1
|
Bayer H, Bertoglio LJ, Maren S, Stern CAJ. Windows of change: Revisiting temporal and molecular dynamics of memory reconsolidation and persistence. Neurosci Biobehav Rev 2025; 174:106198. [PMID: 40354954 PMCID: PMC12119219 DOI: 10.1016/j.neubiorev.2025.106198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/16/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
Retrieval can bring memories to a labile state, creating a window to modify its content during reconsolidation. Numerous studies have investigated this period to elucidate reconsolidation mechanisms, understand long-term memory persistence, and develop therapeutic strategies for memory-related psychiatric disorders. However, the temporal dynamics of post-retrieval memory processes have been largely overlooked, leading to mixed findings and hindering the development of targeted interventions. This review discusses retrieval-related cellular and molecular events and how they develop in series and parallel across time. Emerging evidence suggests that some mechanisms triggered after fear memory retrieval can influence either reconsolidation or persistence in different time windows. The temporal boundaries of these post-retrieval processes are still unclear. Further research integrating behavioral and molecular approaches to a deeper understanding of reconsolidation and persistence temporal dynamics is essential to address current debates, including which system/pathway offers the most effective therapeutic window of opportunity.
Collapse
Affiliation(s)
- Hugo Bayer
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
- Beckman Institute for Advanced Science and Technology and Department of Psychology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Leandro J. Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Stephen Maren
- Beckman Institute for Advanced Science and Technology and Department of Psychology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Cristina A. J. Stern
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Cheng J, Wang B, Hu H, Lin X, Liu Y, Lin J, Zhang J, Niu S, Yan J. Regulation of histone acetylation by garcinol blocks the reconsolidation of heroin-associated memory. Biomed Pharmacother 2024; 173:116414. [PMID: 38460374 DOI: 10.1016/j.biopha.2024.116414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Drug-associated long-term memories underlie substance use disorders, including heroin use disorder (HUD), which are difficult to eliminate through existing therapies. Addictive memories may become unstable when reexposed to drug-related cues and need to be stabilized again through protein resynthesis. Studies have shown the involvement of histone acetylation in the formation and reconsolidation of long-term drug-associated memory. However, it remains unknown whether and how histone acetyltransferases (HAT), the essential regulators of histone acetylation, contribute to the reconsolidation of heroin-associated memories. Herein, we investigated the function of HAT in the reconsolidation concerning heroin-conditioned memory by using a rat self-administration model. Systemic administration of the HAT inhibitor garcinol inhibited cue and heroin-priming induced reinstatement of heroin seeking, indicating the treatment potential of garcinol for relapse prevention.
Collapse
Affiliation(s)
- Junzhe Cheng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Binbin Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Hongkun Hu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Xinzhu Lin
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yuhang Liu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi 830001, China
| | - Shuliang Niu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi 830001, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi 830001, China.
| |
Collapse
|
3
|
Renu K, Myakala H, Chakraborty R, Bhattacharya S, Abuwani A, Lokhandwala M, Vellingiri B, Gopalakrishnan AV. Molecular mechanisms of alcohol's effects on the human body: A review and update. J Biochem Mol Toxicol 2023; 37:e23502. [PMID: 37578200 DOI: 10.1002/jbt.23502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Alcohol consumption has been linked to numerous negative health outcomes although it has some beneficial effects on moderate dosages, the most severe of which being alcohol-induced hepatitis. The number of people dying from this liver illness has been shown to climb steadily over time, and its prevalence has been increasing. Researchers have found that alcohol consumption primarily affects the brain, leading to a wide range of neurological and psychological diseases. High-alcohol-consumption addicts not only experienced seizures, but also ataxia, aggression, social anxiety, and variceal hemorrhage that ultimately resulted in death, ascites, and schizophrenia. Drugs treating this liver condition are limited and can cause serious side effects like depression. Serine-threonine kinases, cAMP protein kinases, protein kinase C, ERK, RACK 1, Homer 2, and more have all been observed to have their signaling pathways disrupted by alcohol, and alcohol has also been linked to epigenetic changes. In addition, alcohol consumption induces dysbiosis by changing the composition of the microbiome found in the gastrointestinal tract. Although more studies are needed, those that have been done suggest that probiotics aid in keeping the various microbiota concentrations stable. It has been argued that reducing one's alcohol intake may seem less harmful because excessive drinking is a lifestyle disorder.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Haritha Myakala
