1
|
Xie W, Lückemeyer DD, Qualls KA, Prudente AS, Berta T, Gu M, Strong JA, Dong X, Zhang JM. Vascular motion in the dorsal root ganglion sensed by Piezo2 in sensory neurons triggers episodic neuropathic pain. Neuron 2025:S0896-6273(25)00178-3. [PMID: 40154477 DOI: 10.1016/j.neuron.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/27/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Spontaneous pain, characterized by episodic shooting or stabbing sensations, is a major complaint among neuropathic pain patients, yet its mechanisms remain poorly understood. Recent research indicates a connection between this pain condition and "clustered firing," wherein adjacent sensory neurons fire simultaneously. This study presents evidence that the triggers of spontaneous pain and clustered firing are the dynamic movements of small blood vessels within the nerve-injured sensory ganglion, along with increased blood vessel density/angiogenesis and increased number of pericytes around blood vessels. Pharmacologically or mechanically evoked myogenic vascular responses increase both spontaneous pain and clustered firing in a mouse model of neuropathic pain. The mechanoreceptor Piezo2 in sensory neurons plays a critical role in detecting blood vessel movements. An anti-VEGF monoclonal antibody that inhibits angiogenesis effectively blocks spontaneous pain and clustered firing. These findings suggest targeting Piezo2, angiogenesis, or abnormal vascular dynamics as potential therapeutic strategies for neuropathic spontaneous pain.
Collapse
Affiliation(s)
- Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Debora Denardin Lückemeyer
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Katherine A Qualls
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mingxia Gu
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA.
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
2
|
Tian MM, Liu G, Du J, Liu Y, Wei W, Lan XB, Hai DM, Ma L, Yu JQ, Liu N. Gentiopicroside Attenuates Lithium/Pilocarpine-Induced Epilepsy Seizures by Down-Regulating NR2B/CaMKII/CREB and TLR4/NF-κB Signaling Pathways in the Hippocampus of Mice. Pharmaceuticals (Basel) 2024; 17:1413. [PMID: 39598325 PMCID: PMC11597319 DOI: 10.3390/ph17111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Epilepsy is a prevalent and disabling neurological condition characterized by recurrent seizures. Approximately 50% of adults with active epilepsy have at least one comorbidity and they are at a greater risk of premature death than the general population. Gentiopicroside (Gent) is a primary component of Gentiana macrophylla Pall. that has been shown to have diverse pharmacological properties. However, its role in epileptic seizures in adult mice and its underlying mechanism of action remain obscure. We aimed to explore the anti-epileptic effect and mechanism of Gent on lithium/pilocarpine (Pilo)-induced epilepsy seizures in mice. Methods: In this study, we established a lithium/Pilo-induced epilepsy model, and Gent was first given to mice 30 min before Pilo administration. Then, we detected behavioral and histopathological changes through electrocorticographic (ECoG) measurements, Nissl staining, Fluoro-Jade B (FJB) staining, and immunohistochemical staining. We then used molecular biology techniques, such as Western blotting, quantitative polymerase chain reaction (qPCR) analysis, and the enzyme-linked immunosorbent assay (ELISA) to investigate the mechanisms of Gent in lithium/Pilo-induced epileptic seizures in mice and lipopolysaccharide (LPS)-induced inflammatory astrocytes. Results: We confirmed that Gent could prevent abnormal ECoG activity, behavioral changes, and neurodegeneration. Subsequently, we found Gent could downregulate the factors that could promote apoptosis (i.e., the NR2B/CaMKII/CREB signaling cascade) and neuroinflammatory-related factors (i.e., the TLR4/NF-κB signaling cascade). Conclusions: Gent could be a potential therapeutic agent for epilepsy, offering possibilities for both prevention and treatment. Our research establishes a preliminary experimental framework for ongoing studies into Gent's efficacy as a treatment for epilepsy.
Collapse
Affiliation(s)
- Miao-Miao Tian
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China (J.-Q.Y.)
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China
- Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China
| | - Gang Liu
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Juan Du
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China (J.-Q.Y.)
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China
- Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China (J.-Q.Y.)
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China
- Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China
| | - Wei Wei
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China (J.-Q.Y.)
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China
- Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China
| | - Xiao-Bing Lan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China (J.-Q.Y.)
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China
- Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China
| | - Dong-Mei Hai
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China (J.-Q.Y.)
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China
- Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China (J.-Q.Y.)
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China
- Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China
| | - Jian-Qiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China (J.-Q.Y.)
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China
- Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China (J.-Q.Y.)
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China
- Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China
| |
Collapse
|
3
|
LeBlang CJ, Pazyra-Murphy MF, Silagi ES, Dasgupta S, Tsolias M, Miller T, Petrova V, Zhen S, Jovanovic V, Castellano D, Gerrish K, Ormanoglu P, Tristan C, Singeç I, Woolf CJ, Tasdemir-Yilmaz O, Segal RA. Satellite glial contact enhances differentiation and maturation of human iPSC-derived sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604966. [PMID: 39211268 PMCID: PMC11361066 DOI: 10.1101/2024.07.24.604966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sensory neurons generated from induced pluripotent stem cells (iSNs) are used to model human peripheral neuropathies, however current differentiation protocols produce sensory neurons with an embryonic phenotype. Peripheral glial cells contact sensory neurons early in development and contribute to formation of the canonical pseudounipolar morphology, but these signals are not encompassed in current iSN differentiation protocols. Here, we show that terminal differentiation of iSNs in co-culture with rodent Dorsal Root Ganglion satellite glia (rSG) advances their differentiation and maturation. Co-cultured iSNs develop a pseudounipolar morphology through contact with rSGs. This transition depends on semaphorin-plexin guidance cues and on glial gap junction signaling. In addition to morphological changes, iSNs terminally differentiated in co-culture exhibit enhanced spontaneous action potential firing, more mature gene expression, and increased susceptibility to paclitaxel induced axonal degeneration. Thus, iSNs differentiated in coculture with rSGs provide a better model for investigating human peripheral neuropathies.
Collapse
|
4
|
Qualls KA, Xie W, Zhang J, Lückemeyer DD, Lackey SV, Strong JA, Zhang JM. Mineralocorticoid Receptor Antagonism Reduces Inflammatory Pain Measures in Mice Independent of the Receptors on Sensory Neurons. Neuroscience 2024; 541:64-76. [PMID: 38307407 PMCID: PMC11959365 DOI: 10.1016/j.neuroscience.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Corticosteroids are commonly used in the treatment of inflammatory low back pain, and their nominal target is the glucocorticoid receptor (GR) to relieve inflammation. They can also have similar potency at the mineralocorticoid receptor (MR). The MR has been shown to be widespread in rodent and human dorsal root ganglia (DRG) neurons and non-neuronal cells, and when MR antagonists are administered during a variety of inflammatory pain models in rats, pain measures are reduced. In this study we selectively knockout (KO) the MR in sensory neurons to determine the role of MR in sensory neurons of the mouse DRG in pain measures as MR antagonism during the local inflammation of the DRG (LID) pain model. We found that MR antagonism using eplerenone reduced evoked mechanical hypersensitivity during LID, but MR KO in paw-innervating sensory neurons only did not. This could be a result of differences between prolonged (MR KO) versus acute (drug) MR block or an indicator that non-neuronal cells in the DRG are driving the effect of MR antagonists. MR KO unmyelinated C neurons are more excitable under normal and inflamed conditions, while MR KO does not affect excitability of myelinated A cells. MR KO in sensory neurons causes a reduction in overall GR mRNA but is protective against reduction of the anti-inflammatory GRα isoform during LID. These effects of MR KO in sensory neurons expanded our understanding of MR's functional role in different neuronal subtypes (A and C neurons), and its interactions with the GR.
Collapse
Affiliation(s)
- Katherine A Qualls
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jietong Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Debora Denardin Lückemeyer
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sierra V Lackey
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Sas D, Gaudel F, Verdier D, Kolta A. Hyperexcitability of muscle spindle afferents in jaw-closing muscles in experimental myalgia: Evidence for large primary afferents involvement in chronic pain. Exp Physiol 2024; 109:100-111. [PMID: 38103003 PMCID: PMC10988680 DOI: 10.1113/ep090769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
The goals of this review are to improve understanding of the aetiology of chronic muscle pain and identify new targets for treatments. Muscle pain is usually associated with trigger points in syndromes such as fibromyalgia and myofascial syndrome, and with small spots associated with spontaneous electrical activity that seems to emanate from fibers inside muscle spindles in EMG studies. These observations, added to the reports that large-diameter primary afferents, such as those innervating muscle spindles, become hyperexcitable and develop spontaneous ectopic firing in conditions leading to neuropathic pain, suggest that changes in excitability of these afferents might make an important contribution to the development of pathological pain. Here, we review evidence that the muscle spindle afferents (MSAs) of the jaw-closing muscles become hyperexcitable in a model of chronic orofacial myalgia. In these afferents, as in other large-diameter primary afferents in dorsal root ganglia, firing emerges from fast membrane potential oscillations that are supported by a persistent sodium current (INaP ) mediated by Na+ channels containing the α-subunit NaV 1.6. The current flowing through NaV 1.6 channels increases when the extracellular Ca2+ concentration decreases, and studies have shown that INaP -driven firing is increased by S100β, an astrocytic protein that chelates Ca2+ when released in the extracellular space. We review evidence of how astrocytes, which are known to be activated in pain conditions, might, through their regulation of extracellular Ca2+ , contribute to the generation of ectopic firing in MSAs. To explain how ectopic firing in MSAs might cause pain, we review evidence supporting the hypothesis that cross-talk between proprioceptive and nociceptive pathways might occur in the periphery, within the spindle capsule.
