets. CONCLUSIONS The ethyl acetate extraction of G.s Maxim mediates anti-hypoxic effects, possibly related to inhibiting apoptosis and inflammatory responses through the HIF-1/NF-κB pathway. The primary active components might be corosolic, oleanolic, and ursolic acids.
Collapse
Affiliation(s)
- Xiu mei Kong
- grid.460748.90000 0004 5346 0588Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi China
| | - Dan Song
- grid.460748.90000 0004 5346 0588Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi China
| | - Jie Li
- grid.460748.90000 0004 5346 0588Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi China
| | - Yi Jiang
- grid.460748.90000 0004 5346 0588Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi China
| | - Xiao ying Zhang
- grid.460748.90000 0004 5346 0588Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi China
| | - Xiao Jun Wu
- grid.460748.90000 0004 5346 0588Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi China
| | - Ming juan Ge
- grid.440747.40000 0001 0473 0092Xianyang Hospital of Yan’an University, Xianyang, 712000 Shaanxi China
| | - Jiao jiao Xu
- grid.460748.90000 0004 5346 0588Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi China
| | - Xiao min Gao
- grid.460748.90000 0004 5346 0588Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi China
| | - Qin Zhao
- grid.460748.90000 0004 5346 0588Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi China ,grid.460748.90000 0004 5346 0588Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, 712082 Shaanxi China
| |
Collapse
|
10
|
Masrori P, Beckers J, Gossye H, Van Damme P. The role of inflammation in neurodegeneration: novel insights into the role of the immune system in C9orf72 HRE-mediated ALS/FTD. Mol Neurodegener 2022; 17:22. [PMID: 35303907 PMCID: PMC8932121 DOI: 10.1186/s13024-022-00525-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is an important hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). An inflammatory reaction to neuronal injury is deemed vital for neuronal health and homeostasis. However, a continued activation of the inflammatory response can be detrimental to remaining neurons and aggravate the disease process. Apart from a disease modifying role, some evidence suggests that neuroinflammation may also contribute to the upstream cause of the disease. In this review, we will first focus on the role of neuroinflammation in the pathogenesis of chromosome 9 open reading frame 72 gene (C9orf72) hexanucleotide repeat expansions (HRE)-mediated ALS/FTD (C9-ALS/FTD). Additionally, we will discuss evidence from ex vivo and in vivo studies and finally, we briefly summarize the trials and progress of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Pegah Masrori
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium.,Neurology Department, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.,Department of Neurology, University Hospital Antwerp, 2650, Edegem, Belgium
| | - Jimmy Beckers
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium
| | - Helena Gossye
- Department of Neurology, University Hospital Antwerp, 2650, Edegem, Belgium.,VIB Center for Molecular Neurology, Neurodegenerative Brain Diseases, University of Antwerp, 2000, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, 2000, Antwerp, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium. .,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium. .,Neurology Department, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
11
|
Lin F, Yao X, Kong C, Liu X, Zhao Z, Rao S, Wang L, Li S, Wang J, Dai Q. 25-Hydroxycholesterol protecting from cerebral ischemia-reperfusion injury through the inhibition of STING activity. Aging (Albany NY) 2021; 13:20149-20163. [PMID: 34406977 PMCID: PMC8436919 DOI: 10.18632/aging.203337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022]
Abstract
Middle cerebral artery occlusion (MCAO) injury refers to impaired blood supply to the brain that is caused by a cerebrovascular disease, resulting in local brain tissue ischemia, hypoxic necrosis, and rapid neurological impairment. Nevertheless, the mechanisms involved are unclear, and pharmacological interventions are lacking. 25-Hydroxycholesterol (25-HC) was reported to be involved in cholesterol and lipid metabolism as an oxysterol molecule. This study aimed to determine whether 25-HC exerts a cerebral protective effect on MCAO injury and investigate its potential mechanism. 25-HC was administered prior to reperfusion in a mouse model of MCAO injury. 25-HC evidently decreased infarct size induced by MCAO and enhanced brain function. It reduced stimulator of interferon gene (STING) activity and regulated mTOR to inhibit autophagy and induce cerebral ischemia tolerance. Thus, 25-HC improved MCAO injury through the STING channel. As indicated in this preliminary study, 25-HC improved MCAO injury by inhibiting STING activity and autophagy as well as by reducing brain nerve cell apoptosis. Thus, it is a potential treatment drug for brain injury.
Collapse
Affiliation(s)
- Feihong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Yao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chang Kong
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xia Liu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhangfan Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Suhuan Rao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shan Li
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinxue Dai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Zhou Y, Liao J, Mei Z, Liu X, Ge J. Insight into Crosstalk between Ferroptosis and Necroptosis: Novel Therapeutics in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9991001. [PMID: 34257829 PMCID: PMC8257382 DOI: 10.1155/2021/9991001] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent accumulation of lipid hydroperoxides to lethal levels. Necroptosis, an alternative form of programmed necrosis, is regulated by receptor-interacting protein (RIP) 1 activation and by RIP3 and mixed-lineage kinase domain-like (MLKL) phosphorylation. Ferroptosis and necroptosis both play important roles in the pathological progress in ischemic stroke, which is a complex brain disease regulated by several cell death pathways. In the past few years, increasing evidence has suggested that the crosstalk occurs between necroptosis and ferroptosis in ischemic stroke. However, the potential links between ferroptosis and necroptosis in ischemic stroke have not been elucidated yet. Hence, in this review, we overview and analyze the mechanism underlying the crosstalk between necroptosis and ferroptosis in ischemic stroke. And we find that iron overload, one mechanism of ferroptosis, leads to mitochondrial permeability transition pore (MPTP) opening, which aggravates RIP1 phosphorylation and contributes to necroptosis. In addition, heat shock protein 90 (HSP90) induces necroptosis and ferroptosis by promoting RIP1 phosphorylation and suppressing glutathione peroxidase 4 (GPX4) activation. In this work, we try to deliver a new perspective in the exploration of novel therapeutic targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yue Zhou
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jun Liao
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhigang Mei
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Xun Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jinwen Ge
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Medicine, Shaoyang University, Shaoyang, Hunan 422000, China
| |
Collapse
|
13
|
Li Z. Equilibrium solubility of edaravone in some binary aqueous and non-aqueous solutions reconsidered: Extended Hildebrand solubility approach, transfer property and preferential solvation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Zheng J, Wei Z, Yang K, Lu Y, Lu P, Zhao J, Du Y, Zhang H, Li R, Lei S, Lv H, Chen X, Liu Y, Chen YM, Zhang Q, Zhang P. Neural Stem Cell-Laden Self-Healing Polysaccharide Hydrogel Transplantation Promotes Neurogenesis and Functional Recovery after Cerebral Ischemia in Rats. ACS APPLIED BIO MATERIALS 2021; 4:3046-3054. [PMID: 35014393 DOI: 10.1021/acsabm.0c00934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exploring a strategy to effectively repair cerebral ischemic injury is a critical requirement for neuroregeneration. Herein, we transplanted a neural stem cell (NSC)-laden self-healing and injectable hydrogel into the brains of ischemic rats and evaluated its therapeutic effects. We observed an improvement in neurological functions in rats transplanted with the NSC-laden hydrogel. This strategy is sufficiently efficient to support neuroregeneration evidenced by NSC proliferation, differentiation, and athletic movement recovery of rats. This therapeutic effect relates to the inhibition of the astrocyte reaction and the increased expression of vascular endothelial growth factor. This work provides a novel approach to repair cerebral ischemic injury.
Collapse
Affiliation(s)
- Juan Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| | - Zhao Wei
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Kuan Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yang Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| | - Pan Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| | - Jingyi Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| | - Yin Du
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| | - Hong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| | - Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| | - Shan Lei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| | - Haixia Lv
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University, Xi'an 710016, P. R. China
| | - Xinlin Chen
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University, Xi'an 710016, P. R. China
| | - Yong Liu
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University, Xi'an 710016, P. R. China
| | - Yong Mei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Qiqing Zhang
- Institute of Biomedical Engineering, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, P. R. China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| |
Collapse
|
15
|
Kurt S, Aygun H. Anticonvulsive effects of edaravone on penicillin-induced focal onset seizure model in the conscious rats. Fundam Clin Pharmacol 2021; 35:861-869. [PMID: 33484001 DOI: 10.1111/fcp.12651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 01/15/2023]
Abstract
Edaravone is a potent antioxidant and anti-inflammatory agent that is used in the clinic. The aim of the present study was to evaluate the chronic treatment effect of edaravone on penicillin-induced epileptiform activity. Twenty-eight Wistar rats were randomly divided into a total of four groups as penicillin control and edaravone pretreatment groups (1, 10, and 30mg/kg). Firstly, permanent electrodes for electrocorticography (ECoG) recording and canula for penicillin injection were placed as stereotactic under anesthesia. At the end of the recovery period, edaravone pretreatment groups received different doses of edaravone by intraperitoneal injection for 14 days and before 30-min penicillin microinjection. Epileptiform activity was induced by injecting 500 IU penicillin through the intracortical cannula. The effects of edaravone pretreatment on epileptiform activity were evaluated by using both electrophysiological and behavioral parameters. Edaravone pretreatment suppressed epileptiform activity by reducing the mean spike frequency and the behavior scores in ECoG recording. The results of the present study indicated that the use of chronic edaravone had an anticonvulsant effect on penicillin-induced focal onset epileptic activity. Edaravone had an anticonvulsant effect even at low doses.