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Rituraj Chakraborty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sharmishtha Bhattacharya
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Asmita Abuwani
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Mariyam Lokhandwala
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Balachandar Vellingiri
- Department of Zoology, Stem Cell and Regenerative Medicine/Translational Research, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Zuzina AB, Vinarskaya AK, Balaban PM. DNA Methylation Inhibition Reversibly Impairs the Long-Term Context Memory Maintenance in Helix. Int J Mol Sci 2023; 24:14068. [PMID: 37762369 PMCID: PMC10531757 DOI: 10.3390/ijms241814068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
This work aims to study the epigenetic mechanisms of regulating long-term context memory in the gastropod mollusk: Helix. We have shown that RG108, an inhibitor of DNA methyltransferase (DNMT), impaired long-term context memory in snails, and this impairment can be reversed within a limited time window: no more than 48 h. Research on the mechanisms through which the long-term context memory impaired by DNMT inhibition could be reinstated demonstrated that this effect depends on several biochemical mechanisms: nitric oxide synthesis, protein synthesis, and activity of the serotonergic system. Memory recovery did not occur if at least one of these mechanisms was impaired. The need for the joint synergic activity of several biochemical systems for a successful memory rescue confirms the assumption that the memory recovery process depends on the process of active reconsolidation, and is not simply a passive weakening of the effect of RG108 over time. Finally, we showed that the reactivation of the impaired memory by RG108, followed by administration of histone deacetylase inhibitor sodium butyrate, led to memory recovery only within a narrow time window: no more than 48 h after memory disruption.
Collapse
Affiliation(s)
| | | | - Pavel M. Balaban
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia; (A.B.Z.); (A.K.V.)
| |
Collapse
|
5
|
Romano A, Freudenthal R, Feld M. Molecular insights from the crab Neohelice memory model. Front Mol Neurosci 2023; 16:1214061. [PMID: 37415833 PMCID: PMC10321408 DOI: 10.3389/fnmol.2023.1214061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Memory acquisition, formation and maintenance depend on synaptic post-translational machinery and regulation of gene expression triggered by several transduction pathways. In turns, these processes lead to stabilization of synaptic modifications in neurons in the activated circuits. In order to study the molecular mechanisms involved in acquisition and memory, we have taken advantage of the context-signal associative learning and, more recently, the place preference task, of the crab Neohelice granulata. In this model organism, we studied several molecular processes, including activation of extracellular signal-regulated kinase (ERK) and the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) transcription factor, involvement of synaptic proteins such as NMDA receptors and neuroepigenetic regulation of gene expression. All these studies allowed description of key plasticity mechanisms involved in memory, including consolidation, reconsolidation and extinction. This article is aimed at review the most salient findings obtained over decades of research in this memory model.
Collapse
Affiliation(s)
- Arturo Romano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular “Dr. Hector Maldonado” (FBMC), Buenos Aires, Argentina
- Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Ramiro Freudenthal
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular “Dr. Hector Maldonado” (FBMC), Buenos Aires, Argentina
- Biotecnología y Biología Traslacional (IB3), Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Feld
- Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
6
|
Zuzina AB, Balaban PM. Contribution of histone acetylation to the serotonin-mediated long-term synaptic plasticity in terrestrial snails. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:521-535. [PMID: 35943582 DOI: 10.1007/s00359-022-01562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 12/14/2022]
Abstract