Collapse
Affiliation(s)
- Dar'ya Sas
- Département de NeurosciencesUniversité de MontréalMontréalQuébecCanada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA)MontréalQuébecCanada
| | - Fanny Gaudel
- Département de NeurosciencesUniversité de MontréalMontréalQuébecCanada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA)MontréalQuébecCanada
| | - Dorly Verdier
- Département de NeurosciencesUniversité de MontréalMontréalQuébecCanada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA)MontréalQuébecCanada
| | - Arlette Kolta
- Département de NeurosciencesUniversité de MontréalMontréalQuébecCanada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA)MontréalQuébecCanada
- Faculté de Médecine DentaireUniversité de MontréalMontréalQuébecCanada
| |
Collapse
|
6
|
Maksymchuk N, Sakurai A, Cox DN, Cymbalyuk GS. Cold-Temperature Coding with Bursting and Spiking Based on TRP Channel Dynamics in Drosophila Larva Sensory Neurons. Int J Mol Sci 2023; 24:14638. [PMID: 37834085 PMCID: PMC10572325 DOI: 10.3390/ijms241914638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 10/15/2023] Open
Abstract
Temperature sensation involves thermosensitive TRP (thermoTRP) and non-TRP channels. Drosophila larval Class III (CIII) neurons serve as the primary cold nociceptors and express a suite of thermoTRP channels implicated in noxious cold sensation. How CIII neurons code temperature remains unclear. We combined computational and electrophysiological methods to address this question. In electrophysiological experiments, we identified two basic cold-evoked patterns of CIII neurons: bursting and spiking. In response to a fast temperature drop to noxious cold, CIII neurons distinctly mark different phases of the stimulus. Bursts frequently occurred along with the fast temperature drop, forming a peak in the spiking rate and likely coding the high rate of the temperature change. Single spikes dominated at a steady temperature and exhibited frequency adaptation following the peak. When temperature decreased slowly to the same value, mainly spiking activity was observed, with bursts occurring sporadically throughout the stimulation. The spike and the burst frequencies positively correlated with the rate of the temperature drop. Using a computational model, we explain the distinction in the occurrence of the two CIII cold-evoked patterns bursting and spiking using the dynamics of a thermoTRP current. A two-parameter activity map (Temperature, constant TRP current conductance) marks parameters that support silent, spiking, and bursting regimes. Projecting on the map the instantaneous TRP conductance, governed by activation and inactivation processes, reflects temperature coding responses as a path across silent, spiking, or bursting domains on the map. The map sheds light on how various parameter sets for TRP kinetics represent various types of cold-evoked responses. Together, our results indicate that bursting detects the high rate of temperature change, whereas tonic spiking could reflect both the rate of change and magnitude of steady cold temperature.
Collapse
Affiliation(s)
- Natalia Maksymchuk
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
| | - Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
| | - Gennady S. Cymbalyuk
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
- Department of Biology, Georgia State University, Atlanta, GA 30302-5030, USA
| |
Collapse
|
7
|
Lückemeyer DD, Xie W, Prudente AS, Qualls KA, Tonello R, Strong JA, Berta T, Zhang JM. The Antinociceptive Effect of Sympathetic Block is Mediated by Transforming Growth Factor β in a Mouse Model of Radiculopathy. Neurosci Bull 2023; 39:1363-1374. [PMID: 37165177 PMCID: PMC10465463 DOI: 10.1007/s12264-023-01062-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/06/2023] [Indexed: 05/12/2023] Open
Abstract
Although sympathetic blockade is clinically used to treat pain, the underlying mechanisms remain unclear. We developed a localized microsympathectomy (mSYMPX), by cutting the grey rami entering the spinal nerves near the rodent lumbar dorsal root ganglia (DRG). In a chemotherapy-induced peripheral neuropathy model, mSYMPX attenuated pain behaviors via DRG macrophages and the anti-inflammatory actions of transforming growth factor-β (TGF-β) and its receptor TGF-βR1. Here, we examined the role of TGF-β in sympathetic-mediated radiculopathy produced by local inflammation of the DRG (LID). Mice showed mechanical hypersensitivity and transcriptional and protein upregulation of TGF-β1 and TGF-βR1 three days after LID. Microsympathectomy prevented mechanical hypersensitivity and further upregulated Tgfb1 and Tgfbr1. Intrathecal delivery of TGF-β1 rapidly relieved the LID-induced mechanical hypersensitivity, and TGF-βR1 antagonists rapidly unmasked the mechanical hypersensitivity after LID+mSYMPX. In situ hybridization showed that Tgfb1 was largely expressed in DRG macrophages, and Tgfbr1 in neurons. We suggest that TGF-β signaling is a general underlying mechanism of local sympathetic blockade.
Collapse
Affiliation(s)
- Debora Denardin Lückemeyer
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Katherine A Qualls
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Raquel Tonello
- Department of Molecular Pathobiology, Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY, 10010, USA
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
8
|
North RY, Odem MA, Li Y, Tatsui CE, Cassidy RM, Dougherty PM, Walters ET. Electrophysiological Alterations Driving Pain-Associated Spontaneous Activity in Human Sensory Neuron Somata Parallel Alterations Described in Spontaneously Active Rodent Nociceptors. THE JOURNAL OF PAIN 2022; 23:1343-1357. [PMID: 35292377 PMCID: PMC9357108 DOI: 10.1016/j.jpain.2022.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 06/10/2023]
Abstract
Neuropathic pain in rodents can be driven by ectopic spontaneous activity (SA) generated by sensory neurons in dorsal root ganglia (DRG). The recent demonstration that SA in dissociated human DRG neurons is associated with reported neuropathic pain in patients enables a detailed comparison of pain-linked electrophysiological alterations driving SA in human DRG neurons to alterations that distinguish SA in nociceptors from SA in low-threshold mechanoreceptors (LTMRs) in rodent neuropathy models. Analysis of recordings from dissociated somata of patient-derived DRG neurons showed that SA and corresponding pain in both sexes were significantly associated with the three functional electrophysiological alterations sufficient to generate SA in the absence of extrinsic depolarizing inputs. These include enhancement of depolarizing spontaneous fluctuations of membrane potential (DSFs), which were analyzed quantitatively for the first time in human DRG neurons. The functional alterations were indistinguishable from SA-driving alterations reported for nociceptors in rodent chronic pain models. Irregular, low-frequency DSFs in human DRG neurons closely resemble DSFs described in rodent nociceptors while differing substantially from the high-frequency sinusoidal oscillations described in rodent LTMRs. These findings suggest that conserved physiological mechanisms of SA in human nociceptor somata can drive neuropathic pain despite documented cellular differences between human and rodent DRG neurons. PERSPECTIVE: Electrophysiological alterations in human sensory neurons associated with patient-reported neuropathic pain include all three of the functional alterations that logically can promote spontaneous activity. The similarity of distinctively altered spontaneous depolarizations in human DRG neurons and rodent nociceptors suggests that spontaneously active human nociceptors can persistently promote neuropathic pain in patients.
Collapse
Affiliation(s)
- Robert Y North
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Max A Odem
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas
| | - Yan Li
- Department of Anesthesia and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Claudio Esteves Tatsui
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Ryan M Cassidy
- M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Patrick M Dougherty
- Department of Anesthesia and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas..
| |
Collapse
|
9
|
Chen L, Zheng J, Yang Z, Chen W, Wang Y, Wei P. Identification of key candidate genes in local dorsal root ganglion inflammation by integrated bioinformatics analysis. Exp Ther Med 2021; 22:821. [PMID: 34131444 PMCID: PMC8193217 DOI: 10.3892/etm.2021.10253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
The purpose of the present study was to identify potential markers of local dorsal root ganglion (DRG) inflammation to aid diagnosis, treatment and prognosis evaluation of DRG pain. A localized inflammation of the DRG (LID) rat model was used to study the contribution of inflammation to pain. The dataset GSE38859 was obtained from the Gene Expression Omnibus database. Pre-treatment standardization of gene expression data for each experiment was performed using the R/Bioconductor Limma package. Differentially expressed genes (DEGs) were identified between a LID model and a sham surgery control group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of DEGs and gene set enrichment analysis (GSEA) were carried out using the ‘clusterProfiler’ package in R. Using the Search Tool for Retrieval of Interacting Genes, a protein-protein interaction network was constructed and visualized. Candidate genes with the highest potential validity were validated using reverse transcription-quantitative PCR and western blotting. In total, 66 DEGs were enriched in GO terms related to inflammation and the immune response processes. KEGG analysis revealed 14 associated signaling pathway terms. Protein-protein interaction network analysis revealed 9 node genes, 3 of which were among the top 10 DEGs. Matrix metallopeptidase 9, chemokine CXCL9, and complement component 3 were identified as key regulators of DRG inflammatory pain progression.
Collapse
Affiliation(s)
- Linhai Chen
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, P.R. China
| | - Junshui Zheng
- Medical College, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zhuan Yang
- Medical College, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Weiwei Chen
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, P.R. China
| | - Yangjian Wang
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, P.R. China
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
10
|
Zhang L, Xie W, Zhang J, Shanahan H, Tonello R, Lee SH, Strong JA, Berta T, Zhang JM. Key role of CCR2-expressing macrophages in a mouse model of low back pain and radiculopathy. Brain Behav Immun 2021; 91:556-567. [PMID: 33197543 PMCID: PMC7758110 DOI: 10.1016/j.bbi.2020.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic low back pain is a common condition, with high societal costs and often ineffectual treatments. Communication between macrophages/monocytes (MØ) and sensory neurons has been implicated in various preclinical pain models. However, few studies have examined specific MØ subsets, although distinct subtypes may play opposing roles. This study used a model of low back pain/radiculopathy involving direct local inflammation of the dorsal root ganglia (DRG). Reporter mice were employed that had distinct fluorescent labels for two key MØ subsets: CCR2-expressing (infiltrating pro-inflammatory) MØ, and CX3CR1-expressing (resident) macrophages. We observed that local DRG inflammation induced pain behaviors in mice, including guarding behavior and mechanical hypersensitivity, similar to the previously described rat model. The increase in MØ in the inflamed DRG was dominated by increases in CCR2+ MØ, which persisted for at least 14 days. The primary endogenous ligand for CCR2, CCL2, was upregulated in inflamed DRG. Three different experimental manipulations that reduced the CCR2+ MØ influx also reduced pain behaviors: global CCR2 knockout; systemic injection of INCB3344 (specific CCR2 blocker); and intravenous injection of liposomal clodronate. The latter two treatments when applied around the time of DRG inflammation reduced CCR2+ but not CX3CR1+ MØ in the DRG. Together these experiments suggest a key role for the CCR2/CCL2 system in establishing the pain state in this model of inflammatory low back pain and radiculopathy. Intravenous clodronate given after pain was established had the opposite effect on pain behaviors, suggesting the role of macrophages or their susceptibility to clodronate may change with time.