Collapse
Affiliation(s)
- Semiha Kurt
- Department of Neurology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Hatice Aygun
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
16
|
Yu H, Wu Z, Wang X, Gao C, Liu R, Kang F, Dai M. Protective effects of combined treatment with mild hypothermia and edaravone against cerebral ischemia/reperfusion injury via oxidative stress and Nrf2 pathway regulation. Int J Oncol 2020; 57:500-508. [PMID: 32626935 PMCID: PMC7307586 DOI: 10.3892/ijo.2020.5077] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Mild hypothermia (MH) and edaravone (EDA) exert neuroprotective effects against cerebral ischemia/reperfusion (I/R) injury through activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. However, whether MH and EDA exert synergistic effects against cerebral I/R injury remains unknown. The aim of the present study was to investigate the effects and mechanism of action of MH in combination with EDA in cerebral I/R injury. A rat cerebral I/R injury model was constructed by middle cerebral artery occlusion (MCAO) followed by reperfusion, and the mice were treated by MH, EDA or the inhibitor of the Nrf2 signaling pathway brusatol (Bru). It was observed that mice treated by MCAO had higher neurological deficit scores and oxidative stress levels, and low spatial learning and memory capacity; moreover, the CA1 region of the hippocampi of the mice exhibited reduced neuronal density and viability, and reduced mitochondrial dysfunction. However, MH in combination with EDA reversed the effects of MCAO, which were blocked by Bru injection. The levels of glutathione (GSH), GSH peroxidase, catalase and superoxide dismutase in rat ischemic hemisphere tissues were reduced by Bru. Western blotting demonstrated that the combined treatment with MH and EDA promoted the nuclear localization of Nrf2, and increased the levels of NAD(P)H quinone oxidoreductase and heme oxygenase (HO)-1. In conclusion, MH combined with EDA exerted synergistic neuroprotective effects against cerebral I/R injury involving changes in the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Hang Yu
- Department of Critical Care Medicine, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Zhidian Wu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Xiaozhi Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Chang Gao
- Department of Pathophysiology, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Run Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Fuxin Kang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Mingming Dai
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
17
|
Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis 2020; 23:299-314. [PMID: 32246225 DOI: 10.1007/s10456-020-09720-2] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
As reperfusion therapies have become more widely used in acute myocardial infarction patients, ischemia-induced myocardial damage has been markedly reduced, but reperfusion-induced cardiac injury has become increasingly evident. The features of cardiac ischemia-reperfusion (I/R) injury include microvascular perfusion defects, platelet activation and sequential cardiomyocyte death due to additional ischemic events at the reperfusion stage. Microvascular obstruction, defined as a no-reflow phenomenon, determines the infarct zone, myocardial function and peri-operative mortality. Cardiac microvascular endothelial cell injury may occur much earlier and with much greater severity than cardiomyocyte injury. Endothelial cells contain fewer mitochondria than other cardiac cells, and several of the pathological alterations during cardiac microvascular I/R injury involve mitochondria, such as increased mitochondrial reactive oxygen species (mROS) levels and disturbed mitochondrial dynamics. Although mROS are necessary physiological second messengers, high mROS levels induce oxidative stress, endothelial senescence and apoptosis. Mitochondrial dynamics, including fission, fusion and mitophagy, determine the shape, distribution, size and function of mitochondria. These adaptive responses modify extracellular signals and orchestrate intracellular processes such as cell proliferation, migration, metabolism, angiogenesis, permeability transition, adhesive molecule expression, endothelial barrier function and anticoagulation. In this review, we discuss the involvement of mROS and mitochondrial morphofunction in cardiac microvascular I/R injury.
Collapse
Affiliation(s)
- Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China. .,Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
18
|
Singh S, Kumar A. Protective Effect of Edaravone on Cyclophosphamide Induced Oxidative Stress and Neurotoxicity in Rats. Curr Drug Saf 2020; 14:209-216. [PMID: 31057112 PMCID: PMC6864589 DOI: 10.2174/1574886314666190506100717] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/11/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cyclophosphamide (CPA) is the most widely prescribed cancer chemotherapeutic agent which shows serious neurotoxic side effect. Generation of reactive oxygen species at the cellular level is the basic mechanism of cyclophosphamide induced neurotoxicity. Edaravone is the synthetic drug used for brain stroke and has potent antioxidant property. OBJECTIVE This study aimed to investigate the effect of edaravone on neurobehavioral and neuropathological alteration induced by cyclophosphamide in male rats. METHODS Twenty eight Sprague-Dawley rats were equally divided into four groups of seven rats in each. The control group received saline, and other groups were given CPA intraperitoneally (100 mg/kg), CPA (100 mg/kg) intraperitoneally + Edaravone (10 mg/kg) orally, or Edaravone (10 mg/kg) orally for one month. RESULTS Our data showed that CPA significantly elevated brain AChE activity in the hippocampal region. A decrease in the total antioxidant capacity and a reduction in the CAT, SOD, and GPX activity occurred in the brains of the rats exposed to CPA. CPA-treated rats showed a significant impairment in long-termmemory and motor coordination. These results were supported by histopathological observations of the brain. Results revealed that administration of edaravone reversed AChE activity alternation and ameliorated behavioral and histopathological changes induced by CPA. CONCLUSION This study suggests that co-administration of edaravone with cyclophosphamide may be a useful intriguing therapeutic approach to overcome cyclophosphamide induced neurotoxicity.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India.,Truba Institute of Pharmacy, Bhopal, MP, India
| | | |
Collapse
|
19
|
Wang Y, Xiao G, He S, Liu X, Zhu L, Yang X, Zhang Y, Orgah J, Feng Y, Wang X, Zhang B, Zhu Y. Protection against acute cerebral ischemia/reperfusion injury by QiShenYiQi via neuroinflammatory network mobilization. Biomed Pharmacother 2020; 125:109945. [PMID: 32028240 DOI: 10.1016/j.biopha.2020.109945] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Cerebral ischemia/reperfusion injury (CI/RI) is a common feature of ischemic stroke, involving a period of impaired blood supply to the brain, followed by the restoration of cerebral perfusion through medical intervention. Although ischemia and reperfusion brain damage is a complex pathological process with an unclear physiological mechanism, more attention is currently focused on the neuroinflammatory response of an ischemia/reperfusion origin, and anti-inflammatory appears to be a potential therapeutic strategy following ischemic stroke. QiShenYiQi (QSYQ), a component-based Chinese medicine with Qi-tonifying and blood-activating property, has pharmacological actions of anti-inflammatory, antioxidant, mitochondrial protectant, anti-apoptosis, and antiplatelet aggregation. We have previously reported that the cardioprotective effect of QSYQ against ischemia/reperfusion injury is via improvement of mitochondrial functional integrity. In this research work, we aimed to investigate the possible mechanism involved in the neuroprotection of QSYQ in mice model of cerebral ischemia/reperfusion injury based on the inflammatory pathway. The cerebral protection was evaluated in the stroke mice after 24 h reperfusion by assessing the neurological deficit, cerebral infarction, brain edema, BBB functionality, and via histopathological assessment. TCM-based network pharmacology method was performed to establish and analyze compound-target-disease & function-pathway network so as to find the possible mechanism linking to the role of QSYQ in CI/RI. In addition, RT-qPCR was used to verify the accuracy of predicted signaling gene expression. As a result, improvement of neurological outcome, reduction of infarct volume and brain edema, a decrease in BBB disruption, and amelioration of histopathological alteration were observed in mice pretreated with QSYQ after experimental stroke surgery. Network pharmacology analysis revealed neuroinflammatory response was associated with the action of QSYQ in CI/RI. RT-qPCR data showed that the mice pretreated with QSYQ could significantly decrease IFNG-γ, IL-6, TNF-α, NF-κB p65, and TLR-4 mRNA levels and increase TGF-β1 mRNA level in the brain compared to the untreated mice after CI/RI (p < 0.05). In conclusion, our study indicated the cerebral protective effect of pretreatment with QSYQ against CI/RI, which may be partly related to its potential to the reduction of neuroinflammatory response in a stroke subject.