Serotonin plays a decisive role in long-term synaptic plasticity and long-term memory in mollusks. Previously, we demonstrated that histone acetylation is a regulatory mechanism of long-term memory in terrestrial snail. At the behavioral level, many studies were done in Helix to elucidate the role of histone acetylation and serotonin. However, the impact of histone acetylation on long-term potentiation of synaptic efficiency in electrophysiological studies in Helix has been studied only in one paper. Here we investigated effects of serotonin, histone deacetylases inhibitors sodium butyrate and trichostatin A, and a serotonergic receptor inhibitor methiothepin on long-term potentiation of synaptic responses in vitro. We demonstrated that methiothepin drastically declined the EPSPs amplitudes when long-term potentiation was induced, while co-application either of histone deacetylase inhibitors sodium butyrate or trichostatin A with methiothepin prevented the weakening of potentiation. We showed that single serotonin application in combination with histone deacetylase blockade could mimic the effect of repeated serotonin applications and be enough for sustained long-lasting synaptic changes. The data obtained demonstrated that histone deacetylases blockade ameliorated deficits in synaptic plasticity induced by different paradigms (methiothepin treatment, the weak training protocol with single application of serotonin), suggesting that histone acetylation contributes to the serotonin-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Alena B Zuzina
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel M Balaban
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
7
|
Ojea Ramos S, Feld M, Fustiñana MS. Contributions of extracellular-signal regulated kinase 1/2 activity to the memory trace. Front Mol Neurosci 2022; 15:988790. [PMID: 36277495 PMCID: PMC9580372 DOI: 10.3389/fnmol.2022.988790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022] Open
Abstract
The ability to learn from experience and consequently adapt our behavior is one of the most fundamental capacities enabled by complex and plastic nervous systems. Next to cellular and systems-level changes, learning and memory formation crucially depends on molecular signaling mechanisms. In particular, the extracellular-signal regulated kinase 1/2 (ERK), historically studied in the context of tumor growth and proliferation, has been shown to affect synaptic transmission, regulation of neuronal gene expression and protein synthesis leading to structural synaptic changes. However, to what extent the effects of ERK are specifically related to memory formation and stabilization, or merely the result of general neuronal activation, remains unknown. Here, we review the signals leading to ERK activation in the nervous system, the subcellular ERK targets associated with learning-related plasticity, and how neurons with activated ERK signaling may contribute to the formation of the memory trace.
Collapse
Affiliation(s)
- Santiago Ojea Ramos
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariana Feld
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | |
Collapse
|
8
|
Kolotova DE, Malyshev AY, Balaban PM. Histone Deacytylase Inhibitor Enhances
Long-Term Synaptic Potentiation in Neurons of a Grape Snail. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Identification of a Novel Retrieval-dependent Memory Process in the Crab Neohelice granulata. Neuroscience 2020; 448:149-159. [PMID: 32979399 DOI: 10.1016/j.neuroscience.2020.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 01/22/2023]
Abstract
Fully consolidated associative memories may be altered by alternative retrieval dependent memory processes. While a brief exposure to the conditioned stimulus (CS) can trigger reconsolidation of the original memory, a prolonged CS exposure will trigger memory extinction. The conditioned response is maintained after reconsolidation, but is inhibited after extinction, presumably by the formation of a new inhibitory memory trace. In rats and humans, it has been shown that CS exposure of intermediate duration leave the memory in an insensitive or limbo state. Limbo is characterised by the absence of reconsolidation or extinction. Here we investigated the evolutionary conserved nature of limbo using a contextual Pavlovian conditioning (CPC) memory paradigm in the crab Neohelice granulata. In animals with fully consolidated CPC memory, systemic administration of the protein synthesis inhibitor cycloheximide after 1 CS presentation disrupted the memory, presumably by interfering with memory reconsolidation. The same intervention given after 320 CSs prevented CPC memory extinction. Cycloheximide had no behavioural effect when administered after 80 CS presentations, a protocol that failed to extinguish CPC memory. Also, we observed that a stronger CPC memory engaged reconsolidation after 80 CS instead of limbo, indicating that memory strength affects the parametrical conditions to engage either reconsolidation or limbo. Altogether, these results indicate that limbo is an evolutionary conserved memory process segregating reconsolidation from extinction in the number of CSs space. Limbo appears as an intrinsic component of retrieval dependent memory processing, with a key function in the transition from memory maintenance to inhibition.