Collapse
Affiliation(s)
- Li Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45040, USA; Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45040, USA
| | - Jingdong Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45040, USA
| | - Hailey Shanahan
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45040, USA
| | - Raquel Tonello
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45040, USA
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45040, USA
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45040, USA
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45040, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45040, USA.
| |
Collapse
|
11
|
Local Sympathectomy Promotes Anti-inflammatory Responses and Relief of Paclitaxel-induced Mechanical and Cold Allodynia in Mice. Anesthesiology 2020; 132:1540-1553. [PMID: 32404819 DOI: 10.1097/aln.0000000000003241] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Patients undergoing cancer treatment often experience chemotherapy-induced neuropathic pain at their extremities, for which there is no U.S. Food and Drug Administration-approved drug. The authors hypothesized that local sympathetic blockade, which is used in the clinic to treat various pain conditions, can also be effective to treat chemotherapy-induced neuropathic pain. METHODS A local sympathectomy (i.e., cutting the ipsilateral gray rami entering the spinal nerves near the L3 and L4 dorsal root ganglia) was performed in mice receiving intraperitoneal injections every other day of the chemotherapeutic drug paclitaxel. Sympathectomy effects were then assessed in chemotherapy-induced pain-like behaviors (i.e., mechanical and cold allodynia) and neuroimmune and electrophysiologic responses. RESULTS Local microsympathectomy produced a fast recovery from mechanical allodynia (mean ± SD: sympathectomy vs. sham at day 5, 1.07 ± 0.34 g vs. 0.51 ± 0.17g, n = 5, P = 0.030 in male mice, and 1.08 ± 0.28 g vs. 0.62 ± 0.16 g, n = 5, P = 0.036 in female mice) and prevented the development of cold allodynia in both male and female mice after paclitaxel. Mechanistically, microsympathectomy induced transcriptional increases in dorsal root ganglia of macrophage markers and anti-inflammatory cytokines, such as the transforming growth factor-β. Accordingly, depletion of monocytes/macrophages and blockade of transforming growth factor-β signaling reversed the relief of mechanical allodynia by microsympathectomy. In particular, exogenous transforming growth factor-β was sufficient to relieve mechanical allodynia after paclitaxel (transforming growth factor-β 100 ng/site vs. vehicle at 3 h, 1.21 ± 0.34g vs. 0.53 ± 0.14 g, n = 5, P = 0.001 in male mice), and transforming growth factor-β signaling regulated neuronal activity in dorsal root ganglia. CONCLUSIONS Local sympathetic nerves control the progression of immune responses in dorsal root ganglia and pain-like behaviors in mice after paclitaxel, raising the possibility that clinical strategies already in use for local sympathetic blockade may also offer an effective treatment for patients experiencing chemotherapy-induced neuropathic pain.
Collapse
|
12
|
Mechanisms of dynamical complexity changes in patterns of sensory neurons under antinociceptive effect emergence. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Kerckhove N, Busserolles J, Stanbury T, Pereira B, Plence V, Bonnetain F, Krakowski I, Eschalier A, Pezet D, Balayssac D. Effectiveness assessment of riluzole in the prevention of oxaliplatin-induced peripheral neuropathy: RILUZOX-01: protocol of a randomised, parallel, controlled, double-blind and multicentre study by the UNICANCER-AFSOS Supportive Care intergroup. BMJ Open 2019; 9:e027770. [PMID: 31182448 PMCID: PMC6561607 DOI: 10.1136/bmjopen-2018-027770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Most patients (>70%) experience acute neuropathic symptoms shortly after oxaliplatin infusions. These symptoms are not always resolved between infusions. Overall, 30%-50% of patients suffer from chronic oxaliplatin-induced peripheral neuropathy (OIPN). This cumulative and dose-dependent sensory neuropathy limits compliance or results in oxaliplatin-based chemotherapies to be substituted with less neurotoxic agents. These treatment changes impair clinical outcomes, and may be associated with comorbidities, such as distress, depression and anxiety. Currently, no drug used to prevent or treat OIPN is sufficiently effective to be used routinely in clinical practice. There is, thus, an unmet therapeutic need to reduce the intensity of and/or prevent OIPN. We hypothesised that riluzole would be an excellent candidate to address this public health issue. Riluzole is approved for treating amyotrophic lateral sclerosis. In animals, there is a beneficial effect on sensorimotor and pain disorders, as well as related comorbidities, after repeated administration of oxaliplatin. In humans, riluzole has shown neuroprotective, anxiolytic and antidepressive effects. METHODS AND ANALYSIS RILUZOX-01 trial was designed as a randomised, controlled, double-blind study to evaluate the efficacy of riluzole to prevent OIPN. Patients with colorectal cancer and initiating adjuvant oxaliplatin-based chemotherapy are eligible. Patients (n=210) will be randomly assigned to either riluzole or placebo, concomitantly with chemotherapy. The primary endpoint is the change in OIPN intensity, assessed by the sensory scale of the QLQ-CIPN20, after six 2-week cycles of chemotherapy. Secondary endpoints include incidence and severity of neuropathy, grade of sensory neuropathy, intensity and features of neuropathic pain, health-related quality of life, disease-free survival, overall survival and safety. ETHICS AND DESSIMINATION The study was approved by a French ethics committee (ref:39/18_1, 'Comité de Protection des Personnes' Ouest-IV, France) and plans to start enroling patients in September 2019. The trial is registered in EudraCT and clinicaltrials.gov. TRIAL REGISTRATION NUMBER N°2017-002320-25; NCT03722680.
Collapse
Affiliation(s)
- Nicolas Kerckhove
- Medical pharmacology, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
- Institut Analgesia, Faculty of medicine, Clermont-Ferrand, France
- INSERM 1107, NEURO-DOL Basic and Clinical Pharmacology of Pain, University Clermont Auvergne, Clermont-Ferrand, France
| | - Jérome Busserolles
- INSERM 1107, NEURO-DOL Basic and Clinical Pharmacology of Pain, University Clermont Auvergne, Clermont-Ferrand, France
| | | | - Bruno Pereira
- DRCI, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | | | | | | | - Alain Eschalier
- Institut Analgesia, Faculty of medicine, Clermont-Ferrand, France
- INSERM 1107, NEURO-DOL Basic and Clinical Pharmacology of Pain, University Clermont Auvergne, Clermont-Ferrand, France
| | - Denis Pezet
- INSERM 1107, NEURO-DOL Basic and Clinical Pharmacology of Pain, University Clermont Auvergne, Clermont-Ferrand, France
- University Hospital of Clermont-Ferrand, Digestive and hepatobiliary surgery, Clermont-Ferrand, France
| | - David Balayssac
- INSERM 1107, NEURO-DOL Basic and Clinical Pharmacology of Pain, University Clermont Auvergne, Clermont-Ferrand, France
- DRCI, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
14
|
Abstract
Obesity is often associated with increased pain, but little is known about the effects of obesity and diet on postoperative pain. In this study, effects of diet and obesity were examined in the paw incision model, a preclinical model of postoperative pain. Long-Evans rats were fed high-fat diet (40% calories from butter fat) or low-fat normal chow. Male rats fed high-fat diet starting 6 weeks before incision (a diet previously shown to induce markers of obesity) had prolonged mechanical hypersensitivity and an overall increase in spontaneous pain in response to paw incision, compared with normal chow controls. Diet effects in females were minor. Removing high-fat diet for 2 weeks before incision reversed the diet effects on pain behaviors, although this was not enough time to reverse high-fat diet-induced weight gain. A shorter (1 week) exposure to high-fat diet before incision also increased pain behaviors in males, albeit to a lesser degree. The 6-week high-fat diet increased macrophage density as examined immunohistochemically in lumbar dorsal root ganglion even before paw incision, especially in males, and sensitized responses of peritoneal macrophages to lipopolysaccharide stimuli in vitro. The nerve regeneration marker growth-associated protein 43 (GAP43) in skin near the incision (day 4) was higher in the high-fat diet group, and wound healing was delayed. In summary, high-fat diet increased postoperative pain particularly in males, but some diet effects did not depend on weight gain. Even short-term dietary manipulations, that do not affect obesity, may enhance postoperative pain.
Collapse
|
15
|
Role of Na V1.6 and Na Vβ4 Sodium Channel Subunits in a Rat Model of Low Back Pain Induced by Compression of the Dorsal Root Ganglia. Neuroscience 2019; 402:51-65. [PMID: 30699332 DOI: 10.1016/j.neuroscience.2019.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/18/2023]
Abstract
Low back pain is a common cause of chronic pain and disability. It is modeled in rodents by chronically compressing the lumbar dorsal root ganglia (DRG) with small metal rods, resulting in ipsilateral mechanical and cold hypersensitivity, and hyperexcitability of sensory neurons. Sodium channels are implicated in this hyperexcitability, but the responsible isoforms are unknown. In this study, we used siRNA-mediated knockdown of the pore-forming NaV1.6 and regulatory NaVβ4 sodium channel isoforms that have been previously implicated in a different model of low back pain caused by locally inflaming the L5 DRG. Knockdown of either subunit markedly reduced spontaneous pain and mechanical and cold hypersensitivity induced by DRG compression, and reduced spontaneous activity and hyperexcitability of sensory neurons with action potentials <1.5 msec (predominately cells with myelinated axons, based on conduction velocities measured in a subset of cells) 4 days after DRG compression. These results were similar to those previously obtained in the DRG inflammation model and some neuropathic pain models, in which sensory neurons other than nociceptors seem to play key roles. The cytokine profiles induced by DRG compression and DRG inflammation were also very similar, with upregulation of several type 1 pro-inflammatory cytokines and downregulation of type 2 anti-inflammatory cytokines. Surprisingly, the cytokine profile was largely unaffected by NaVβ4 knockdown in either model. The NaV1.6 channel, and the NaVβ4 subunit that can regulate NaV1.6 to enhance repetitive firing, play key roles in both models of low back pain; targeting the abnormal spontaneous activity they generate may have therapeutic value.
Collapse
|
16
|
Ibrahim SIA, Xie W, Strong JA, Tonello R, Berta T, Zhang JM. Mineralocorticoid Antagonist Improves Glucocorticoid Receptor Signaling and Dexamethasone Analgesia in an Animal Model of Low Back Pain. Front Cell Neurosci 2018; 12:453. [PMID: 30524245 PMCID: PMC6262081 DOI: 10.3389/fncel.2018.00453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/09/2018] [Indexed: 11/13/2022] Open
Abstract
Low back pain, a leading cause of disability, is commonly treated by epidural steroid injections that target the anti-inflammatory glucocorticoid receptor (GR). However, their efficacy has been controversial. All currently used epidural steroids also activate the pro-inflammatory mineralocorticoid receptor (MR) with significant potency. Local inflammation of the dorsal root ganglia (DRG), a rat model of low back pain, was used. This model causes static and dynamic mechanical allodynia, cold allodynia and guarding behavior (a measure of spontaneous pain), and activates the MR, with pro-nociceptive effects. In this study, effects of local Dexamethasone (DEX; a glucocorticoid used in epidural injections), and eplerenone (EPL; a second generation, more selective MR antagonist) applied to the DRG at the time of inflammation were examined. Mechanical and spontaneous pain behaviors were more effectively reduced by the combination of DEX and EPL than by either alone. The combination of steroids was particularly more effective than DEX alone or the model alone (3-fold improvement for mechanical allodynia) at later times (day 14). Immunohistochemical analysis of the GR in the DRG showed that the receptor was expressed in neurons of all size classes, and in non-neuronal cells including satellite glia. The GR immunoreactivity was downregulated by DRG inflammation (48%) starting on day 1, consistent with the reduction of GR (57%) observed by Western blot, when compared to control animals. On day 14, the combination of DEX and EPL resulted in rescue of GR immunoreactivity that was not seen with DEX alone, and was more effective in reducing a marker for satellite glia activation/neuroinflammation. The results suggest that EPL may enhance the effectiveness of clinically used epidural steroid injections, in part by enhancing the availability of the GR. Thus, the glucocorticoid-mineralocorticoid interactions may limit the effectiveness of epidural steroids through the regulation of the GR in the DRG.