Collapse
Affiliation(s)
- Yule Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Xinyan Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Lin Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Xinyue Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Yiqian Zhang
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin Tasly Holding Group Co., Ltd., Tianjin, China
| | - John Orgah
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Yuxin Feng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Xiaoying Wang
- Neuroscience Program, Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Boli Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China.
| |
Collapse
|
20
|
Trageser KJ, Smith C, Herman FJ, Ono K, Pasinetti GM. Mechanisms of Immune Activation by c9orf72-Expansions in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Neurosci 2019; 13:1298. [PMID: 31920478 PMCID: PMC6914852 DOI: 10.3389/fnins.2019.01298] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders with overlapping pathomechanisms, neurobehavioral features, and genetic etiologies. Individuals diagnosed with either disorder exhibit symptoms within a clinical spectrum. Symptoms of ALS involve neuromusculature deficits, reflecting upper and lower motor neurodegeneration, while the primary clinical features of FTD are behavioral and cognitive impairments, reflecting frontotemporal lobar degeneration. An intronic G4C2 hexanucleotide repeat expansion (HRE) within the promoter region of chromosome 9 open reading frame 72 (C9orf72) is the predominant monogenic cause of both ALS and FTD. While the heightened risk to develop ALS/FTD in response to C9orf72 expansions is well-established, studies continue to define the precise mechanisms by which this mutation elicits neurodegeneration. Studies show that G4C2 expansions undergo repeat-associated non-ATG dependent (RAN) translation, producing dipeptide repeat proteins (DRPs) with varying toxicities. Accumulation of DRPs in neurons, in particular arginine containing DRPs, have neurotoxic effects by potently impairing nucleocytoplasmic transport, nucleotide metabolism, lysosomal processes, and cellular metabolic pathways. How these pathophysiological effects of C9orf72 expansions engage and elicit immune activity with additional neurobiological consequences is an important line of future investigations. Immunoreactive microglia and elevated levels of peripheral inflammatory cytokines noted in individuals with C9orf72 ALS/FTD provide evidence that persistent immune activation has a causative role in the progression of each disorder. This review highlights the current understanding of the cellular, proteomic and genetic substrates through which G4C2 HREs may elicit detrimental immune activity, facilitating region-specific neurodegeneration in C9orf72 mediated ALS/FTD. We in particular emphasize interactions between intracellular pathways induced by C9orf72 expansions and innate immune inflammasome complexes, intracellular receptors responsible for eliciting inflammation in response to cellular stress. A further understanding of the intricate, reciprocal relationship between the cellular and molecular pathologies resulting from C9orf72 HREs and immune activation may yield novel therapeutics for ALS/FTD, which currently have limited treatment strategies.
Collapse
Affiliation(s)
- Kyle J Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Chad Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Francis J Herman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Geriatrics Research, Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, United States
| |
Collapse
|
21
|
Matic A, Jukic I, Stupin A, Baric L, Mihaljevic Z, Unfirer S, Tartaro Bujak I, Mihaljevic B, Lombard JH, Drenjancevic I. High salt intake shifts the mechanisms of flow-induced dilation in the middle cerebral arteries of Sprague-Dawley rats. Am J Physiol Heart Circ Physiol 2018; 315:H718-H730. [DOI: 10.1152/ajpheart.00097.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of the present study was to examine the effect of 1 wk of high salt (HS) intake and the role of oxidative stress in changing the mechanisms of flow-induced dilation (FID) in isolated pressurized middle cerebral arteries of male Sprague-Dawley rats ( n = 15–16 rats/group). Reduced FID in the HS group was restored by intake of the superoxide scavenger tempol (HS + tempol in vivo group). The nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester, cyclooxygenase inhibitor indomethacin, and selective inhibitor of microsomal cytochrome P-450 epoxidase activity N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide significantly reduced FID in the low salt diet-fed group, whereas FID in the HS group was mediated by NO only. Cyclooxygenase-2 mRNA (but not protein) expression was decreased in the HS and HS + tempol in vivo groups. Hypoxia-inducible factor-1α and VEGF protein levels were increased in the HS group but decreased in the HS + tempol in vivo group. Assessment by direct fluorescence of middle cerebral arteries under flow revealed significantly reduced vascular NO levels and increased superoxide/reactive oxygen species levels in the HS group. These results suggest that HS intake impairs FID and changes FID mechanisms to entirely NO dependent, in contrast to the low-salt diet-fed group, where FID is NO, prostanoid, and epoxyeicosatrienoic acid dependent. These changes were accompanied by increased lipid peroxidation products in the plasma of HS diet-fed rats, increased vascular superoxide/reactive oxygen species levels, and decreased NO levels, together with increased expression of hypoxia-inducible factor-1α and VEGF. NEW & NOTEWORTHY High-salt (HS) diet changes the mechanisms of flow-induced dilation in rat middle cerebral arteries from a combination of nitric oxide-, prostanoid-, and epoxyeicosatrienoic acid-dependent mechanisms to, albeit reduced, a solely nitric oxide-dependent dilation. In vivo reactive oxygen species scavenging restores flow-induced dilation in HS diet-fed rats and ameliorates HS-induced increases in the transcription factor hypoxia-inducible factor-1α and expression of its downstream target genes.
Collapse
Affiliation(s)
- Anita Matic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ivana Jukic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Lidija Baric
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Zrinka Mihaljevic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Sanela Unfirer
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ivana Tartaro Bujak
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Branka Mihaljevic
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Julian H. Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| |
Collapse
|
22
|
Functional importance of the TGF-β1/Smad3 signaling pathway in oxygen-glucose-deprived (OGD) microglia and rats with cerebral ischemia. Int J Biol Macromol 2018; 116:537-544. [DOI: 10.1016/j.ijbiomac.2018.04.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 11/20/2022]
|
23
|
Curcumin attenuates cerebral ischemia injury in Sprague–Dawley rats and PC12 cells by suppressing overactivated autophagy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 184:1-6. [DOI: 10.1016/j.jphotobiol.2018.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/30/2018] [Accepted: 05/06/2018] [Indexed: 12/22/2022]
|
24
|
Huang J, Wang T, Yu D, Fang X, Fan H, Liu Q, Yi G, Yi X, Liu Q. l-Homocarnosine attenuates inflammation in cerebral ischemia-reperfusion injury through inhibition of nod-like receptor protein 3 inflammasome. Int J Biol Macromol 2018; 118:357-364. [PMID: 29890246 DOI: 10.1016/j.ijbiomac.2018.06.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
We investigated the therapeutic effects of l-homocarnosine against inflammation in a rat model of cerebral ischemia-reperfusion injury. Rats were grouped into control, middle cerebral artery occlusion (MCAO), 0.5 mM l-homocarnosine + MCAO, and 1 mM l-homocarnosine + MCAO treatment groups. Superoxide dismutase (SOD), glutathione peroxidase (Gpx), catalase, lipid peroxidation, and reduced glutathione (GSH) levels were measured. Neurological scores were assessed, and histopathology, scanning electron microscopy (SEM), and fluorescence microscopy analyses were conducted. The mRNA expression levels of nod-like receptor protein 3 (NLRP3), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) and protein expression levels of NLRP3 were assessed. l-Homocarnosine supplementation substantially increased SOD, catalase, Gpx, and GSH levels, whereas it reduced the levels of lipid peroxidation relative to MCAO rats. l-Homocarnosine significantly reduced the infarct area and neurological deficit score, as well as histopathological alteration, apoptosis, and necrosis in brain tissue. The mRNA expression levels of NLRP3, TNF-α, and IL-6 were increased in MCAO rats, whereas l-homocarnosine supplementation reduced mRNA expression by >40%, and NLRP3 protein expression was reduced by >30% in 1 mM l-homocarnosine-treated MCAO rats. We propose that l-homocarnosine exerts a protective effect in cerebral ischemia-reperfusion injury-induced rats by downregulating NLRP3 expression.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pharmacology, Hainan Medical University, Haikou, Hainan 571199, China
| | - Tao Wang
- International Nursing School, Hainan Medical University, Haikou, Hainan 571199, China
| | - Daorui Yu
- Department of Pharmacology, Hainan Medical University, Haikou, Hainan 571199, China
| | - Xingyue Fang
- Department of Pharmacology, Hainan Medical University, Haikou, Hainan 571199, China
| | - Haofei Fan
- Department of Pharmacology, Hainan Medical University, Haikou, Hainan 571199, China
| | - Qiang Liu
- Department of Pharmacology, Hainan Medical University, Haikou, Hainan 571199, China
| | - Guohui Yi
- Department of Pharmacology, Hainan Medical University, Haikou, Hainan 571199, China
| | - Xinan Yi
- Department of Anatomy, School of Basic Medicine and Life Science, Hainan Medical University, Haikou, Hainan 571199, China
| | - Qibing Liu
- Department of Pharmacology, Hainan Medical University, Haikou, Hainan 571199, China.
| |
Collapse
|
25
|
Xiong XY, Liu L, Yang QW. Refocusing Neuroprotection in Cerebral Reperfusion Era: New Challenges and Strategies. Front Neurol 2018; 9:249. [PMID: 29740385 PMCID: PMC5926527 DOI: 10.3389/fneur.2018.00249] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Pathophysiological processes of stroke have revealed that the damaged brain should be considered as an integral structure to be protected. However, promising neuroprotective drugs have failed when translated to clinical trials. In this review, we evaluated previous studies of neuroprotection and found that unsound patient selection and evaluation methods, single-target treatments, etc., without cerebral revascularization may be major reasons of failed neuroprotective strategies. Fortunately, this may be reversed by recent advances that provide increased revascularization with increased availability of endovascular procedures. However, the current improved effects of endovascular therapy are not able to match to the higher rate of revascularization, which may be ascribed to cerebral ischemia/reperfusion injury and lacking of neuroprotection. Accordingly, we suggest various research strategies to improve the lower therapeutic efficacy for ischemic stroke treatment: (1) multitarget neuroprotectant combinative therapy (cocktail therapy) should be investigated and performed based on revascularization; (2) and more efforts should be dedicated to shifting research emphasis to establish recirculation, increasing functional collateral circulation and elucidating brain–blood barrier damage mechanisms to reduce hemorrhagic transformation. Therefore, we propose that a comprehensive neuroprotective strategy before and after the endovascular treatment may speed progress toward improving neuroprotection after stroke to protect against brain injury.