Collapse
|
10
|
Haubrich J, Machado A, Boos FZ, Crestani AP, Sierra RO, Alvares LDO, Quillfeldt JA. Enhancement of extinction memory by pharmacological and behavioral interventions targeted to its reactivation. Sci Rep 2017; 7:10960. [PMID: 28887561 PMCID: PMC5591313 DOI: 10.1038/s41598-017-11261-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022] Open
Abstract
Extinction is a process that involves new learning that inhibits the expression of previously acquired memories. Although temporarily effective, extinction does not erase an original fear association. Since the extinction trace tends to fade over time, the original memory can resurge. On the other hand, strengthening effects have been described in several reconsolidation studies using different behavioral and pharmacological manipulations. In order to know whether an extinction memory can be strengthened by reactivation-based interventions in the contextual fear conditioning task, we began by replicating the classic phenomenon of spontaneous recovery to show that brief reexposure sessions can prevent the decay of the extinction trace over time in a long-lasting way. This fear attenuation was shown to depend both on L-type calcium channels and protein synthesis, which suggests a reconsolidation process behind the reactivation-induced strengthening effect. The extinction trace was also susceptible to enhancement by a post-reactivation infusion of a memory-enhancing drug (NaB), which was also able to prevent rapid fear reacquisition (savings). These findings point to new reactivation-based approaches able to strengthen an extinction memory to promote its persistence. The constructive interactions between extinction and reconsolidation may represent a promising novel approach in the realm of fear-related disorder treatments.
Collapse
Affiliation(s)
- Josué Haubrich
- Psychobiology and Neurocomputation lab and Neurobiology of Memory lab. Neurosciences Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Adriano Machado
- Psychobiology and Neurocomputation lab and Neurobiology of Memory lab. Neurosciences Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Flávia Zacouteguy Boos
- Psychobiology and Neurocomputation lab and Neurobiology of Memory lab. Neurosciences Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana P Crestani
- Psychobiology and Neurocomputation lab and Neurobiology of Memory lab. Neurosciences Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo O Sierra
- Psychobiology and Neurocomputation lab and Neurobiology of Memory lab. Neurosciences Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas de Oliveira Alvares
- Psychobiology and Neurocomputation lab and Neurobiology of Memory lab. Neurosciences Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jorge A Quillfeldt
- Psychobiology and Neurocomputation lab and Neurobiology of Memory lab. Neurosciences Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
11
|
Postnatal behavioral and inflammatory alterations in female pups prenatally exposed to valproic acid. Psychoneuroendocrinology 2016; 72:11-21. [PMID: 27337090 DOI: 10.1016/j.psyneuen.2016.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/06/2016] [Accepted: 06/01/2016] [Indexed: 01/15/2023]
Abstract
In Autism Spectrum Disorders (ASD), a bias to a higher incidence in boys than in girls has been reported. With the aim to identify biological mechanisms acting in female animals that could underlie this bias, we used an extensively validated mouse model of ASD: the prenatal exposure to valproic acid (VPA). We found postnatal behavioral alterations in female VPA pups: a longer latency in righting reflex at postnatal day (P) 3, and a delay in the acquisition of the acoustic startle response. We also analyzed the density of glial cells in the prefrontal cortex, hippocampus and cerebellum, in VPA and control animals. Female VPA pups showed alterations in the density of astrocytes and microglial cells between P21 and P42, with specific dynamics in each brain region. We also found a decrease in histone 3 acetylation in the cerebellum of female VPA pups at P14, suggesting that the changes in glial cell density could be due to alterations in the epigenetic developmental program. Finally, no differences in maternal behavior were found. Our results show that female VPA pups exhibit behavioral and inflammatory alterations postnatally, although they have been reported to have normal levels of sociability in adulthood. With our work, we contribute to the understanding of biological mechanisms underlying different effects of VPA on male and female rodents, and we hope to help elucidate whether there are factors increasing susceptibility to ASD in boys and/or resilience in girls.
Collapse
|
12
|
Villain H, Florian C, Roullet P. HDAC inhibition promotes both initial consolidation and reconsolidation of spatial memory in mice. Sci Rep 2016; 6:27015. [PMID: 27270584 PMCID: PMC4895233 DOI: 10.1038/srep27015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/09/2016] [Indexed: 02/01/2023] Open
Abstract
Accumulating evidence suggests a critical role for epigenetic regulations in long term memory (LTM) formation. Among them, post-translational modifications of proteins, as histone acetylation, are an important regulator of chromatin remodelling and gene transcription. While the implication of histone acetylation in memory consolidation is widely accepted, less is known about its role in memory reconsolidation i.e. during memory restabilization after its reactivation. In the present study, we investigated the role of histone acetylation during the initial consolidation and the reconsolidation of spatial memory, using a weak massed learning procedure in the Morris water maze paradigm in mice. Usually a weak learning is sufficient for short term memory (STM) formation, but insufficient to upgrade STM to LTM. We found that promoting histone acetylation through intra-hippocampal infusion of a class I selective histone deacetylase (HDAC) inhibitor immediately after a subthreshold spatial learning improved LTM but not STM retention. More importantly, inhibiting HDAC activity after the reactivation of a weak memory promoted specifically LTM reconsolidation without affecting post-reactivation STM. These findings argue in favour of an important role for histone acetylation in memory consolidation, and more particularly during the reconsolidation of spatial memory in mice.