Collapse
Affiliation(s)
- Shaimaa I A Ibrahim
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Graduate Program in Molecular, Cellular, and Biochemical Pharmacology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Raquel Tonello
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
17
|
Odem MA, Bavencoffe AG, Cassidy RM, Lopez ER, Tian J, Dessauer CW, Walters ET. Isolated nociceptors reveal multiple specializations for generating irregular ongoing activity associated with ongoing pain. Pain 2018; 159:2347-2362. [PMID: 30015712 PMCID: PMC6193853 DOI: 10.1097/j.pain.0000000000001341] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ongoing pain has been linked to ongoing activity (OA) in human C-fiber nociceptors, but rodent models of pain-related OA have concentrated on allodynia rather than ongoing pain, and on OA generated in non-nociceptive Aβ fibers rather than C-fiber nociceptors. Little is known about how ongoing pain or nociceptor OA is generated. To define neurophysiological alterations underlying nociceptor OA, we have used isolated dorsal root ganglion neurons that continue to generate OA after removal from animals displaying ongoing pain. We subclassify OA as either spontaneous activity generated solely by alterations intrinsic to the active neuron or as extrinsically driven OA. Both types of OA were implicated previously in nociceptors in vivo and after isolation following spinal cord injury, which produces chronic ongoing pain. Using novel automated algorithms to analyze irregular changes in membrane potential, we have found, in a distinctive, nonaccommodating type of probable nociceptor, induction by spinal cord injury of 3 alterations that promote OA: (1) prolonged depolarization of resting membrane potential, (2) a hyperpolarizing shift in the voltage threshold for action potential generation, and (3) an increase in the incidence of large depolarizing spontaneous fluctuations (DSFs). Can DSFs also be enhanced acutely to promote OA in neurons from uninjured animals? A low dose of serotonin failed to change resting membrane potential but lowered action potential threshold. When combined with artificial depolarization to model inflammation, serotonin also strongly potentiated DSFs and OA. These findings reveal nociceptor specializations for generating OA that may promote ongoing pain in chronic and acute conditions.
Collapse
Affiliation(s)
- Max A. Odem
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Alexis G. Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Ryan M. Cassidy
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Elia R. Lopez
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| |
Collapse
|
18
|
Zhang X, Gao Y, Wang Q, Du S, He X, Gu N, Lu Y. Riluzole induces LTD of spinal nociceptive signaling via postsynaptic GluR2 receptors. J Pain Res 2018; 11:2577-2586. [PMID: 30464577 PMCID: PMC6209077 DOI: 10.2147/jpr.s169686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Riluzole - a major therapeutic medicine for patients with amyotrophic lateral sclerosis - reportedly has anti-nociceptive and anti-allodynic efficacies in neuropathic pain models. However, little is known about its effect on neurotransmission in the spinal superficial dorsal horn (SDH). The present study aims to investigate the effects of riluzole on the synaptic transmission of SDH nociceptive pathways in both physiological and pathological conditions. Materials and methods Spinal nerve ligation was used to produce a neuropathic pain model. Mechanical allodynia behavior was assessed with Von Frey filaments. Riluzole's effects on nociceptive synaptic transmission under both physiological and pathological conditions were examined by patch-clamp recordings in rat SDH neurons. Results The principal findings of the present study are three-fold. First, we affirm that riluzole has a remarkable long-lasting analgesic effect on both in vitro and in vivo pathological pain models. Second, the prolonged inhibitory effects of riluzole on spinal nociceptive signaling are mediated by both presynaptic and postsynaptic mechanisms. Finally, endocytosis of post-synaptic GluR2 contributes to the riluzole-induced long-term depression (LTD) of the spinal nociceptive pathway. Conclusion The present study finds that riluzole induces LTD of nociceptive signaling in the SDH and produces long-lasting anti-allodynia effects in nerve injury-induced neuropathic pain conditions via postsynaptic AMPA receptors associated with the endocytosis of GluR2.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Pain Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China, ;
| | - Yandong Gao
- Department of Anesthesiology, First Hospital of Yulin City, Yulin 719000, China
| | - Qun Wang
- Department of Pain Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China, ;
| | - Shibin Du
- Department of Pain Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China, ;
| | - Xiaolan He
- Department of Pain Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China, ;
| | - Nan Gu
- Department of Pain Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China, ;
| | - Yan Lu
- Department of Pain Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China, ;
| |
Collapse
|
19
|
Djouhri L, Smith T, Alotaibi M, Weng X. Membrane potential oscillations are not essential for spontaneous firing generation in L4 Aβ-afferent neurons after L5 spinal nerve axotomy and are not mediated by HCN channels. Exp Physiol 2018; 103:1145-1156. [PMID: 29860719 DOI: 10.1113/ep087013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/23/2018] [Indexed: 01/01/2023]
Abstract
NEW FINDINGS What is the central question of this study? Is spontaneous activity (SA) in L4 dorsal root ganglion (DRG) neurons induced by L5 spinal nerve axotomy associated with membrane potential oscillations in these neurons, and if so, are these membrane oscillations mediated by HCN channels? What is the main finding and its importance? Unlike injured L5 DRG neurons, which have been shown to be incapable of firing spontaneously without membrane potential oscillations, membrane potential oscillations are not essential for SA generation in conducting 'uninjured' L4 neurons, and they are not mediated by HCN channels. These findings suggest that the underlying cellular mechanisms of SA in injured and 'uninjured' DRG neurons induced by spinal nerve injury are distinct. ABSTRACT The underlying cellular and molecular mechanisms of peripheral neuropathic pain are not fully understood. However, preclinical studies using animal models suggest that this debilitating condition is driven partly by aberrant spontaneous activity (SA) in injured and uninjured dorsal root ganglion (DRG) neurons, and that SA in injured DRG neurons is triggered by subthreshold membrane potential oscillations (SMPOs). Here, using in vivo intracellular recording from control L4-DRG neurons, and ipsilateral L4-DRG neurons in female Wistar rats that had previously undergone L5 spinal nerve axotomy (SNA), we examined whether conducting 'uninjured' L4-DRG neurons in SNA rats exhibit SMPOs, and if so, whether such SMPOs are associated with SA in those L4 neurons, and whether they are mediated by hyperpolarization-activated cyclic nucleotide gated (HCN) channels. We found that 7 days after SNA: (a) none of the control A- or C-fibre DRG neurons showed SMPOs or SA, but 50%, 43% and 0% of spontaneously active cutaneous L4 Aβ-low threshold mechanoreceptors, Aβ-nociceptors and C-nociceptors exhibited SMPOs, respectively, in SNA rats with established neuropathic pain behaviors; (b) neither SMPOs nor SA in L4 Aβ-neurons was suppressed by blocking HCN channels with ZD7288 (10 mg kg-1 , i.v.); and (c) there is a tendency for female rats to show greater pain hypersensitivity than male rats. These results suggest that SMPOs are linked to SA only in some of the conducting L4 Aβ-neurons, that such oscillations are not a prerequisite for SA generation in those L4 A- or C-fibre neurons, and that HCN channels are not involved in their electrogenesis.
Collapse
Affiliation(s)
- L Djouhri
- Department of Physiology, College of Medicine, Alfaisal University, PO Box 50927, Riyadh, 11533, Saudi Arabia
| | - T Smith
- Wolfson CARD, Neurorestoration Group, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - M Alotaibi
- Department of Physiology, College of Medicine, King Saud University, PO Box 7805, Riyadh, 11472, Saudi Arabia
| | - X Weng
- Department of Neurobiology and State Key Laboratory of Proteomics, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| |
Collapse
|
20
|
Arendt‐Nielsen L, Morlion B, Perrot S, Dahan A, Dickenson A, Kress H, Wells C, Bouhassira D, Drewes AM. Assessment and manifestation of central sensitisation across different chronic pain conditions. Eur J Pain 2018; 22:216-241. [DOI: 10.1002/ejp.1140] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
AbstractDifferent neuroplastic processes can occur along the nociceptive pathways and may be important in the transition from acute to chronic pain and for diagnosis and development of optimal management strategies. The neuroplastic processes may result in gain (sensitisation) or loss (desensitisation) of function in relation to the incoming nociceptive signals. Such processes play important roles in chronic pain, and although the clinical manifestations differ across condition processes, they share some common mechanistic features. The fundamental understanding and quantitative assessment of particularly some of the central sensitisation mechanisms can be translated from preclinical studies into the clinic. The clinical perspectives are implementation of such novel information into diagnostics, mechanistic phenotyping, prevention, personalised treatment, and drug development. The aims of this paper are to introduce and discuss (1) some common fundamental central pain mechanisms, (2) how they may translate into the clinical signs and symptoms across different chronic pain conditions, (3) how to evaluate gain and loss of function using quantitative pain assessment tools, and (4) the implications for optimising prevention and management of pain. The chronic pain conditions selected for the paper are neuropathic pain in general, musculoskeletal pain (chronic low back pain and osteoarthritic pain in particular), and visceral pain (irritable bowel syndrome in particular). The translational mechanisms addressed are local and widespread sensitisation, central summation, and descending pain modulation.SignificanceCentral sensitisation is an important manifestation involved in many different chronic pain conditions. Central sensitisation can be different to assess and evaluate as the manifestations vary from pain condition to pain condition. Understanding central sensitisation may promote better profiling and diagnosis of pain patients and development of new regimes for mechanism based therapy. Some of the mechanisms underlying central sensitisation can be translated from animals to humans providing new options in development of therapies and profiling drugs under development.
Collapse
Affiliation(s)
| | - B. Morlion
- The Leuven Centre for Algology University Hospitals Leuven University of Leuven Belgium
| | - S. Perrot
- INSERM U987 Pain Center Cochin Hospital Paris Descartes University Paris France
| | - A. Dahan
- Department of Anesthesiology Leiden University Medical Center Leiden The Netherlands
| | - A. Dickenson
- Neuroscience Physiology & Pharmacology University College London UK
| | - H.G. Kress
- Department of Special Anaesthesia and Pain Therapy Medizinische Universität/AKH Wien Vienna Austria
| | | | - D. Bouhassira
- INSERM U987 Centre d'Evaluation et de Traitement de la Douleur Hôpital Ambroise Paré Boulogne Billancourt France
| | - A. Mohr Drewes
- Mech‐Sense Department of Gastroenterology and Hepatology Clinical Institute Aalborg University Hospital Aalborg Denmark
| |
Collapse
|
21
|
High-fat diet increases pain behaviors in rats with or without obesity. Sci Rep 2017; 7:10350. [PMID: 28871134 PMCID: PMC5583349 DOI: 10.1038/s41598-017-10458-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity is associated with increased risk for chronic pain. Basic mechanisms for this association are poorly understood. Using a milder version of a radicular pain model, local inflammation of the dorsal root ganglion (DRG), we observed marked increases in mechanical and cold allodynia in rats of both sexes that were maintained on a high-fat diet (HFD) for 6 weeks prior to DRG inflammation. Notably, this increase in pain-related behaviors occurred in both Long-Evans and Sprague-Dawley rats despite the fact that the 6-week HFD exposure induced obesity (e.g., increased insulin, leptin, weight, and percent body fat) in the Long-Evans, but not Sprague-Dawley, strains. This suggested that HFD, rather than obesity per se, increased pain behaviors. Increased pain behaviors were observed even after a much shorter (1 week) exposure to the HFD but the effect was smaller. HFD also increased behavioral responses and paw swelling to paw injection of complete Freund’s adjuvant, a model of peripheral inflammatory pain. No change was detected in plasma cytokine levels in HFD rats. However, increased macrophage infiltration of the DRG was observed in response to the HFD, absent any pain model. The results suggest that HFD can increase pain even when it does not cause obesity.