Collapse
Affiliation(s)
- Xiao-Yi Xiong
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Liang Liu
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
26
|
Li C, Mo Z, Lei J, Li H, Fu R, Huang Y, Luo S, Zhang L. Edaravone attenuates neuronal apoptosis in hypoxic-ischemic brain damage rat model via suppression of TRAIL signaling pathway. Int J Biochem Cell Biol 2018; 99:169-177. [PMID: 29635023 DOI: 10.1016/j.biocel.2018.03.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND OBJECTIVES Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. MATERIALS AND METHODS 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. RESULTS Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. CONCLUSION Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment.
Collapse
Affiliation(s)
- Chunyi Li
- Department of Neurology, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zhihuai Mo
- Department of Neurology, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Junjie Lei
- Department of Neurology, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Huiqing Li
- Department of Neurology, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Ruying Fu
- Department of Neurology, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Yanxia Huang
- Department of Neurology, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Shijian Luo
- Department of Neurology, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Lei Zhang
- Department of Neurology, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
27
|
Edaravone Improves Septic Cardiac Function by Inducing an HIF-1 α/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5216383. [PMID: 29765498 PMCID: PMC5885492 DOI: 10.1155/2018/5216383] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/20/2017] [Accepted: 02/06/2018] [Indexed: 01/21/2023]
Abstract
Septic myocardial dysfunction remains prevalent and raises mortality rate in patients with sepsis. During sepsis, tissues undergo tremendous oxidative stress which contributes critically to organ dysfunction. Edaravone, a potent radical scavenger, has been proved beneficial in ischemic injuries involving hypoxia-inducible factor- (HIF-) 1, a key regulator of a prominent antioxidative protein heme oxygenase- (HO-) 1. However, its effect in septic myocardial dysfunction remains unclarified. We hypothesized that edaravone may prevent septic myocardial dysfunction by inducing the HIF-1/HO-1 pathway. Rats were subjected to cecal ligation and puncture (CLP) with or without edaravone infusion at three doses (50, 100, or 200 mg/kg, resp.) before CLP and intraperitoneal injection of the HIF-1α antagonist, ME (15 mg/kg), after CLP. After CLP, rats had cardiac dysfunction, which was associated with deformed myocardium, augmented lipid peroxidation, and increased myocardial apoptosis and inflammation, along with decreased activities of catalase, HIF-1α, and HO-1 in the myocardium. Edaravone pretreatment dose-dependently reversed the changes, of which high dose most effectively improved cardiac function and survival rate of septic rats. However, inhibition of HIF-1α by ME demolished the beneficial effects of edaravone at high dose, reducing the survival rate of the septic rats without treatments. Taken together, edaravone, by inducing the HIF-1α/HO-1 pathway, suppressed oxidative stress and protected the heart against septic myocardial injury and dysfunction.
Collapse
|
28
|
Liang Y, Chen J, Zheng X, Chen Z, Liu Y, Li S, Fang X. Ultrasound-Mediated Kallidinogenase-Loaded Microbubble Targeted Therapy for Acute Cerebral Infarction. J Stroke Cerebrovasc Dis 2018; 27:686-696. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.09.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/24/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022] Open
|
29
|
Wang F, He Q, Wang J, Yuan Q, Guo H, Chai L, Wang S, Hu L, Zhang Y. Neuroprotective effect of salvianolate lyophilized injection against cerebral ischemia in type 1 diabetic rats. Altern Ther Health Med 2017; 17:258. [PMID: 28486941 PMCID: PMC5424323 DOI: 10.1186/s12906-017-1738-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Salvianolate lyophilized injection (SLI) has been clinically used in China for the treatment of acutely cerebral infarction. Clinical and experimental studies have shown that Diabetes mellitus (DM) not only increases the risk of ischemic stroke recurrence but also leads to poor outcomes and increases fatality rates after stroke. Our previous study has proved that SLI can reduce the infarct volume after stroke in type 1 diabetic rats. The aim of the study is to explore the mechanism of SLI on stroke outcome in type 1 diabetic (T1DM) rats. METHODS Type 1 diabetes rats model (T1DM) was induced in male Wistar rats by intraperitoneal (i.p) injection of streptozotocin (60 mg/kg) and T1DM rats were subjected to intraluminal middle cerebral artery occlusion (MCAO). The T1DM + MCAO rats were randomly divided into six groups: sham-operated, model-vehicle, positive control group (Edaravone-treating, DE 6 mg/kg) and SLI-treating group (10.5 mg/kg, 21 mg/kg and 42 mg/kg). SLI and DE were administered by tail vein injection at 3 h after MCAO, then daily for 14 days. Micro-CT scans of the brain tissue revealed vessel characteristics and distribution in the ischemia zone. Glucose uptake was analyzed by PET/CT. RAGE, MMP9 and inflammatory factors (COX-2, TNF-α and ICAM-1), HQ-1, HQO-1 and Nrf-2 expression levels in the ischemic brain tissue were analyzed by Immunofluorescence staining and Western blot at 14 days after MCAO. RESULTS In this study, we have demonstrated that SLI treatment significantly increased the number of brain microvasculature in ipsilateral and glucose uptake in cortex, hippocampus and penumbra in the T1DM + MCAO rats. SLI also significantly decreased the expression of RAGE, MMP9 and inflammatory factors expression, and increased the expression of HQ-1, HQO-1 and Nrf-2 in T1DM + MCAO rats. CONCLUSION The study showed that SLI could protect against cerebral ischemia injury in T1DM + MCAO rats and the mechanism is related to decrease inflammatory factors and activate of the Nrf2/HO-1 signaling pathway.
Collapse
|
30
|
Protective Effect of Edaravone against Carbon Monoxide Induced Apoptosis in Rat Primary Cultured Astrocytes. Biochem Res Int 2017; 2017:5839762. [PMID: 28261501 PMCID: PMC5312051 DOI: 10.1155/2017/5839762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 12/16/2022] Open
Abstract
Objective. To observe the protective effect of edaravone (Eda) on astrocytes after prolonged exposure to carbon monoxide (CO) and further to investigate the potential mechanisms of Eda against CO-induced apoptosis. Methods. The rat primary cultured astrocytes were cultured in vitro and exposed to 1% CO for 24 h after being cultured with different concentrations of Eda. MTT assay was used to detect the cytotoxicity of CO. Flow cytometry was used to detect the apoptosis rate, membrane potential of mitochondria, and ROS level. The mRNA and protein expressions of Bcl-2, Bax, and caspase-3 were assessed by real-time PCR and Western blotting analysis, respectively. Results. Eda can significantly suppress cytotoxicity of CO, and it can significantly increase membrane potential of mitochondria and Bcl-2 expressions and significantly suppress the apoptosis rate, ROS level, Bax, and caspase-3 expressions. Conclusion. Eda protects against CO-induced apoptosis in rat primary cultured astrocytes through decreasing ROS production and subsequently inhibiting mitochondrial apoptosis pathway.