Collapse
Affiliation(s)
- Hélène Villain
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse, cedex 9, France
| | - Cédrick Florian
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse, cedex 9, France
| | - Pascal Roullet
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse, cedex 9, France
| |
Collapse
|
13
|
Merschbaecher K, Hatko L, Folz J, Mueller U. Inhibition of different histone acetyltransferases (HATs) uncovers transcription-dependent and -independent acetylation-mediated mechanisms in memory formation. ACTA ACUST UNITED AC 2016; 23:83-9. [PMID: 26773101 PMCID: PMC4749833 DOI: 10.1101/lm.039438.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/18/2015] [Indexed: 01/11/2023]
Abstract
Acetylation of histones changes the efficiency of the transcription processes and thus contributes to the formation of long-term memory (LTM). In our comparative study, we used two inhibitors to characterize the contribution of different histone acetyl transferases (HATs) to appetitive associative learning in the honeybee. For one we applied garcinol, an inhibitor of the HATs of the p300 (EP300 binding protein)/CBP (CREB-binding protein) family, and the HATs of the PCAF (p300/CBP-associated factor) family. As comparative agent we applied C646, a specific inhibitor that selectively blocks HATS of the p300/CBP family. Immunochemical analysis reveals differences in histone H3 acetylation in the honeybee brain, in response to the injection of either C646 or garcinol. Behavioral assessment reveals that the two drugs cause memory impairment of different nature when injected after associative conditioning: processes disturbed by garcinol are annihilated by the established transcription blocker actinomycin D and thus seem to require transcription processes. Actions of C646 are unaltered by actinomycin D, and thus seem to be independent of transcription. The outcome of our different approaches as summarized suggests that distinct HATs contribute to different acetylation-mediated processes in memory formation. We further deduce that the acetylation-mediated processes in memory formation comprise transcription-dependent and transcription-independent mechanisms.
Collapse
Affiliation(s)
- Katja Merschbaecher
- Department 8.3 Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology), Faculty 8 - Natural Science and Technology III, Saarland University, D-66041 Saarbrücken, Germany
| | - Lucyna Hatko
- Department 8.3 Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology), Faculty 8 - Natural Science and Technology III, Saarland University, D-66041 Saarbrücken, Germany
| | - Jennifer Folz
- Department 8.3 Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology), Faculty 8 - Natural Science and Technology III, Saarland University, D-66041 Saarbrücken, Germany
| | - Uli Mueller
- Department 8.3 Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology), Faculty 8 - Natural Science and Technology III, Saarland University, D-66041 Saarbrücken, Germany
| |
Collapse
|
14
|
Blank M, Petry FS, Lichtenfels M, Valiati FE, Dornelles AS, Roesler R. TrkB blockade in the hippocampus after training or retrieval impairs memory: protection from consolidation impairment by histone deacetylase inhibition. J Neural Transm (Vienna) 2015; 123:159-65. [DOI: 10.1007/s00702-015-1464-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/16/2015] [Indexed: 01/07/2023]
|
15
|
Abstract
Many psychiatric disorders are characterized by intrusive, distracting, and disturbing memories that either perpetuate the illness or hinder successful treatment. For example, posttraumatic stress disorder (PTSD) involves such strong reemergence of memories associated with a traumatic event that the individual feels like the event is happening again. Furthermore, drug addiction is characterized by compulsive use and repeated relapse that is often driven by internal memories of drug use and/or by exposure to external stimuli that were associated with drug use. Therefore, identifying pharmacological methods to weaken the strength of maladaptive memories is a major goal of research efforts aimed at finding new treatments for these disorders. The primary mechanism by which memories could be pharmacologically disrupted or altered is through manipulation of memory reconsolidation. Reconsolidation occurs when an established memory is remembered or reactivated, reentering a labile state before again being consolidated into long-term memory storage. Memories are subject to disruption during this labile state. In this chapter we will discuss the preclinical and clinical studies identifying potential pharmacological methods for disrupting the integrity of maladaptive memory to treat mental illness.