Collapse
|
22
|
Localized Sympathectomy Reduces Mechanical Hypersensitivity by Restoring Normal Immune Homeostasis in Rat Models of Inflammatory Pain. J Neurosci 2017; 36:8712-25. [PMID: 27535916 DOI: 10.1523/jneurosci.4118-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/09/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Some forms of chronic pain are maintained or enhanced by activity in the sympathetic nervous system (SNS), but attempts to model this have yielded conflicting findings. The SNS has both pro- and anti-inflammatory effects on immunity, confounding the interpretation of experiments using global sympathectomy methods. We performed a "microsympathectomy" by cutting the ipsilateral gray rami where they entered the spinal nerves near the L4 and L5 DRG. This led to profound sustained reductions in pain behaviors induced by local DRG inflammation (a rat model of low back pain) and by a peripheral paw inflammation model. Effects of microsympathectomy were evident within one day, making it unlikely that blocking sympathetic sprouting in the local DRGs or hindpaw was the sole mechanism. Prior microsympathectomy greatly reduced hyperexcitability of sensory neurons induced by local DRG inflammation observed 4 d later. Microsympathectomy reduced local inflammation and macrophage density in the affected tissues (as indicated by paw swelling and histochemical staining). Cytokine profiling in locally inflamed DRG showed increases in pro-inflammatory Type 1 cytokines and decreases in the Type 2 cytokines present at baseline, changes that were mitigated by microsympathectomy. Microsympathectomy was also effective in reducing established pain behaviors in the local DRG inflammation model. We conclude that the effect of sympathetic fibers in the L4/L5 gray rami in these models is pro-inflammatory. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some chronic inflammatory pain conditions. SIGNIFICANCE STATEMENT Sympathetic blockade is used for many pain conditions, but preclinical studies show both pro- and anti-nociceptive effects. The sympathetic nervous system also has both pro- and anti-inflammatory effects on immune tissues and cells. We examined effects of a very localized sympathectomy. By cutting the gray rami to the spinal nerves near the lumbar sensory ganglia, we avoided widespread sympathetic denervation. This procedure profoundly reduced mechanical pain behaviors induced by a back pain model and a model of peripheral inflammatory pain. One possible mechanism was reduction of inflammation in the sympathetically denervated regions. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some inflammatory conditions.
Collapse
|
23
|
Li AL, Zhang JD, Xie W, Strong JA, Zhang JM. Inflammatory Changes in Paravertebral Sympathetic Ganglia in Two Rat Pain Models. Neurosci Bull 2017; 34:85-97. [PMID: 28534262 DOI: 10.1007/s12264-017-0142-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/24/2022] Open
Abstract
Injury to peripheral nerves can lead to neuropathic pain, along with well-studied effects on sensory neurons, including hyperexcitability, abnormal spontaneous activity, and neuroinflammation in the sensory ganglia. Neuropathic pain can be enhanced by sympathetic activity. Peripheral nerve injury may also damage sympathetic axons or expose them to an inflammatory environment. In this study, we examined the lumbar sympathetic ganglion responses to two rat pain models: ligation of the L5 spinal nerve, and local inflammation of the L5 dorsal root ganglion (DRG), which does not involve axotomy. Both models resulted in neuroinflammatory changes in the sympathetic ganglia, as indicated by macrophage responses, satellite glia activation, and increased numbers of T cells, along with very modest increases in sympathetic neuron excitability (but not spontaneous activity) measured in ex vivo recordings. The spinal nerve ligation model generally caused larger responses than DRG inflammation. Plasticity of the sympathetic system should be recognized in studies of sympathetic effects on pain.
Collapse
Affiliation(s)
- Ai-Ling Li
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.,Department of Psychological and Brain Science, Indiana University Bloomington, 702 N Walnut Grove Ave., Bloomington, IN, 47405, USA
| | - Jing-Dong Zhang
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Wenrui Xie
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Judith A Strong
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jun-Ming Zhang
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
24
|
Fixed spaced stimulation restores adaptive plasticity within the spinal cord: Identifying the eliciting conditions. Physiol Behav 2017; 174:1-9. [PMID: 28238778 DOI: 10.1016/j.physbeh.2017.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/22/2017] [Indexed: 01/21/2023]
Abstract
Prior work has shown that neurons within the spinal cord are sensitive to temporal relations and that stimulus regularity impacts nociceptive processing and adaptive plasticity. Application of brief (80ms) shocks (180-900) in a variable manner induces a form of maladaptive plasticity that inhibits spinally-mediated learning and enhances nociceptive reactivity. In contrast, an extended exposure (720-900) to stimuli given at regular (fixed spaced) intervals has a restorative effect that counters nociceptive sensitization and enables learning. The present paper explores the stimulus parameters under which this therapeutic effect of fixed spaced stimulation emerges. Spinally transected rats received variably spaced stimulation (180 shocks) to the sciatic nerve at an intensity (40-V) that recruits pain (C) fibers, producing a form of maladaptive plasticity that impairs spinal learning. As previously shown, exposure to 720 fixed spaced shocks had a therapeutic effect that restored adaptive learning. This therapeutic effect was most robust at a lower shock intensity (20V) and was equally strong irrespective of pulse duration (20-80ms). A restorative effect was observed when stimuli were given at a frequency between 0.5 and 5Hz, but not at a higher (50Hz) or lower (0.05Hz) rate. The results are consistent with prior work implicating neural systems related to the central pattern generator that drives stepping behavior. Clinical implications are discussed.
Collapse
|
25
|
Upregulation of the sodium channel NaVβ4 subunit and its contributions to mechanical hypersensitivity and neuronal hyperexcitability in a rat model of radicular pain induced by local dorsal root ganglion inflammation. Pain 2017; 157:879-891. [PMID: 26785322 DOI: 10.1097/j.pain.0000000000000453] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
High-frequency spontaneous firing in myelinated sensory neurons plays a key role in initiating pain behaviors in several different models, including the radicular pain model in which the rat lumbar dorsal root ganglia (DRG) are locally inflamed. The sodium channel isoform NaV1.6 contributes to pain behaviors and spontaneous activity in this model. Among all isoforms in adult DRG, NaV1.6 is the main carrier of tetrodotoxin-sensitive resurgent Na currents that allow high-frequency firing. Resurgent currents flow after a depolarization or action potential, as a blocking particle exits the pore. In most neurons, the regulatory β4 subunit is potentially the endogenous blocker. We used in vivo siRNA-mediated knockdown of NaVβ4 to examine its role in the DRG inflammation model. NaVβ4 but not control siRNA almost completely blocked mechanical hypersensitivity induced by DRG inflammation. Microelectrode recordings in isolated whole DRG showed that NaVβ4 siRNA blocked the inflammation-induced increase in spontaneous activity of Aβ neurons and reduced repetitive firing and other measures of excitability. NaVβ4 was preferentially expressed in larger diameter cells; DRG inflammation increased its expression, and this was reversed by NaVβ4 siRNA, based on immunohistochemistry and Western blotting. NaVβ4 siRNA also reduced immunohistochemical NaV1.6 expression. Patch-clamp recordings of tetrodotoxin-sensitive Na currents in acutely cultured medium diameter DRG neurons showed that DRG inflammation increased transient and especially resurgent current, effects blocked by NaVβ4 siRNA. NaVβ4 may represent a more specific target for pain conditions that depend on myelinated neurons expressing NaV1.6.
Collapse
|
26
|
Barbosa C, Xiao Y, Johnson AJ, Xie W, Strong JA, Zhang JM, Cummins TR. FHF2 isoforms differentially regulate Nav1.6-mediated resurgent sodium currents in dorsal root ganglion neurons. Pflugers Arch 2016; 469:195-212. [PMID: 27999940 DOI: 10.1007/s00424-016-1911-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/19/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
Abstract
Nav1.6 and Nav1.6-mediated resurgent currents have been implicated in several pain pathologies. However, our knowledge of how fast resurgent currents are modulated in neurons is limited. Our study explored the potential regulation of Nav1.6-mediated resurgent currents by isoforms of fibroblast growth factor homologous factor 2 (FHF2) in an effort to address the gap in our knowledge. FHF2 isoforms colocalize with Nav1.6 in peripheral sensory neurons. Cell line studies suggest that these proteins differentially regulate inactivation. In particular, FHF2A mediates long-term inactivation, a mechanism proposed to compete with the open-channel blocker mechanism that mediates resurgent currents. On the other hand, FHF2B lacks the ability to mediate long-term inactivation and may delay inactivation favoring open-channel block. Based on these observations, we hypothesized that FHF2A limits resurgent currents, whereas FHF2B enhances resurgent currents. Overall, our results suggest that FHF2A negatively regulates fast resurgent current by enhancing long-term inactivation and delaying recovery. In contrast, FHF2B positively regulated resurgent current and did not alter long-term inactivation. Chimeric constructs of FHF2A and Navβ4 (likely the endogenous open channel blocker in sensory neurons) exhibited differential effects on resurgent currents, suggesting that specific regions within FHF2A and Navβ4 have important regulatory functions. Our data also indicate that FHFAs and FHF2B isoform expression are differentially regulated in a radicular pain model and that associated neuronal hyperexcitability is substantially attenuated by a FHFA peptide. As such, these findings suggest that FHF2A and FHF2B regulate resurgent current in sensory neurons and may contribute to hyperexcitability associated with some pain pathologies.