Collapse
|
31
|
Zhu H, Gui Q, Hui X, Wang X, Jiang J, Ding L, Sun X, Wang Y, Chen H. TGF-β1/Smad3 Signaling Pathway Suppresses Cell Apoptosis in Cerebral Ischemic Stroke Rats. Med Sci Monit 2017; 23:366-376. [PMID: 28110342 PMCID: PMC5282965 DOI: 10.12659/msm.899195] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We desired to observe the changes of transforming growth factor-β1/drosophila mothers against decapentaplegic protein (TGF-β1/Smad3) signaling pathway in the hippocampus region of cerebral ischemic stroke rats so that the effects of this pathway on nerve cells can be investigated. MATERIAL AND METHODS The ischemic stroke models were built by middle cerebral artery occlusion (MCAO) in vivo and oxygen-glucose deprivation (OGD) in vitro. TGF-β1 and TGF-β1 inhibitors were injected into rat models while TGF-β1, TGF-β1 siRNA, Smad3, and Smad3 siRNA were transfected into cells. Infarct sizes were measured using triphenyltetrazolium chloride (TTC) staining, while the apoptosis rate of cells were calculated by Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining. Levels of TGF-β1, Smad3, and Bcl-2 were examined by real-time polymerase chain reaction (RT-PCR), immunohistochemical, and Western blot analysis. RESULTS The expressions of TGF-β1/Smad3 signal pathway were significantly increased in both model rats and BV2 cells, whereas the expression of Bcl-2 was down-regulated (P<0.05). The TGF-β1/Smad3 signal pathway exhibited protective effects, including the down-regulation of infarction size in cerebral tissues and the down-regulation of apoptosis rate of BV2 cells by increasing the expression of Bcl-2 (P<0.05). In addition, these effects could be antagonized by the corresponding inhibitors and siRNA (P<0.05). CONCLUSIONS The TGF-β1/Smad3 signaling pathway was up-regulated once cerebral ischemic stroke was simulated. TGF-β1 may activate the expression of Bcl-2 via Smad3 to suppress the apoptosis of neurons.
Collapse
Affiliation(s)
- Haiping Zhu
- Department of Neurosurgery, The First People's Hospital of Changshou City, Changshou, Jiangsu, China (mainland)
| | - Qunfeng Gui
- Department of Neurosurgery, Yancheng Third People's Hospital, The affiliated Yancheng Hospital of Southeast University Medical College, Yancheng, Jiangsu, China (mainland)
| | - Xiaobo Hui
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Xiaodong Wang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Jian Jiang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Lianshu Ding
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Xiaoyang Sun
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Yanping Wang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Huaqun Chen
- Department of Neurosurgery, Yancheng Third People's Hospital, The affiliated Yancheng Hospital of Southeast University Medical College, Yancheng, Jiangsu, China (mainland)
| |
Collapse
|
32
|
Xing G, Luo Z, Zhong C, Pan X, Xu X. Influence of miR-155 on Cell Apoptosis in Rats with Ischemic Stroke: Role of the Ras Homolog Enriched in Brain (Rheb)/mTOR Pathway. Med Sci Monit 2016; 22:5141-5153. [PMID: 28025572 PMCID: PMC5215517 DOI: 10.12659/msm.898980] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background We designed and carried out this study to examine the role of miR-155 and the Rheb/mTOR pathway in ischemic stroke. We also investigated how these two elements interact with each other and contribute to injuries resulting from ischemic stroke. Material/Methods We used both a middle cerebral artery occlusion rat model in vivo and an oxygen-glucose deprivation cell model in vitro to simulate the onset of ischemic stroke. miR-155 mimics, miR-155 inhibitors, and Rheb siRNA were transfected to alter the expression of miR-155 and Rheb. Infarct sizes were measured using magnetic resonance imaging (MRI) and triphenyltetrazolium chloride (TTC) staining; cell apoptosis rates were calculated using Annexin V-FITC/PI staining and flow cytometry. Levels of miR-155, Rheb, mTOR, and S6K were examined by RT-PCR, immunofluorescence, and western blot. We performed a luciferase activity assay so that the association between miR-155 and Rheb could be fully assessed. Results We demonstrated that miR-155 bound the 3′-UTR of Rheb and suppressed Rheb expression. As suggested by animal models, significant cerebral infarct volumes and cell apoptosis were induced by increased expression of miR-155 and decreased expression of Rheb, mTOR, and p-S6K (P<0.05). miR-155 inhibitors exhibited protective effects on ischemic stroke, including down-regulation of infarction size in cerebral tissues in vivo and reduced apoptosis of BV2 cells in vitro with increased expression of Rheb, mTOR and p-S6K (P<0.05). These protective effects could be substantially antagonized by the transfection of Rheb siRNA (P<0.05). Conclusions Inhibition of miR-155 may play protective roles in ischemic stroke by phosphorylating S6K through the Rheb/mTOR pathway.
Collapse
Affiliation(s)
- Guoping Xing
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland).,Department of Neurology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Zengxiang Luo
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China (mainland)
| | - Chi Zhong
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Xiaowei Xu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
33
|
Fujiwara N, Som AT, Pham LDD, Lee BJ, Mandeville ET, Lo EH, Arai K. A free radical scavenger edaravone suppresses systemic inflammatory responses in a rat transient focal ischemia model. Neurosci Lett 2016; 633:7-13. [PMID: 27589890 DOI: 10.1016/j.neulet.2016.08.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/17/2016] [Accepted: 08/26/2016] [Indexed: 01/27/2023]
Abstract
A free radical scavenger edaravone is clinically used in Japan for acute stroke, and several basic researches have carefully examined the mechanisms of edaravone's protective effects. However, its actions on pro-inflammatory responses under stroke are still understudied. In this study, we subjected adult male Sprague-Dawley rats to 90-min middle cerebral artery (MCA) occlusion followed by reperfusion. Edaravone was treated twice via tail vein; after MCA occlusion and after reperfusion. As expected, edaravone-treated group showed less infarct volume and edema formation compared with control group at 24-h after an ischemic onset. Furthermore, edaravone reduced the levels of plasma interleukin (IL)-1β and matrix metalloproteinase-9 at 3-h after ischemic onset. Several molecules besides IL-1β and MMP-9 are involved in inflammatory responses under stroke conditions. Therefore, we also examined whether edaravone treatment could decrease a wide range of pro-inflammatory cytokines/chemokines by testing rat plasma samples with a rat cytokine array. MCAO rats showed elevations in plasma levels of CINC-1, Fractalkine, IL-1α, IL-1ra, IL-6, IL-10, IP-10, MIG, MIP-1α, and MIP-3α, and all these increases were reduced by edaravone treatment. These data suggest that free radical scavengers may reduce systemic inflammatory responses under acute stroke conditions, and therefore, oxidative stress can be still a viable target for acute stroke therapy.
Collapse
Affiliation(s)
- Norio Fujiwara
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Angel T Som
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Loc-Duyen D Pham
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Brian J Lee
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Emiri T Mandeville
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA.
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA.
| |
Collapse
|
34
|
Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res 2016; 95:943-972. [PMID: 27350397 DOI: 10.1002/jnr.23777] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 02/06/2023]
Abstract
Aging, hypertension, diabetes, hypoxia/obstructive sleep apnea (OSA), obesity, vitamin B12/folate deficiency, depression, and traumatic brain injury synergistically promote diverse pathological mechanisms including cerebral hypoperfusion and glucose hypometabolism. These risk factors trigger neuroinflammation and oxidative-nitrosative stress that in turn decrease nitric oxide and enhance endothelin, Amyloid-β deposition, cerebral amyloid angiopathy, and blood-brain barrier disruption. Proinflammatory cytokines, endothelin-1, and oxidative-nitrosative stress trigger several pathological feedforward and feedback loops. These upstream factors persist in the brain for decades, upregulating amyloid and tau, before the cognitive decline. These cascades lead to neuronal Ca2+ increase, neurodegeneration, cognitive/memory decline, and Alzheimer's disease (AD). However, strategies are available to attenuate cerebral hypoperfusion and glucose hypometabolism and ameliorate cognitive decline. AD is the leading cause of dementia among the elderly. There is significant evidence that pathways involving inflammation and oxidative-nitrosative stress (ONS) play a key pathophysiological role in promoting cognitive dysfunction. Aging and several comorbid conditions mentioned above promote diverse pathologies. These include inflammation, ONS, hypoperfusion, and hypometabolism in the brain. In AD, chronic cerebral hypoperfusion and glucose hypometabolism precede decades before the cognitive decline. These comorbid disease conditions may share and synergistically activate these pathophysiological pathways. Inflammation upregulates cerebrovascular pathology through proinflammatory cytokines, endothelin-1, and nitric oxide (NO). Inflammation-triggered ONS promotes long-term damage involving fatty acids, proteins, DNA, and mitochondria; these amplify and perpetuate several feedforward and feedback pathological loops. The latter includes dysfunctional energy metabolism (compromised mitochondrial ATP production), amyloid-β generation, endothelial dysfunction, and blood-brain-barrier disruption. These lead to decreased cerebral blood flow and chronic cerebral hypoperfusion- that would modulate metabolic dysfunction and neurodegeneration. In essence, hypoperfusion deprives the brain from its two paramount trophic substances, viz., oxygen and nutrients. Consequently, the brain suffers from synaptic dysfunction and neuronal degeneration/loss, leading to both gray and white matter atrophy, cognitive dysfunction, and AD. This Review underscores the importance of treating the above-mentioned comorbid disease conditions to attenuate inflammation and ONS and ameliorate decreased cerebral blood flow and hypometabolism. Additionally, several strategies are described here to control chronic hypoperfusion of the brain and enhance cognition. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE Dept/MSE, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
35
|
Subdural hematoma decompression model: A model of traumatic brain injury with ischemic-reperfusional pathophysiology: A review of the literature. Behav Brain Res 2016; 340:23-28. [PMID: 27235716 DOI: 10.1016/j.bbr.2016.05.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 11/23/2022]
Abstract
The prognosis for patients with traumatic brain injury (TBI) with subdural hematoma (SDH) remains poor. In accordance with an increasing elderly population, the incidence of geriatric TBI with SDH is rising. An important contributor to the neurological injury associated with SDH is the ischemic damage which is caused by raised intracranial pressure (ICP) producing impaired cerebral perfusion. To control intracranial hypertension, the current management consists of hematoma evacuation with or without decompressive craniotomy. This removal of the SDH results in the immediate reversal of global ischemia accompanied by an abrupt reduction of mass lesion and an ensuing reperfusion injury. Experimental models can play a critical role in improving our understanding of the underlying pathophysiology and in exploring potential treatments for patients with SDH. In this review, we describe the epidemiology, pathophysiology and clinical background of SDH.