Collapse
Affiliation(s)
- Jane R Taylor
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | |
Collapse
|
16
|
Marter K, Grauel MK, Lewa C, Morgenstern L, Buckemüller C, Heufelder K, Ganz M, Eisenhardt D. Duration of the unconditioned stimulus in appetitive conditioning of honeybees differentially impacts learning, long-term memory strength, and the underlying protein synthesis. ACTA ACUST UNITED AC 2014; 21:676-85. [PMID: 25403456 PMCID: PMC4236413 DOI: 10.1101/lm.035600.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study examines the role of stimulus duration in learning and memory formation of honeybees (Apis mellifera). In classical appetitive conditioning honeybees learn the association between an initially neutral, conditioned stimulus (CS) and the occurrence of a meaningful stimulus, the unconditioned stimulus (US). Thereby the CS becomes a predictor for the US eliciting a conditioned response (CR). Here we study the role of US duration in classical conditioning by examining honeybees conditioned with different US durations. We quantify the CR during acquisition, memory retention, and extinction of the early long-term memory (eLTM), and examine the molecular mechanisms of eLTM by interfering with protein synthesis. We find that the US duration affects neither the probability nor the strength of the CR during acquisition, eLTM retention, and extinction 24 h after conditioning. However, we find that the resistance to extinction 24 h after conditioning is susceptible to protein synthesis inhibition depending on the US duration. We conclude that the US duration does not affect the predictability of the US but modulates the protein synthesis underlying the eLTM's strength. Thus, the US duration differentially impacts learning, eLTM strength, and its underlying protein synthesis.
Collapse
Affiliation(s)
- Kathrin Marter
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - M Katharina Grauel
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - Carmen Lewa
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - Laura Morgenstern
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - Christina Buckemüller
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - Karin Heufelder
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - Marion Ganz
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - Dorothea Eisenhardt
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| |
Collapse
|
17
|
Jarome TJ, Lubin FD. Epigenetic mechanisms of memory formation and reconsolidation. Neurobiol Learn Mem 2014; 115:116-27. [PMID: 25130533 PMCID: PMC4250295 DOI: 10.1016/j.nlm.2014.08.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Memory consolidation involves transcriptional control of genes in neurons to stabilize a newly formed memory. Following retrieval, a once consolidated memory destabilizes and again requires gene transcription changes in order to restabilize, a process referred to as reconsolidation. Understanding the molecular mechanisms of gene transcription during the consolidation and reconsolidation processes could provide crucial insights into normal memory formation and memory dysfunction associated with psychiatric disorders. In the past decade, modifications of epigenetic markers such as DNA methylation and posttranslational modifications of histone proteins have emerged as critical transcriptional regulators of gene expression during initial memory formation and after retrieval. In light of the rapidly growing literature in this exciting area of research, we here examine the most recent and latest evidence demonstrating how memory acquisition and retrieval trigger epigenetic changes during the consolidation and reconsolidation phases to impact behavior. In particular we focus on the reconsolidation process, where we discuss the already identified epigenetic regulators of gene transcription during memory reconsolidation, while exploring other potential epigenetic modifications that may also be involved, and expand on how these epigenetic modifications may be precisely and temporally controlled by important signaling cascades critical to the reconsolidation process. Finally, we explore the possibility that epigenetic mechanisms may serve to regulate a system or circuit level reconsolidation process and may be involved in retrieval-dependent memory updating. Hence, we propose that epigenetic mechanisms coordinate changes in neuronal gene transcription, not only during the initial memory consolidation phase, but are triggered by retrieval to regulate molecular and cellular processes during memory reconsolidation.