Collapse
Affiliation(s)
- Cindy Barbosa
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yucheng Xiao
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Johnson
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenrui Xie
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA
| | - Judith A Strong
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA
| | - Jun-Ming Zhang
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA
| | - Theodore R Cummins
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA. .,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
27
|
Shao H, Yang Y, Mi Z, Zhu GX, Qi AP, Ji WG, Zhu ZR. Anticonvulsant effect of Rhynchophylline involved in the inhibition of persistent sodium current and NMDA receptor current in the pilocarpine rat model of temporal lobe epilepsy. Neuroscience 2016; 337:355-369. [DOI: 10.1016/j.neuroscience.2016.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 01/28/2023]
|
28
|
Shao H, Yang Y, Qi AP, Hong P, Zhu GX, Cao XY, Ji WG, Zhu ZR. Gastrodin Reduces the Severity of Status Epilepticus in the Rat Pilocarpine Model of Temporal Lobe Epilepsy by Inhibiting Nav1.6 Sodium Currents. Neurochem Res 2016; 42:360-374. [PMID: 27743286 DOI: 10.1007/s11064-016-2079-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 01/06/2023]
Abstract
Temporal lobe epilepsy (TLE) is one of the most refractory types of adult epilepsy, and treatment options remain unsatisfactory. Gastrodin (GAS), a phenolic glucoside used in Chinese herbal medicine and derived from Gastrodia elata Blume, has been shown to have remarkable anticonvulsant effects on various models of epilepsy in vivo. However, the mechanisms of GAS as an anticonvulsant drug remain to be established. By utilizing a combination of behavioral surveys, immunofluorescence and electrophysiological recordings, the present study characterized the anticonvulsant effect of GAS in a pilocarpine-induced status epilepticus (SE) rat model of TLE and explored the underlying cellular mechanisms. We found that GAS pretreatment effectively reduced the severity of SE in the acute phase of TLE. Moreover, GAS protected medial entorhinal cortex (mEC) layer III neurons from neuronal death and terminated the SE-induced bursting discharge of mEC layer II neurons from SE-experienced rats. Furthermore, the current study revealed that GAS prevented the pilocarpine-induced enhancement of Nav1.6 currents (persistent (INaP) and resurgent (INaR) currents), which were reported to play a critical role in the generation of bursting spikes. Consistent with this result, GAS treatment reversed the expression of Nav1.6 protein in SE-experienced EC neurons. These results suggest that the inhibition of Nav1.6 sodium currents may be the underlying mechanism of GAS's anticonvulsant properties.
Collapse
Affiliation(s)
- Hui Shao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China
- Department of Physiology, Third Military Medical University, Chongqing, China
- The Fifth Camp of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Yang Yang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China
| | - Ai-Ping Qi
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China
| | - Pian Hong
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China
| | - Guang-Xi Zhu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China
| | - Xin-Yu Cao
- The Fifth Camp of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Wei-Gang Ji
- Department of Chemistry, Faculty of Pharmacy, Third Military Medical University, Chongqing, China
| | - Zhi-Ru Zhu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China.
- Department of Physiology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
29
|
Abstract
Sick excitable cells (ie, Nav channel-expressing cells injured by trauma, ischemia, inflammatory, and other conditions) typically exhibit "acquired sodium channelopathies" which, we argue, reflect bleb-damaged membranes rendering their Nav channels "leaky." The situation is excitotoxic because untreated Nav leak exacerbates bleb damage. Fast Nav inactivation (a voltage-independent process) is so tightly coupled, kinetically speaking, to the inherently voltage-dependent process of fast activation that when bleb damage accelerates and thus left-shifts macroscopic fast activation, fast inactivation accelerates to the same extent. The coupled g(V) and availability(V) processes and their window conductance regions consequently left-shift by the same number of millivolts. These damage-induced hyperpolarizing shifts, whose magnitude increases with damage intensity, are called coupled left shift (CLS). Based on past work and modeling, we discuss how to test for Nav-CLS, emphasizing the virtue of sawtooth ramp clamp. We explain that it is the inherent mechanosensitivity of Nav activation that underlies Nav-CLS. Using modeling of excitability, we show the known process of Nav-CLS is sufficient to predict a wide variety of "sick excitable cell" phenomena, from hyperexcitability through to depolarizing block. When living cells are mimicked by inclusion of pumps, mild Nav-CLS produces a wide array of burst phenomena and subthreshold oscillations. Dynamical analysis of mild damage scenarios shows how these phenomena reflect changes in spike thresholds as the pumps try to counteract the leaky Nav channels. Smart Nav inhibitors designed for sick excitable cells would target bleb-damaged membrane, buying time for cell-mediated removal or repair of Nav-bearing membrane that has become bleb-damaged (ie, detached from the cytoskeleton).
Collapse
Affiliation(s)
- C E Morris
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - B Joos
- University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
30
|
Ibrahim SIA, Strong JA, Zhang JM. Mineralocorticoid Receptor, A Promising Target for Improving Management of Low Back Pain by Epidural Steroid Injections. ACTA ACUST UNITED AC 2016; 3:177-184. [PMID: 28956026 PMCID: PMC5611848 DOI: 10.24015/japm.2016.0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM OF REVIEW Low back pain is a major health problem in United States and worldwide. In this review, we aim to show that mineralocorticoid receptor (MR) activation has a critical role in the initiation of immune and inflammatory responses, which in turn can impact the effectiveness of the currently used steroids for epidural injections in low back pain management since most steroids activate MR in addition to the primary target, glucocorticoid receptor (GR). Moreover, we would like to determine some of the benefits of blocking the MR-induced negative effects. Overall, we propose a novel therapeutic approach for low back pain management by using a combination of a MR antagonist and a GR agonist in the epidural injections. METHOD We will first introduce the societal cost of low back pain and discuss how epidural steroid injections became a popular treatment for this condition. We will then describe several preclinical models used for the study of low back pain conditions and the findings with respect to the role of MR in the development of inflammatory low back pain. RECENT FINDINGS MR has pro-inflammatory effects in many tissues which can counteract the anti-inflammatory effects induced by GR activation. Blocking MR using the selective MR antagonist eplerenone can reduce pain and sensory neuron excitability in experimental models of low back pain. Moreover, combining the MR antagonist with clinically used steroids is more effective in reducing pain behaviors than using the steroids alone. SUMMARY MR antagonists are promising candidates to increase the effectiveness of currently used steroids. Since the activation of the MR is evident in preclinical models of low back pain, blocking its deleterious effects can be beneficial in managing inflammatory pain conditions.
Collapse
Affiliation(s)
- Shaimaa I A Ibrahim
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, USA.,Graduate Program in Molecular, Cellular, and Biochemical Pharmacology, University of Cincinnati, Cincinnati, USA
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, USA
| |
Collapse
|
31
|
A Novel Nitronyl Nitroxide with Salicylic Acid Framework Attenuates Pain Hypersensitivity and Ectopic Neuronal Discharges in Radicular Low Back Pain. Neural Plast 2015; 2015:752782. [PMID: 26609438 PMCID: PMC4644553 DOI: 10.1155/2015/752782] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 01/04/2023] Open
Abstract
Evidence has accumulated that reactive oxygen species and inflammation play crucial roles in the development of chronic pain, including radicular low back pain. Nonsteroid anti-inflammatory drugs (NSAIDs), for example, salicylic acid, aspirin, provided analgesic effects in various types of pain. However, long-term use of these drugs causes unwanted side effects, which limits their implication. Stable nitronyl (NIT) nitroxide radicals have been extensively studied as a unique and interesting class of new antioxidants for protection against oxidative damage. The present study synthesized a novel NIT nitroxide radical with salicylic acid framework (SANR) to provide synergistic effect of both antioxidation and antiinflammation. We demonstrated for the first time that both acute and repeated SANR treatment exerted dramatic analgesic effect in radicular low back pain mimicked by chronic compression of dorsal root ganglion in rats. This analgesic potency was more potent than that produced by classical NSAIDs aspirin and traditional nitroxide radical Tempol alone. Furthermore, SANR-induced behavioral analgesia is found to be mediated, at least in partial, by a reduction of ectopic spontaneous discharges in injured DRG neurons. Therefore, the synthesized NIT nitroxide radical coupling with salicylic acid framework may represent a novel potential therapeutic candidate for treatment of chronic pain, including radicular low back pain.
Collapse
|
32
|
Xie W, Strong JA, Zhang JM. Local knockdown of the NaV1.6 sodium channel reduces pain behaviors, sensory neuron excitability, and sympathetic sprouting in rat models of neuropathic pain. Neuroscience 2015; 291:317-30. [PMID: 25686526 DOI: 10.1016/j.neuroscience.2015.02.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/21/2015] [Accepted: 02/05/2015] [Indexed: 11/15/2022]
Abstract
In the spinal nerve ligation (SNL) model of neuropathic pain, as in other pain models, abnormal spontaneous activity of myelinated sensory neurons occurs early and is essential for establishing pain behaviors and other pathologies. Sympathetic sprouting into the dorsal root ganglion (DRG) is observed after SNL, and sympathectomy reduces pain behavior. Sprouting and spontaneous activity may be mutually reinforcing: blocking neuronal activity reduces sympathetic sprouting, and sympathetic spouts functionally increase spontaneous activity in vitro. However, most studies in this field have used nonspecific methods to block spontaneous activity, methods that also block evoked and normal activity. In this study, we injected small inhibitory (si) RNA directed against the NaV1.6 sodium channel isoform into the DRG before SNL. This isoform can mediate high-frequency repetitive firing, like that seen in spontaneously active neurons. Local knockdown of NaV1.6 markedly reduced mechanical pain behaviors induced by SNL, reduced sympathetic sprouting into the ligated sensory ganglion, and blocked abnormal spontaneous activity and other measures of hyperexcitability in myelinated neurons in the ligated sensory ganglion. Immunohistochemical experiments showed that sympathetic sprouting preferentially targeted NaV1.6-positive neurons. Under these experimental conditions, NaV1.6 knockdown did not prevent or strongly alter single evoked action potentials, unlike previous less specific methods used to block spontaneous activity. NaV1.6 knockdown also reduced pain behaviors in another pain model, chronic constriction of the sciatic nerve, provided the model was modified so that the lesion site was relatively close to the siRNA-injected lumbar DRGs. The results highlight the relative importance of abnormal spontaneous activity in establishing both pain behaviors and sympathetic sprouting, and suggest that the NaV1.6 isoform may have value as a therapeutic target.
Collapse
Affiliation(s)
- W Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA.
| | - J A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA.
| | - J-M Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA.
| |
Collapse
|
33
|
Blocking the mineralocorticoid receptor improves effectiveness of steroid treatment for low back pain in rats. Anesthesiology 2014; 121:632-43. [PMID: 24781496 DOI: 10.1097/aln.0000000000000277] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Localized inflammation of lumbar dorsal root ganglia (DRG) may contribute to low back pain. Local injections of corticosteroids used for low back pain are sometimes ineffective. Many corticosteroids activate not only the target glucocorticoid receptor (GR) but also the mineralocorticoid receptor (MR), which may have proinflammatory effects countering the effects of GR activation. METHODS A low back pain model was implemented in rats (n = 6 to 10 per group) by locally inflaming the L5 DRG. Sensory neuron excitability and mechanical hypersensitivity of the hind paws were measured. Tested steroids were applied locally to the inflamed DRG or orally. RESULTS The selective MR blocker eplerenone reduced pain behaviors when given orally starting at the time of surgery, or starting 7 days later. The highly GR-selective agonist fluticasone, applied locally to the inflamed DRG, was much more effective in reducing mechanical hypersensitivity. The MR/GR agonist 6-α methylprednisolone, commonly injected for low back pain, reduced mechanical hypersensitivity when applied locally to the DRG but was less effective than fluticasone. Its effectiveness was improved by combining it with local eplerenone. All tested steroids reduced hyperexcitability of myelinated sensory neurons (n = 71 to 220 cells per group) after inflammation, particularly abnormal spontaneous activity. CONCLUSIONS This preclinical study indicates the MR may play an important role in low back pain involving inflammation. Some MR effects may occur at the level of the sensory neuron. It may be useful to consider the action of clinically used steroids at the MR as well as at the GR.