Collapse
|
36
|
Neuroprotective Effect of Xueshuantong for Injection (Lyophilized) in Transient and Permanent Rat Cerebral Ischemia Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:134685. [PMID: 26681963 PMCID: PMC4670871 DOI: 10.1155/2015/134685] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/02/2015] [Accepted: 11/08/2015] [Indexed: 11/22/2022]
Abstract
Xueshuantong for Injection (Lyophilized) (XST), a Chinese Materia Medica standardized product extracted from Panax notoginseng (Burk.), is used extensively for the treatment of cerebrovascular diseases such as acutely cerebral infarction clinically in China. In the present study, we evaluated the acute and extended protective effects of XST in different rat cerebral ischemic model and explored its effect on peroxiredoxin (Prx) 6-toll-like receptor (TLR) 4 signaling pathway. We found that XST treatment for 3 days could significantly inhibit transient middle cerebral artery occlusion (MCAO) induced infarct volume and swelling percent and regulate the mRNA expression of interleukin-1β (IL-1β), IL-17, IL-23p19, tumor necrosis factor-α (TNFα), and inducible nitric oxide synthase (iNOS) in brain. Further study demonstrated that treatment with XST suppressed the protein expression of peroxiredoxin (Prx) 6-toll-like receptor (TLR) 4 and phosphorylation level of p38 and upregulated the phosphorylation level of STAT3. In permanent MCAO rats, XST could reduce the infarct volume and swelling percent. Moreover, our results revealed that XST treatment could increase the rats' weight and improve a batch of functional outcomes. In conclusion, the present data suggested that XST could protect against ischemia injury in transient and permanent MCAO rats, which might be related to Prx6-TLR4 pathway.
Collapse
|
37
|
Murray KN, Parry-Jones AR, Allan SM. Interleukin-1 and acute brain injury. Front Cell Neurosci 2015; 9:18. [PMID: 25705177 PMCID: PMC4319479 DOI: 10.3389/fncel.2015.00018] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/12/2015] [Indexed: 01/05/2023] Open
Abstract
Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection) have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL)-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review.
Collapse
Affiliation(s)
- Katie N Murray
- Faculty of Life Sciences, University of Manchester Manchester, UK
| | | | - Stuart M Allan
- Faculty of Life Sciences, University of Manchester Manchester, UK
| |
Collapse
|
38
|
Yang Y, Gao K, Hu Z, Li W, Davies H, Ling S, Rudd JA, Fang M. Autophagy upregulation and apoptosis downregulation in DAHP and triptolide treated cerebral ischemia. Mediators Inflamm 2015; 2015:120198. [PMID: 25729215 PMCID: PMC4333273 DOI: 10.1155/2015/120198] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/31/2014] [Accepted: 12/31/2014] [Indexed: 01/28/2023] Open
Abstract
It has previously been demonstrated that ischemic stroke activates autophagy pathways; however, the mechanism remains unclear. The aim of this study is to further investigate the role that autophagy plays in cerebral ischemia. 2, 4-diamino-6-hydroxy-pyrimidine (DAHP), for its nitric oxide synthase (NOS) inhibiting neuroprotective effect, and triptolide (TP), for its anti-inflammatory property, were selected to administer pre middle cerebral artery occlusion (MCAO). The drugs were administered 12 hours prior to MCAO. Both magnetic resonance imaging (MRI) and 2, 3, 5-triphenyltetrazolium chloride (TTC) staining showed that the drugs reduce the area of infarction. Immunoblotting analysis revealed increases in Beclin-1 and myeloid cell leukelia-1(Mcl-1) in treated rats. This could be a contributing factor to the reduction in autophagy induced damage. Immunochemistry and western blot showed that mTOR expression in treated rats was marginally different 24 h after injury, and this could also be significant in the mechanism. Furthermore, terminal deoxynucleotidyl transferase- (TdT-) mediated dUTP nick end labeling (TUNEL) staining proved that the drugs are effective in reducing apoptosis. The upregulation of Beclin-1 and Mcl-1 and downregulation of Bcl-2, caspase-3, and the Bcl-2/Beclin-1 ratio infer that the neuroprotective effect of DAHP and TP act via the mediation of autophagy and apoptosis pathways.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Keqiang Gao
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhiying Hu
- Department of Obstetrics and Gynecology, Hangzhou Red Cross Hospital, Hangzhou 310003, China
| | - Weiyun Li
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Henry Davies
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shucai Ling
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - John A. Rudd
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
39
|
Ya B, Zhang L, Zhang L, Li Y, Li L. 5-hydroxymethyl-2-furfural prolongs survival and inhibits oxidative stress in a mouse model of forebrain ischemia. Neural Regen Res 2015; 7:1722-8. [PMID: 25624794 PMCID: PMC4302453 DOI: 10.3969/j.issn.1673-5374.2012.22.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/19/2012] [Indexed: 11/18/2022] Open
Abstract
In the present study, we hypothesized that 5-hydroxymethyl-2-furfural could attenuate ischemic brain damage by reducing oxidative injury. Thus, mice were subjected to bilateral common carotid artery occlusion to establish a model of permanent forebrain ischemia. The mice were intraperitoneally injected with 5-hydroxymethyl-2-furfural 30 minutes before ischemia or 5 minutes after ischemia. The survival time of mice injected with 5-hydroxymethyl-2-furfural was longer compared with untreated mice. The mice subjected to ischemia for 30 minutes and reperfusion for 5 minutes were intraperitoneally injected with 5-hydroxymethyl-2-furfural 5 minutes prior to reperfusion, which increased superoxide dismutase content and reduced malondialdehyde content, similar to the effects of Edaravone, a hydroxyl radical scavenger used for the treatment of stroke. These findings indicate that intraperitoneal injection of 5-hydroxymethyl-2-furfural can prolong the survival of mice with permanent forebrain ischemia. This outcome may be mediated by its antioxidative effects.