Collapse
Affiliation(s)
- Timothy J Jarome
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
18
|
Bronfman ZZ, Ginsburg S, Jablonka E. Shaping the learning curve: epigenetic dynamics in neural plasticity. Front Integr Neurosci 2014; 8:55. [PMID: 25071483 PMCID: PMC4083220 DOI: 10.3389/fnint.2014.00055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/18/2014] [Indexed: 12/22/2022] Open
Abstract
A key characteristic of learning and neural plasticity is state-dependent acquisition dynamics reflected by the non-linear learning curve that links increase in learning with practice. Here we propose that the manner by which epigenetic states of individual cells change during learning contributes to the shape of the neural and behavioral learning curve. We base our suggestion on recent studies showing that epigenetic mechanisms such as DNA methylation, histone acetylation, and RNA-mediated gene regulation are intimately involved in the establishment and maintenance of long-term neural plasticity, reflecting specific learning-histories and influencing future learning. Our model, which is the first to suggest a dynamic molecular account of the shape of the learning curve, leads to several testable predictions regarding the link between epigenetic dynamics at the promoter, gene-network, and neural-network levels. This perspective opens up new avenues for therapeutic interventions in neurological pathologies.
Collapse
Affiliation(s)
- Zohar Z Bronfman
- The Cohn Institute for the History and Philosophy of Science and Ideas, Faculty of Humanities, Tel-Aviv University Tel-Aviv, Israel ; School of Psychology, Faculty of Social Science, Tel-Aviv University Tel-Aviv, Israel
| | - Simona Ginsburg
- Natural Science Department, The Open University of Israel Raanana, Israel
| | - Eva Jablonka
- The Cohn Institute for the History and Philosophy of Science and Ideas, Faculty of Humanities, Tel-Aviv University Tel-Aviv, Israel
| |
Collapse
|
19
|
Federman N, Zalcman G, de la Fuente V, Fustiñana MS, Romano A. Epigenetic mechanisms and memory strength: a comparative study. ACTA ACUST UNITED AC 2014; 108:278-85. [PMID: 24978317 DOI: 10.1016/j.jphysparis.2014.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/12/2014] [Accepted: 06/16/2014] [Indexed: 01/04/2023]
Abstract
Memory consolidation requires de novo mRNA and protein synthesis. Transcriptional activation is controlled by transcription factors, their cofactors and repressors. Cofactors and repressors regulate gene expression by interacting with basal transcription machinery, remodeling chromatin structure and/or chemically modifying histones. Acetylation is the most studied epigenetic mechanism of histones modifications related to gene expression. This process is regulated by histone acetylases (HATs) and histone deacetylases (HDACs). More than 5 years ago, we began a line of research about the role of histone acetylation during memory consolidation. Here we review our work, presenting evidence about the critical role of this epigenetic mechanism during consolidation of context-signal memory in the crab Neohelice granulata, as well as during consolidation of novel object recognition memory in the mouse Mus musculus. Our evidence demonstrates that histone acetylation is a key mechanism in memory consolidation, functioning as a distinctive molecular feature of strong memories. Furthermore, we found that the strength of a memory can be characterized by its persistence or its resistance to extinction. Besides, we found that the role of this epigenetic mechanism regulating gene expression only in the formation of strongest memories is evolutionarily conserved.
Collapse
Affiliation(s)
- Noel Federman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. IFIByNE, CONICET, Ciudad Universitaria, Pab. II, 2do piso, 1428EHA Buenos Aires, Argentina.
| | - Gisela Zalcman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. IFIByNE, CONICET, Ciudad Universitaria, Pab. II, 2do piso, 1428EHA Buenos Aires, Argentina
| | - Verónica de la Fuente
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. IFIByNE, CONICET, Ciudad Universitaria, Pab. II, 2do piso, 1428EHA Buenos Aires, Argentina
| | - Maria Sol Fustiñana
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Arturo Romano
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. IFIByNE, CONICET, Ciudad Universitaria, Pab. II, 2do piso, 1428EHA Buenos Aires, Argentina
| |
Collapse
|
20
|
Flavell CR, Lambert EA, Winters BD, Bredy TW. Mechanisms governing the reactivation-dependent destabilization of memories and their role in extinction. Front Behav Neurosci 2013; 7:214. [PMID: 24421762 PMCID: PMC3872723 DOI: 10.3389/fnbeh.2013.00214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/13/2013] [Indexed: 12/28/2022] Open
Abstract
The extinction of learned associations has traditionally been considered to involve new learning, which competes with the original memory for control over behavior. However, a recent resurgence of interest in reactivation-dependent amnesia has revealed that the retrieval of fear-related memory (with what is essentially a brief extinction session) can result in its destabilization. This review discusses some of the cellular and molecular mechanisms that are involved in the destabilization of a memory following its reactivation and/or extinction, and investigates the evidence that extinction may involve both new learning as well as a partial destabilization-induced erasure of the original memory trace.