Collapse
|
34
|
Mineralocorticoid receptor blocker eplerenone reduces pain behaviors in vivo and decreases excitability in small-diameter sensory neurons from local inflamed dorsal root ganglia in vitro. Anesthesiology 2013; 117:1102-12. [PMID: 23023156 DOI: 10.1097/aln.0b013e3182700383] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Inflammation of the dorsal root ganglia (DRG) may contribute to low back pain, postherpetic neuralgia, and neuropathic pain. The mineralocorticoid receptor (MR) plays a proinflammatory role in many nonrenal tissues, but its role in peripheral pain at the DRG level is not well studied. METHODS Local inflammation of the L5 DRG with the immune activator zymosan rapidly leads to mechanical hypersensitivity and increased excitability of sensory neurons. Using this pain model, the authors applied the MR antagonist eplerenone locally to the inflamed DRG. Excitability of small-diameter sensory neurons was examined in acute primary culture by using patch clamp techniques. RESULTS Local eplerenone significantly reduced the mechanical hypersensitivity and shortened its duration. The same dose was ineffective systemically. Immunohistochemical studies showed the MR was present in most neurons and rapidly translocated to the nucleus 1 day after local DRG inflammation. Activation of satellite glia (defined by expression of glial fibrillary acidic protein) in the inflamed DRG was also reduced by local eplerenone. Increased excitability of small-diameter sensory neurons 1 day after inflammation could be observed in vitro. Eplerenone applied in vitro (8-12 h) could reverse this increased excitability. Eplerenone had no effect in neurons isolated from normal, uninflamed DRG. The MR agonist aldosterone (10 nM) applied in vitro increased excitability of neurons isolated from normal DRG. CONCLUSIONS The MR may have a pronociceptive role in the DRG. Some of its effects may be mediated by neuronal MR. The MR may represent a novel therapeutic target in some pain syndromes.
Collapse
|
35
|
Systemic morphine treatment induces changes in firing patterns and responses of nociceptive afferent fibers in mouse glabrous skin. Pain 2013; 154:2297-2309. [PMID: 23711478 DOI: 10.1016/j.pain.2013.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/26/2013] [Accepted: 05/17/2013] [Indexed: 01/22/2023]
Abstract
Patients receiving opioids for pain may experience decreased effectiveness of the drug and even abnormal pain sensitivity-hyperalgesia and/or allodynia. We hypothesized that peripheral nociceptor hyperexcitability contributes to opioid-induced hyperalgesia and tested this using an in vitro mouse glabrous skin-nerve preparation. Mice were injected intraperitoneally with escalating doses of morphine (5, 8, 10, 15 mg/kg) or saline every 12 hours for 48 hours and killed approximately 12 hours after the last injection. Receptive fields of nociceptors were tested for mechanical, heat, and cold sensitivity. Activity was also measured during an initial 2-minute period and during 5-minute periods between stimuli. Aberrant activity was common in fibers from morphine-treated mice but rare in saline-treated mice. Resting background activity was elevated in C-fibers from morphine-treated mice. Both C- and Aδ-fibers had afterdischarge in response to mechanical, heat, and/or cold stimulation of the skin as well as spontaneous, unevoked activity. Compared to saline, morphine treatment increased the proportion of fibers displaying polymodal rather than mechanical-only responses. A significant increase in Aδ-mechanoreceptive fibers responding to cold accounted for most of this change. In agreement with this, morphine-treated mice showed increased sensitivity in the cold tail flick test. In morphine-treated mice, aberrant activity and hyperexcitability of nociceptors could contribute to increased pain sensitivity. Importantly, this activity is likely driving central sensitization, a phenomenon contributing to abnormal sensory processing and chronic pain. If similar changes occur in human patients, aberrant nociceptor activity is likely to be interpreted as pain and could contribute to opioid-induced hyperalgesia.
Collapse
|
36
|
Strong JA, Xie W, Bataille FJ, Zhang JM. Preclinical studies of low back pain. Mol Pain 2013; 9:17. [PMID: 23537369 PMCID: PMC3617092 DOI: 10.1186/1744-8069-9-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/18/2013] [Indexed: 12/12/2022] Open
Abstract
Chronic low back pain is a major cause of disability and health care costs. Current treatments are inadequate for many patients. A number of preclinical models have been developed that attempt to mimic aspects of clinical conditions that contribute to low back pain. These involve application of nucleus pulposus material near the lumbar dorsal root ganglia (DRG), chronic compression of the DRG, or localized inflammation of the DRG. These models, which are primarily implemented in rats, have many common features including behavioral hypersensitivity of the hindpaw, enhanced excitability and spontaneous activity of sensory neurons, and locally elevated levels of inflammatory mediators including cytokines. Clinically, epidural injection of steroids (glucocorticoids) is commonly used when more conservative treatments fail, but clinical trials evaluating these treatments have yielded mixed results. There are relatively few preclinical studies of steroid effects in low back pain models. One preclinical study suggests that the mineralocorticoid receptor, also present in the DRG, may have pro-inflammatory effects that oppose the activation of the glucocorticoid receptor. Although the glucocorticoid receptor is the target of anti-inflammatory steroids, many clinically used steroids activate both receptors. This could be one explanation for the limited effects of epidural steroids in some patients. Additional preclinical research is needed to address other possible reasons for limited efficacy of steroids, such as central sensitization or presence of an ongoing inflammatory stimulus in some forms of low back pain.
Collapse
Affiliation(s)
- Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA
| | | | | | | |
Collapse
|
37
|
Xie W, Strong JA, Ye L, Mao JX, Zhang JM. Knockdown of sodium channel NaV1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia. Pain 2013; 154:1170-80. [PMID: 23622763 DOI: 10.1016/j.pain.2013.02.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/06/2013] [Accepted: 02/26/2013] [Indexed: 11/15/2022]
Abstract
Inflammatory processes in the sensory ganglia contribute to many forms of chronic pain. We previously showed that local inflammation of the lumbar sensory ganglia rapidly leads to prolonged mechanical pain behaviors and high levels of spontaneous bursting activity in myelinated cells. Abnormal spontaneous activity of sensory neurons occurs early in many preclinical pain models and initiates many other pathological changes, but its molecular basis is not well understood. The sodium channel isoform NaV1.6 can underlie repetitive firing and excitatory persistent and resurgent currents. We used in vivo knockdown of this channel via local injection of siRNA to examine its role in chronic pain after local inflammation of the rat lumbar sensory ganglia. In normal dorsal root ganglion (DRG), quantitative polymerase chain reaction showed that cells capable of firing repetitively had significantly higher relative expression of NaV1.6. In inflamed DRG, spontaneously active bursting cells expressed high levels of NaV1.6 immunoreactivity. In vivo knockdown of NaV1.6 locally in the lumbar DRG at the time of DRG inflammation completely blocked development of pain behaviors and abnormal spontaneous activity, while having only minor effects on unmyelinated C cells. Current research on isoform-specific sodium channel blockers for chronic pain is largely focused on NaV1.8 because it is present primarily in unmyelinated C fiber nociceptors, or on NaV1.7 because lack of this channel causes congenital indifference to pain. However, the results suggest that NaV1.6 may be a useful therapeutic target for chronic pain and that some pain conditions may be mediated primarily by myelinated A fiber sensory neurons.
Collapse
Affiliation(s)
- Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | | | |
Collapse
|
38
|
Khomula EV, Viatchenko-Karpinski VY, Borisyuk AL, Duzhyy DE, Belan PV, Voitenko NV. Specific functioning of Cav3.2 T-type calcium and TRPV1 channels under different types of STZ-diabetic neuropathy. Biochim Biophys Acta Mol Basis Dis 2013; 1832:636-49. [PMID: 23376589 DOI: 10.1016/j.bbadis.2013.01.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/31/2012] [Accepted: 01/22/2013] [Indexed: 01/22/2023]
Abstract
Streptozotocin (STZ)-induced type 1 diabetes in rats leads to the development of peripheral diabetic neuropathy (PDN) manifested as thermal hyperalgesia at early stages (4th week) followed by hypoalgesia after 8weeks of diabetes development. Here we found that 6-7 week STZ-diabetic rats developed either thermal hyper- (18%), hypo- (25%) or normalgesic (57%) types of PDN. These developmentally similar diabetic rats were studied in order to analyze mechanisms potentially underlying different thermal nociception. The proportion of IB4-positive capsaicin-sensitive small DRG neurons, strongly involved in thermal nociception, was not altered under different types of PDN implying differential changes at cellular and molecular level. We further focused on properties of T-type calcium and TRPV1 channels, which are known to be involved in Ca(2+) signaling and pathological nociception. Indeed, TRPV1-mediated signaling in these neurons was downregulated under hypo- and normalgesia and upregulated under hyperalgesia. A complex interplay between diabetes-induced changes in functional expression of Cav3.2 T-type calcium channels and depolarizing shift of their steady-state inactivation resulted in upregulation of these channels under hyper- and normalgesia and their downregulation under hypoalgesia. As a result, T-type window current was increased by several times under hyperalgesia partially underlying the increased resting [Ca(2+)]i observed in the hyperalgesic rats. At the same time Cav3.2-dependent Ca(2+) signaling was upregulated in all types of PDN. These findings indicate that alterations in functioning of Cav3.2 T-type and TRPV1 channels, specific for each type of PDN, may underlie the variety of pain syndromes induced by type 1 diabetes.
Collapse
Affiliation(s)
- Eugen V Khomula
- International Center of Molecular Physiology of Natl. Acad. of Sci. of Ukraine, Kyiv, Ukraine.
| | | | | | | | | | | |
Collapse
|
39
|
Roman K, Yang M, Stephens RL. Characterization of the Visceral Antinociceptive Effect of Glial Glutamate Transporter GLT-1 Upregulation by Ceftriaxone. ISRN PAIN 2012; 2013:726891. [PMID: 27335870 PMCID: PMC4893408 DOI: 10.1155/2013/726891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 10/31/2012] [Indexed: 06/06/2023]
Abstract
Recent studies demonstrate that glial glutamate transporter-1 (GLT-1) upregulation attenuates visceral nociception. The present work further characterized the effect of ceftriaxone- (CTX-) mediated GLT-1 upregulation on visceral hyperalgesia. Intrathecal pretreatment with dihydrokainate, a selective GLT-1 antagonist, produced a reversal of the antinociceptive response to bladder distension produced by CTX. The hyperalgesic response to urinary bladder distension caused by intravesicular acrolein was also attenuated by CTX treatment as was the enhanced time spent licking of abdominal area due to intravesicular acrolein. Bladder inflammation via cyclophosphamide injections enhanced the nociceptive to bladder distension; cohorts administered CTX and concomitant cyclophosphamide showed reduced hyperalgesic response. Cyclophosphamide-induced bladder hyperalgesia correlated with a significant 22% increase in GluR1 AMPA receptor subunit expression in the membrane fraction of the lumbosacral spinal cord, which was attenuated by CTX coadministration. Finally, neonatal colon insult-induced hyperalgesia caused by intracolonic mustard oil (2%) administration at P9 and P11 was attenuated by CTX. These studies suggest that GLT-1 upregulation (1) attenuates the hyperalgesia caused by bladder irritation/inflammation or by neonatal colonic insult, (2) acts at a spinal site, and (3) may produce antinociceptive effects by attenuating GluR1 membrane trafficking. These findings support further consideration of this FDA-approved drug to treat chronic pelvic pain syndromes.