Collapse
Affiliation(s)
- Bailiu Ya
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China ; Department of Physiology, Jining Medical University, Jining 272067, Shandong Province, China
| | - Lan Zhang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Li Zhang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Yali Li
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lin Li
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| |
Collapse
|
40
|
Yuan Y, Zha H, Rangarajan P, Ling EA, Wu C. Anti-inflammatory effects of Edaravone and Scutellarin in activated microglia in experimentally induced ischemia injury in rats and in BV-2 microglia. BMC Neurosci 2014; 15:125. [PMID: 25416145 PMCID: PMC4247200 DOI: 10.1186/s12868-014-0125-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 01/13/2023] Open
Abstract
Background In response to cerebral ischemia, activated microglia release excessive inflammatory mediators which contribute to neuronal damage. Therefore, inhibition of microglial over-activation could be a therapeutic strategy to alleviate various microglia-mediated neuroinflammation. This study was aimed to elucidate the anti-inflammatory effects of Scutellarin and Edaravone given either singly, or in combination in activated microglia in rats subjected to middle cerebral artery occlusion (MCAO), and in lipopolysaccharide (LPS)-induced BV-2 microglia. Expression of proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and inducible nitric oxide synthase (iNOS) was assessed by immunofluorescence staining and Western blot. Reactive oxygen species (ROS) and nitric oxide (NO) levels were determined by flow cytometry and fluorescence microscopy, respectively. Results In vivo, both Edaravone and Scutellarin markedly reduced the infarct cerebral tissue area with the latter drug being more effective with the dosage used; furthermore, when used in combination the reduction was more substantial. Remarkably, a greater diminution in distribution of activated microglia was observed with the combined drug treatment which also attenuated the immunoexpression of TNF-α, IL-1β and iNOS to a greater extent as compared to the drugs given separately. In vitro, both drugs suppressed upregulated expression of inflammatory cytokines, iNOS, NO and ROS in LPS-induced BV-2 cells. Furthermore, Edaravone and Scutellarin in combination cumulatively diminished the expression levels of the inflammatory mediators being most pronounced for TNF-α as evidenced by Western blot. Conclusion The results suggest that Edaravone and Scutellarin effectively suppressed the inflammatory responses in activated microglia, with Scutellarin being more efficacious within the dosage range used. Moreover, when both drugs were used in combination, the infarct tissue area was reduced more extensively; also, microglia-mediated inflammatory mediators notably TNF-α expression was decreased cumulatively. Electronic supplementary material The online version of this article (doi:10.1186/s12868-014-0125-3) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Lei S, Zhang P, Li W, Gao M, He X, Zheng J, Li X, Wang X, Wang N, Zhang J, Qi C, Lu H, Chen X, Liu Y. Pre- and posttreatment with edaravone protects CA1 hippocampus and enhances neurogenesis in the subgranular zone of dentate gyrus after transient global cerebral ischemia in rats. ASN Neuro 2014; 6:6/6/1759091414558417. [PMID: 25388889 PMCID: PMC4357607 DOI: 10.1177/1759091414558417] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Edaravone is clinically used for treatment of patients with acute cerebral infarction. However, the effect of double application of edaravone on neurogenesis in the hippocampus following ischemia remains unknown. In the present study, we explored whether pre- and posttreatment of edaravone had any effect on neural stem/progenitor cells (NSPCs) in the subgranular zone of hippocampus in a rat model of transient global cerebral ischemia and elucidated the potential mechanism of its effects. Male Sprague-Dawley rats were divided into three groups: sham-operated (n = 15), control (n = 15), and edaravone-treated (n = 15) groups. Newly generated cells were labeled by 5-bromo-2-deoxyuridine. Immunohistochemistry was used to detect neurogenesis. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling was used to detect cell apoptosis. Reactive oxygen species (ROS) were detected by 2,7-dichlorofluorescien diacetate assay in NSPCs in vitro. Hypoxia-inducible factor-1α (HIF-1α) and cleaved caspase-3 proteins were quantified by western blot analysis. Treatment with edaravone significantly increased the number of NSPCs and newly generated neurons in the subgranular zone (p < .05). Treatment with edaravone also decreased apoptosis of NSPCs (p < .01). Furthermore, treatment with edaravone significantly decreased ROS generation and inhibited HIF-1α and cleaved caspase-3 protein expressions. These findings indicate that pre- and posttreatment with edaravone enhances neurogenesis by protecting NSPCs from apoptosis in the hippocampus, which is probably mediated by decreasing ROS generation and inhibiting protein expressions of HIF-1α and cleaved caspase-3 after cerebral ischemia.
Collapse
Affiliation(s)
- Shan Lei
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Pengbo Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Weisong Li
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Ming Gao
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Juan Zheng
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xu Li
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xiao Wang
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Ning Wang
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Junfeng Zhang
- Department of Anatomy, Xi'an Medical University, Xi'an, China
| | - Cunfang Qi
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Haixia Lu
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xinlin Chen
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Yong Liu
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| |
Collapse
|
42
|
Umschweif G, Shabashov D, Alexandrovich AG, Trembovler V, Horowitz M, Shohami E. Neuroprotection after traumatic brain injury in heat-acclimated mice involves induced neurogenesis and activation of angiotensin receptor type 2 signaling. J Cereb Blood Flow Metab 2014; 34:1381-90. [PMID: 24849663 PMCID: PMC4126099 DOI: 10.1038/jcbfm.2014.93] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/23/2014] [Accepted: 04/30/2014] [Indexed: 12/18/2022]
Abstract
Long-term exposure of mice to mild heat (34°C±1°C) confers neuroprotection against traumatic brain injury (TBI); however, the underling mechanisms are not fully understood. Heat acclimation (HA) increases hypothalamic angiotensin II receptor type 2 (AT2) expression and hypothalamic neurogenesis. Accumulating data suggest that activation of the brain AT2 receptor confers protection against several types of brain pathologies, including ischemia, a hallmark of the secondary injury occurring following TBI. As AT2 activates the same pro-survival pathways involved in HA-mediated neuroprotection (e.g., Akt phosphorylation, hypoxia-inducible factor 1α (HIF-1α), and brain-derived neurotrophic factor (BDNF)), we examined the role of AT2 in HA-mediated neuroprotection after TBI. Using an AT2-specific antagonist PD123319, we found that the improvements in motor and cognitive recovery as well as reduced lesion volume and neurogenesis seen in HA mice were all diminished by AT2 inhibition, whereas no significant alternations were observed in control mice. We also found that nerve growth factor/tropomyosin-related kinase receptor A (TrkA), BDNF/TrkB, and HIF-1α pathways are upregulated by HA and inhibited on PD123319 administration, suggesting that these pathways play a role in AT2 signaling in HA mice. In conclusion, AT2 is involved in HA-mediated neuroprotection, and AT2 activation may be protective and should be considered a novel drug target in the treatment of TBI patients.
Collapse
Affiliation(s)
- Gali Umschweif
- 1] Department of Pharmacology, School of Pharmacy, Institute of Drug Research, Jerusalem, Israel [2] Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dalia Shabashov
- Department of Pharmacology, School of Pharmacy, Institute of Drug Research, Jerusalem, Israel
| | | | - Victoria Trembovler
- Department of Pharmacology, School of Pharmacy, Institute of Drug Research, Jerusalem, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Shohami
- Department of Pharmacology, School of Pharmacy, Institute of Drug Research, Jerusalem, Israel
| |
Collapse
|
43
|
Chen X, Deng A, Zhou T, Ding F. Pretreatment with 2-(4-methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-D-pyranoside attenuates cerebral ischemia/reperfusion-induced injury in vitro and in vivo. PLoS One 2014; 9:e100126. [PMID: 24991917 PMCID: PMC4084628 DOI: 10.1371/journal.pone.0100126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/22/2014] [Indexed: 01/06/2023] Open
Abstract
Salidroside, extracted from the root of Rhodiola rosea L, is known for its pharmacological properties, in particular its neuroprotective effects. 2-(4-Methoxyphenyl) ethyl-2-acetamido-2-deoxy-β-D-pyranoside (GlcNAc-Sal), an analog of salidroside, was recently synthesized and shown to possess neuroprotective properties. The purpose of the current study was to investigate the neuroprotective effects of GlcNAc-Sal against oxygen-glucose deprivation-reperfusion (OGD-R)-induced neurotoxicity in vitro and global cerebral ischemia-reperfusion (GCI-R) injury in vivo. Cell viability tests and Hoechst 33342 staining confirmed that GlcNAc-Sal pretreatment markedly attenuated OGD-R induced apoptotic cell death in immortalized mouse hippocampal HT22 cells. Western blot, immunofluorescence and PCR analyses revealed that GlcNAc-Sal pretreatment restored the balance of pro- and anti-apoptotic proteins and inhibited the activation of caspase-3 and PARP induced by OGD-R treatment. Further analyses showed that GlcNAc-Sal pretreatment antagonized reactive oxygen species (ROS) generation, iNOS-derived NO production and NO-related apoptotic cell death during OGD-R stimulation. GCI-R was induced by bilateral common carotid artery occlusion (BCCAO) and reperfusion in mice in vivo. Western blot analysis showed that GlcNAc-Sal pretreatment decreased the expression of caspase-3 and increased the expression of Bcl-2 (B-cell lymphoma 2)/Bax (Bcl-2-associated X protein) induced by GCI-R treatment. Our findings suggest that GlcNAc-Sal pretreatment prevents brain ischemia reperfusion injury by the direct or indirect suppression of cell apoptosis and GlcNAc-Sal could be developed as a broad-spectrum agent for the prevention and/or treatment of cerebral ischemic injury.