Collapse
Affiliation(s)
- Charlotte R Flavell
- Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| | - Elliot A Lambert
- Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| | - Boyer D Winters
- Department of Psychology, University of Guelph Guelph, ON, Canada
| | - Timothy W Bredy
- Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
21
|
Nuclear factor κB-dependent histone acetylation is specifically involved in persistent forms of memory. J Neurosci 2013; 33:7603-14. [PMID: 23616565 DOI: 10.1523/jneurosci.4181-12.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Memory consolidation requires gene expression regulation by transcription factors, which eventually may induce chromatin modifications as histone acetylation. This mechanism is regulated by histone acetylases and deacetylases. It is not yet clear whether memory consolidation always recruits histone acetylation or it is only engaged in more persistent memories. To address this question, we used different strength of training for novel object recognition task in mice. Only strong training induced a long-lasting memory and an increase in hippocampal histone H3 acetylation. Histone acetylase inhibition in the hippocampus during consolidation impaired memory persistence, whereas histone deacetylase inhibition caused weak memory to persist. Nuclear factor κB (NF-κB) transcription factor inhibition impaired memory persistence and, concomitantly, reduced the general level of H3 acetylation. Accordingly, we found an important increase in H3 acetylation at a specific NF-κB-regulated promoter region of the Camk2d gene, which was reversed by NF-kB inhibition. These results show for the first time that histone acetylation is a specific molecular signature of enduring memories.
Collapse
|
22
|
Hepp Y, Tano MC, Pedreira ME, Freudenthal RA. NMDA-like receptors in the nervous system of the crabNeohelice granulata: A neuroanatomical description. J Comp Neurol 2013; 521:2279-97. [DOI: 10.1002/cne.23285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/30/2012] [Accepted: 12/11/2012] [Indexed: 11/06/2022]
|
23
|
Gräff J, Tsai LH. Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 2013; 14:97-111. [PMID: 23324667 DOI: 10.1038/nrn3427] [Citation(s) in RCA: 472] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Long-lasting memories require specific gene expression programmes that are, in part, orchestrated by epigenetic mechanisms. Of the epigenetic modifications identified in cognitive processes, histone acetylation has spurred considerable interest. Whereas increments in histone acetylation have consistently been shown to favour learning and memory, a lack thereof has been causally implicated in cognitive impairments in neurodevelopmental disorders, neurodegeneration and ageing. As histone acetylation and cognitive functions can be pharmacologically restored by histone deacetylase inhibitors, this epigenetic modification might constitute a molecular memory aid on the chromatin and, by extension, a new template for therapeutic interventions against cognitive frailty.
Collapse
Affiliation(s)
- Johannes Gräff
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
24
|
Maddox SA, Watts CS, Schafe GE. p300/CBP histone acetyltransferase activity is required for newly acquired and reactivated fear memories in the lateral amygdala. Learn Mem 2013; 20:109-19. [PMID: 23328899 DOI: 10.1101/lm.029157.112] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Modifications in chromatin structure have been widely implicated in memory and cognition, most notably using hippocampal-dependent memory paradigms including object recognition, spatial memory, and contextual fear memory. Relatively little is known, however, about the role of chromatin-modifying enzymes in amygdala-dependent memory formation. Here, we use a combination of biochemical, behavioral, and neurophysiological methods to systematically examine the role of p300/CBP histone acetyltransferase (HAT) activity in the consolidation and reconsolidation of auditory Pavlovian fear memories. We show that local infusions of c646, a selective pharmacological inhibitor of p300/CBP activity, shortly following either fear conditioning or fear memory retrieval impair training and retrieval-related regulation of histone acetylation in the lateral nucleus of the amygdala (LA). Furthermore, we show that intra-LA infusion of c646 significantly impairs fear memory consolidation, reconsolidation, and associated neural plasticity in the LA. Our findings collectively suggest that p300/CBP HAT activity is critical for the consolidation and reconsolidation of amygdala-dependent Pavlovian fear memories.
Collapse
Affiliation(s)
- Stephanie A Maddox
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|