Collapse
Affiliation(s)
- K. Roman
- Department of Physiology and Cell Biology, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | - M. Yang
- Department of Gastroenterology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Robert L. Stephens
- Department of Physiology and Cell Biology, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| |
Collapse
|
40
|
Increased function of the TRPV1 channel in small sensory neurons after local inflammation or in vitro exposure to the pro-inflammatory cytokine GRO/KC. Neurosci Bull 2012; 28:155-64. [PMID: 22466126 DOI: 10.1007/s12264-012-1208-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Inflammation at the level of the sensory dorsal root ganglia (DRGs) leads to robust mechanical pain behavior and the local inflammation has direct excitatory effects on sensory neurons including small, primarily nociceptive, neurons. These neurons express the transient receptor potential vanilloid-1 (TRPV1) channel, which integrates multiple signals of pain and inflammation. The aim of this study was to characterize the regulation of the TRPV1 channel by local DRG inflammation and by growth-related oncogene (GRO/KC, systemic name: CXCL1), a cytokine known to be upregulated in inflamed DRGs. METHODS Activation of the TRPV1 receptor with capsaicin was studied with patch clamp methods in acutely isolated small-diameter rat sensory neurons in primary culture. In vivo, behavioral effects of TRPV1 and GRO/KC were examined by paw injections. RESULTS Neurons isolated from lumbar DRGs 3 days after local inflammation showed enhanced TRPV1 function: tachyphylaxis (the decline in response to repeated applications of capsaicin) was significantly reduced. A similar effect on tachyphylaxis was observed in neurons pre-treated for 4 h in vitro with GRO/KC. This effect was blocked by H-89, a protein kinase A inhibitor. Consistent with the in vitro results, in vivo behavioral responses to paw injection of capsaicin were enhanced and prolonged by pre-injecting the paw with GRO/KC 4 h before the capsaicin injection. GRO/KC paw injections alone did not elicit pain behaviors. CONCLUSION Function of the TRPV1 channel is enhanced by DRG inflammation and these effects are preserved in vitro during short-term culture. The effects (decreased tachyphylaxis) are mimicked by incubation with GRO/KC, which has previously been found to be strongly upregulated in this and other pain models.
Collapse
|
41
|
Walters ET. Nociceptors as chronic drivers of pain and hyperreflexia after spinal cord injury: an adaptive-maladaptive hyperfunctional state hypothesis. Front Physiol 2012; 3:309. [PMID: 22934060 PMCID: PMC3429080 DOI: 10.3389/fphys.2012.00309] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 07/13/2012] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) causes chronic peripheral sensitization of nociceptors and persistent generation of spontaneous action potentials (SA) in peripheral branches and the somata of hyperexcitable nociceptors within dorsal root ganglia (DRG). Here it is proposed that SCI triggers in numerous nociceptors a persistent hyperfunctional state (peripheral, synaptic, and somal) that originally evolved as an adaptive response to compensate for loss of sensory terminals after severe but survivable peripheral injury. In this hypothesis, nociceptor somata monitor the status of their own receptive field and the rest of the body by integrating signals received by their peripheral and central branches and the soma itself. A nociceptor switches into a potentially permanent hyperfunctional state when central neural, glial, and inflammatory signal combinations are detected that indicate extensive peripheral injury. Similar signal combinations are produced by SCI and disseminated widely to uninjured as well as injured nociceptors. This paper focuses on the uninjured nociceptors that are altered by SCI. Enhanced activity generated in below-level nociceptors promotes below-level central sensitization, somatic and autonomic hyperreflexia, and visceral dysfunction. If sufficient ascending fibers survive, enhanced activity in below-level nociceptors contributes to below-level pain. Nociceptor activity generated above the injury level contributes to at- and above-level sensitization and pain (evoked and spontaneous). Thus, SCI triggers a potent nociceptor state that may have been adaptive (from an evolutionary perspective) after severe peripheral injury but is maladaptive after SCI. Evidence that hyperfunctional nociceptors make large contributions to behavioral hypersensitivity after SCI suggests that nociceptor-specific ion channels required for nociceptor SA and hypersensitivity offer promising targets for treating chronic pain and hyperreflexia after SCI.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston Houston, TX, USA
| |
Collapse
|
42
|
Strong JA, Xie W, Coyle DE, Zhang JM. Microarray analysis of rat sensory ganglia after local inflammation implicates novel cytokines in pain. PLoS One 2012; 7:e40779. [PMID: 22815815 PMCID: PMC3397953 DOI: 10.1371/journal.pone.0040779] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/13/2012] [Indexed: 01/15/2023] Open
Abstract
Inflammation plays a role in neuropathic pain conditions as well as in pain induced solely by an inflammatory stimulus. Robust mechanical hyperalgesia and allodynia can be induced by locally inflaming the L5 dorsal root ganglion (DRG) in rat. This model allows investigation of the contribution of inflammation per se to chronic pain conditions. Most previous microarray studies of DRG gene expression have investigated neuropathic pain models. To examine the role of inflammation, we used microarray methods to examine gene expression 3 days after local inflammation of the L5 DRG in rat. We observed significant regulation in a large number of genes (23% of observed transcripts), and examined 221 (3%) with a fold-change of 1.5-fold or more in more detail. Immune-related genes were the largest category in this group and included members of the complement system as well as several pro-inflammatory cytokines. However, these upregulated cytokines had no prior links to peripheral pain in the literature other than through microarray studies, though most had previously described roles in CNS (especially neuroinflammatory conditions) as well as in immune responses. To confirm an association to pain, qPCR studies examined these cytokines at a later time (day 14), as well as in two different versions of the spinal nerve ligation pain model including a version without any foreign immunogenic material (suture). Cxcl11, Cxcl13, and Cxcl14 were found to be significantly upregulated in all these conditions, while Cxcl9, Cxcl10, and Cxcl16 were upregulated in at least two of these conditions.
Collapse
Affiliation(s)
- Judith A. Strong
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (JAS); (J-MZ)
| | - Wenrui Xie
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Dennis E. Coyle
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jun-Ming Zhang
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (JAS); (J-MZ)
| |
Collapse
|
43
|
Bocksteins E, Van de Vijver G, Van Bogaert PP, Snyders DJ. Kv3 channels contribute to the delayed rectifier current in small cultured mouse dorsal root ganglion neurons. Am J Physiol Cell Physiol 2012; 303:C406-15. [PMID: 22673617 DOI: 10.1152/ajpcell.00343.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Delayed rectifier voltage-gated K(+) (K(V)) channels are important determinants of neuronal excitability. However, the large number of K(V) subunits poses a major challenge to establish the molecular composition of the native neuronal K(+) currents. A large part (∼60%) of the delayed rectifier current (I(K)) in small mouse dorsal root ganglion (DRG) neurons has been shown to be carried by both homotetrameric K(V)2.1 and heterotetrameric channels of K(V)2 subunits with silent K(V) subunits (K(V)S), while a contribution of K(V)1 channels has also been demonstrated. Because K(V)3 subunits also generate delayed rectifier currents, we investigated the contribution of K(V)3 subunits to I(K) in small mouse DRG neurons. After stromatoxin (ScTx) pretreatment to block the K(V)2-containing component, application of 1 mM TEA caused significant additional block, indicating that the ScTx-insensitive part of I(K) could include K(V)1, K(V)3, and/or M-current channels (KCNQ2/3). Combining ScTx and dendrotoxin confirmed a relevant contribution of K(V)2 and K(V)2/K(V)S, and K(V)1 subunits to I(K) in small mouse DRG neurons. After application of these toxins, a significant TEA-sensitive current (∼19% of total I(K)) remained with biophysical properties that corresponded to those of K(V)3 currents obtained in expression systems. Using RT-PCR, we detected K(V)3.1-3 mRNA in DRG neurons. Furthermore, Western blot and immunocytochemistry using K(V)3.1-specific antibodies confirmed the presence of K(V)3.1 in cultured DRG neurons. These biophysical, pharmacological, and molecular results demonstrate a relevant contribution (∼19%) of K(V)3-containing channels to I(K) in small mouse DRG neurons, supporting a substantial role for K(V)3 subunits in these neurons.
Collapse
Affiliation(s)
- Elke Bocksteins
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Belgium
| | | | | | | |
Collapse
|
44
|
Xie W, Strong JA, Kays J, Nicol GD, Zhang JM. Knockdown of the sphingosine-1-phosphate receptor S1PR1 reduces pain behaviors induced by local inflammation of the rat sensory ganglion. Neurosci Lett 2012; 515:61-5. [PMID: 22445889 DOI: 10.1016/j.neulet.2012.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/01/2012] [Accepted: 03/08/2012] [Indexed: 02/08/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a key immune mediator regulating migration of immune cells to sites of inflammation. S1P actions are mediated by a family of five G protein-coupled receptors. Sensory neurons express many of these receptors, and in vitro S1P has excitatory effects on small-diameter sensory neurons, many mediated by the S1P receptor 1 (S1PR1). This study investigated the role of S1P in regulating the sensitivity of DRG neurons. We found that in vivo perfusion of the normal L5 DRG with S1P increased mechanical sensitivity. Microelectrode recordings in isolated whole ganglia showed that large- and medium-diameter cells, as well as small-diameter cells, increased firing in the presence of S1P. To further determine the role of S1PRs, we examined the effects of in vivo S1PR1 knockdown in the L4 and L5 sensory ganglia. Small interfering RNA directed against S1PR1 did not affect baseline mechanical sensitivity in normal animals, in which S1P levels are expected to be low. However, when the L5 ganglion was locally inflamed, a procedure that leads to rapid and sustained mechanical hypersensitivity, S1PR1 siRNA injected animals showed significantly less hypersensitivity than animals injected with scrambled siRNA. Reduced expression of S1PR1, but not S1PR2 or S1PR3, was confirmed with qPCR methods. The results indicate that the S1PR1 receptors in sensory ganglia cells may play an important role in regulating behavioral sensitivity during inflammation.
Collapse
Affiliation(s)
- Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA.
| | | | | | | | | |
Collapse
|