Collapse
Affiliation(s)
- Xia Chen
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, China
| | - Aiqing Deng
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, China
| | - Tianqiu Zhou
- Department of ophtalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
- * E-mail:
| |
Collapse
|
44
|
Liu GS, Wu JC, Tsai HE, Dusting GJ, Chan EC, Wu CS, Tai MH. Proopiomelanocortin gene delivery induces apoptosis in melanoma through NADPH oxidase 4-mediated ROS generation. Free Radic Biol Med 2014; 70:14-22. [PMID: 24412703 DOI: 10.1016/j.freeradbiomed.2013.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/03/2013] [Accepted: 12/21/2013] [Indexed: 12/31/2022]
Abstract
Hypoxia in the tumor microenvironment triggers differential signaling pathways for tumor survival. In this study, we characterize the involvement of hypoxia and reactive oxygen species (ROS) generation in the antineoplastic mechanism of proopiomelanocortin (POMC) gene delivery in a mouse B16-F10 melanoma model in vivo and in vitro. Histological analysis revealed increased TUNEL-positive cells and enhanced hypoxic activities in melanoma treated with adenovirus encoding POMC (Ad-POMC) but not control vector. Because the apoptotic cells were detected mainly in regions distant from blood vessels, it was hypothesized that POMC therapy might render melanoma cells vulnerable to hypoxic insult. Using a hypoxic chamber or cobalt chloride (CoCl2), we showed that POMC gene delivery elicited apoptosis and caspase-3 activation in cultured B16-F10 cells only under hypoxic conditions. The apoptosis induced by POMC gene delivery was associated with elevated ROS generation in vitro and in vivo. Blocking ROS generation using the antioxidant N-acetyl-l-cysteine abolished the apoptosis and caspase-3 activities induced by POMC gene delivery and hypoxia. We further showed that POMC-derived melanocortins, including α-MSH, β-MSH, and ACTH, but not γ-MSH, contributed to POMC-induced apoptosis and ROS generation during hypoxia. To elucidate the source of ROS generation, application of the NADPH oxidase inhibitor diphenyleneiodonium attenuated α-MSH-induced apoptosis and ROS generation, implicating the proapoptotic role of NADPH oxidase in POMC action. Of the NADPH oxidase isoforms, only Nox4 was expressed in B16-F10 cells, and Nox4 was also elevated in Ad-POMC-treated melanoma tissues. Silencing Nox4 gene expression with Nox4 siRNA suppressed the stimulatory effect of α-MSH-induced ROS generation and cell apoptosis during hypoxia. In summary, we demonstrate that POMC gene delivery suppressed melanoma growth by inducing apoptosis, which was at least partly dependent on Nox4 upregulation.
Collapse
Affiliation(s)
- Guei-Sheung Liu
- Centre for Eye Research Australia, Melbourne, VIC 3002, Australia; Department of Ophthalmology, University of Melbourne, Melbourne, VIC 3002, Australia
| | - Jian-Ching Wu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung 804, Taiwan
| | - Han-En Tsai
- Institute of Biomedical Science, and National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Gregory J Dusting
- Centre for Eye Research Australia, Melbourne, VIC 3002, Australia; Department of Ophthalmology, University of Melbourne, Melbourne, VIC 3002, Australia
| | - Elsa C Chan
- Centre for Eye Research Australia, Melbourne, VIC 3002, Australia; Department of Ophthalmology, University of Melbourne, Melbourne, VIC 3002, Australia
| | - Chieh-Shan Wu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Ming-Hong Tai
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung 804, Taiwan; Institute of Biomedical Science, and National Sun Yat-sen University, Kaohsiung 804, Taiwan; Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
45
|
Tewari A, Mahendru V, Sinha A, Bilotta F. Antioxidants: The new frontier for translational research in cerebroprotection. J Anaesthesiol Clin Pharmacol 2014; 30:160-71. [PMID: 24803750 PMCID: PMC4009632 DOI: 10.4103/0970-9185.130001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is important for the anesthesiologist to understand the etiology of free radical damage and how free-radical scavengers attenuate this, so that this knowledge can be applied to diverse neuro-pathological conditions. This review will concentrate on the role of reactive species of oxygen in the pathophysiology of organ dysfunction, specifically sub arachnoid hemorrhage (SAH), traumatic brain injury (TBI) as well as global central nervous system (CNS) hypoxic, ischemic and reperfusion states. We enumerate potential therapeutic modalities that are been currently investigated and of interest for future trials. Antioxidants are perhaps the next frontier of translational research, especially in neuro-anesthesiology.
Collapse
Affiliation(s)
- Anurag Tewari
- Department of Anesthesiology, Dayanand Medical College, Ludhiana, Punjab, India
| | - Vidhi Mahendru
- Department of Anesthesiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Sinha
- Department of Anesthesiology and Perioperative Medicine, Drexel University College of Medicine, Philadelphia, USA
| | - Federico Bilotta
- Department of Anesthesiology, Critical Care and Pain Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
46
|
Effects of edaravone, a free radical scavenger, on photochemically induced cerebral infarction in a rat hemiplegic model. ScientificWorldJournal 2013; 2013:175280. [PMID: 23853531 PMCID: PMC3703327 DOI: 10.1155/2013/175280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/06/2013] [Indexed: 11/17/2022] Open
Abstract
Edaravone is a free radical scavenger that protects the adjacent cortex during cerebral infarction. We created a hemiparetic model of cerebral thrombosis from a photochemically induced infarction with the photosensitive dye, rose bengal, in rats. We examined the effects of edaravone on recovery in the model. A total of 36 adult Wistar rats were used. The right sensorimotor area was irradiated with green light with a wavelength of 533 nm (10 mm diameter), and the rose bengal was injected intravenously to create an infarction. The edaravone group was injected intraperitoneally with edaravone (3 mg/kg), and the control group was injected with saline. The recovery process of the hemiplegia was evaluated with the 7-step scale of Fenny. The infarcted areas were measured after fixation. The recovery of the paralysis in the edaravone-treated group was significantly earlier than that in the untreated group. Seven days later, both groups were mostly recovered and had scores of 7, and the infarction region was significantly smaller in the edaravone-treated group. Edaravone reduced the infarction area and promoted the functional recovery of hemiparesis from cerebral thrombosis in a rat model. These findings suggest that edaravone treatment would be effective in clinical patients recovering from cerebral infarction.
Collapse
|
47
|
Spescha RD, Sessa M, Camici GG. Angiopoietin-like 4 and ischaemic stroke: a promising start. Eur Heart J 2013; 34:3603-5. [DOI: 10.1093/eurheartj/eht183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Xiao G, Sun T, Songming C, Cao Y. NR4A1 enhances neural survival following oxygen and glucose deprivation: an in vitro study. J Neurol Sci 2013; 330:78-84. [PMID: 23663895 DOI: 10.1016/j.jns.2013.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 04/04/2013] [Accepted: 04/10/2013] [Indexed: 12/11/2022]
Abstract
A worldwide epidemic of stroke is exacting a huge level of patient suffering and social cost. The ischemia damage to neural cells and the associated permanent neural function loss are central to the pathophysiology of stroke. In the current study, we were endeavored to identify NR4A1, an orphan nuclear receptor as a novel protector for neural cells in an in vitro neural ischemia model. Our results showed that oxygen and glucose deprivation (OGD) dramatically induced primary culture neural cell apoptosis and NR4A1 expression at both protein and mRNA level. Furthermore, hyperexpression or knock-down of NR4A1 significantly ameliorated or exacerbated OGD induced neural damage as manifested by decreased or increased apoptotic rates and key apoptotic protein expression respectively. As part of effort to identify the underlying mechanism, we also found that survivin is highly inducible following OGD and is required for NR4A1 action in this scenario. Our data seemed to be logical extensions of previous observations showing that NR4As are highly inducible following focal cerebral ischemia. Of note, our results also demonstrated that NR4A1 induction in this scenario may be functionally important as well and targeting NR4A1 protein can be intriguing as part of the effort to develop novel therapeutic strategies for neural protection after stroke.
Collapse
Affiliation(s)
- Guodong Xiao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215004, China
| | | | | | | |
Collapse
|
49
|
Singh N, Sharma G, Mishra V, Raghubir R. Hypoxia inducible factor-1: its potential role in cerebral ischemia. Cell Mol Neurobiol 2012; 32:491-507. [PMID: 22297543 PMCID: PMC11498632 DOI: 10.1007/s10571-012-9803-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/13/2012] [Indexed: 12/16/2022]
Abstract
A divergence in the supply and consumption of oxygen in brain tissue initiates complex cycle of biochemical and molecular events resulting in neuronal death. To overcome such adverse situation, the tissue has to adopt some cellular mechanisms such as induction of various transcription factors, such as hypoxia inducible factor (HIF). It is a transcriptional regulator of oxygen homeostasis and key factor to generate the adaptive responses through upregulation of various target genes involved in the erythropoiesis, angiogenesis as well as glucose metabolism and transport. On the other hand, some studies do suggest that HIF also plays a detrimental role in ischemic reperfusion injury by inducing the pro apoptotic molecules, cytokines such as Nix, BNip3, and IL-20 which cause mitochondrial dysfunction leading to cell death. Hence, modulation of HIF-1 activity seems to provide an innovative therapeutic target to reduce the cellular damage, which arises from ischemic injury. Apart from traditional oxygen dependent HIF regulation, the focus has now shifted toward oxygen independent regulation in cell specific manner through reactive oxygen species involving hypoxia-associated factor, and heat shock protein 90, etc. Therefore, future development of such small molecule regulators for HIF-1 stability and signaling may prove useful to therapeutically target for enhancing recovery and repair in I/R injury.
Collapse
Affiliation(s)
- Neetu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, P.O. Box 173, Lucknow, 226001 UP India
| | - Gaurav Sharma
- Division of Pharmacology, CSIR-Central Drug Research Institute, P.O. Box 173, Lucknow, 226001 UP India
| | - Vikas Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, P.O. Box 173, Lucknow, 226001 UP India
| | - Ram Raghubir
- Division of Pharmacology, CSIR-Central Drug Research Institute, P.O. Box 173, Lucknow, 226001 UP India
| |
Collapse
|