1
|
Dema M, Eixarch H, Hervera A, Castillo M, Villar LM, Montalban X, Espejo C. Disease Aggravation With Age in an Experimental Model of Multiple Sclerosis: Role of Immunosenescence. Aging Cell 2025; 24:e14491. [PMID: 39894902 PMCID: PMC12073911 DOI: 10.1111/acel.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
The onset of multiple sclerosis (MS) in older individuals correlates with a higher risk of developing primary progressive MS, faster progression to secondary progressive MS, and increased disability accumulation. This phenomenon can be related to age-related changes in the immune system: with age, the immune system undergoes a process called immunosenescence, characterized by a decline in the function of both the innate and adaptive immune responses. This decline can lead to a decreased ability to control inflammation and repair damaged tissue. Additionally, older individuals often experience a shift toward a more pro-inflammatory state, known as inflammaging, which can exacerbate the progression of neurodegenerative diseases like MS. Therefore, age-related alterations in the immune system could be responsible for the difference in the phenotype of MS observed in older and younger patients. In this study, we investigated the effects of age on the immunopathogenesis of experimental autoimmune encephalomyelitis (EAE). Our findings indicate that EAE is more severe in aged mice due to a more inflammatory and neurodegenerative environment in the central nervous system. Age-related changes predominantly affect adaptive immunity, characterized by altered T cell ratios, a pro-inflammatory Th1 response, increased regulatory T cells, exhaustion of T cells, altered B cell antigen presentation, and reduced NK cell maturation and cytotoxicity. Transcriptomic analysis reveals that fewer pathways and transcription factors are activated with age in EAE. These findings allow us to identify potential therapeutic targets specific to elderly MS patients and work on their development in the future.
Collapse
Affiliation(s)
- María Dema
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca (VHIR)Hospital Universitari Vall d'HebronBarcelonaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| | - Herena Eixarch
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca (VHIR)Hospital Universitari Vall d'HebronBarcelonaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| | - Arnau Hervera
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca (VHIR)Hospital Universitari Vall d'HebronBarcelonaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| | - Mireia Castillo
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca (VHIR)Hospital Universitari Vall d'HebronBarcelonaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| | - Luisa M. Villar
- Departmento de InmunologíaHospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
| | - Xavier Montalban
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca (VHIR)Hospital Universitari Vall d'HebronBarcelonaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| | - Carmen Espejo
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca (VHIR)Hospital Universitari Vall d'HebronBarcelonaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| |
Collapse
|
2
|
Baek IC, Sim SY, Suh BK, Kim TG, Cho WK. Assessment of XCI skewing and demonstration of XCI escape region based on single-cell RNA sequencing: comparison between female Grave's disease and control. BMC Mol Cell Biol 2025; 26:8. [PMID: 39891056 PMCID: PMC11786500 DOI: 10.1186/s12860-025-00533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND The reactivation and loss of mosaicism hypothesis due to X chromosome inactivation (XCI) skewing and escape could influence gender differences in autoimmune diseases. XCI selectively inactivates one of the two X chromosomes in females. METHODS To estimate XCI skewing and the occurrence of XCI escape, we conducted a normal female (NF) without a history of autoimmune thyroid disease (AITD) and a patient with Grave's disease (GD) based on a thyroid diagnosis. After single-cell RNA sequencing, heterozygous variants were converted and transformed. XCI skewing was calculated using the formula and the skewing degree was defined. NF/GD genes were compared using correction methods. Positions are heterozygous within a single cell as indicated by a unique barcode. RESULTS XCI skewing showed 45.8%/48.9% relatively random, 29.4%/27.0% skewing, 24.6%/23.7% severe skewing, and 0.2%/0.4% extreme severe skewing. 24.8%/24.1% in NF/GD exhibited severe skewing or higher. A total of 13 genes were significantly associated with XCI skewing ratios in NF/GD cells. In total, 371/250 nucleotide positions with only one barcode (representing a unique cell) were identified for XCI escape. A total of 143/52 nucleotide positions spanned 20/6 genes, and 12/1 genes were identified as XCI escapes. CONCLUSIONS These results could aid in understanding the immunogenetics of gender differences in various autoimmune disease pathophysiologies.
Collapse
Affiliation(s)
- In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soo Yeun Sim
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung-Kyu Suh
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Won Kyoung Cho
- Department of Pediatrics, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, 93, Jungbu-daero, Paldal-gu, Suwon-si, Seoul, Gyeonggi-do, 16247, Republic of Korea.
| |
Collapse
|
3
|
Oruc OA, Boyaci MG, Ozdinc Ş, Celik S, Aslan E. Protective effect of valproic acid on ischemia-reperfusion induced spinal cord injury in a rat model. J Spinal Cord Med 2024; 47:775-782. [PMID: 37975793 PMCID: PMC11378658 DOI: 10.1080/10790268.2023.2257854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
PURPOSE This study aims to determine the anti-inflammatory, antioxidant, and anti-apoptotic effects of valproic acid (VPA) on rat spinal cord tissue in ischemia-reperfusion (IR) injury model created by abdominal aorta occlusion. MATERIALS AND METHODS Sprague Dawley rat (male sex) weighing 190-260 g divided into four experimental groups: control only underwent laparotomy, sham group, pre-IR injury (200 mg/kg dose), and post-IR injury (300 mg/kg) VPA. We measured serum levels of TNF-α, IL-6, IL-1β, IL-18, Total Oxidant Status (TOS) and Total Antioxidant Status (TAS), and serum Oxidative Stress Index (OSI) ratio, and tissue expression of Bax and Bcl2, Caspase3, and Bax/Bcl2 ratio. RESULTS Serum IL-18 was higher in the sham than the control group(P = 0.001), and there were declines in the pre-IR treatment (P = 0.002) and the post-IR treatment when compared to sham (P = 0.001). Despite these reductions, IL-18 expression levels in both the pre- and post-IR treatment groups were higher than in the control group (P = 0.001 & P = 0.003). The favorable effects of pre-IR VPA administration on immunohistochemical biomarkers were superior to post-IR VPA administration. CONCLUSIONS Comparative analyses between prophylactic VPA administration and post-IR interventions revealed congruence in their anti-inflammatory and anti-apoptotic ramifications. VPA can reduce spinal cord IR injury in an aortic occlusion model of rats.
Collapse
Affiliation(s)
- Oya Akpinar Oruc
- Department of Emergency Medicine, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Mehmet Gazi Boyaci
- Department of Neurosurgery, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Şerife Ozdinc
- Department of Emergency Medicine, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Sefa Celik
- Department of Biochemistry, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Esra Aslan
- Department of Histology-Embryology, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
4
|
Eyre M, Thomas T, Ferrarin E, Khamis S, Zuberi SM, Sie A, Newlove-Delgado T, Morton M, Molteni E, Dale RC, Lim M, Nosadini M. Treatments and Outcomes Among Patients with Sydenham Chorea: A Meta-Analysis. JAMA Netw Open 2024; 7:e246792. [PMID: 38625703 PMCID: PMC11022117 DOI: 10.1001/jamanetworkopen.2024.6792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/17/2024] [Indexed: 04/17/2024] Open
Abstract
IMPORTANCE Sydenham chorea is the most common acquired chorea of childhood worldwide; however, treatment is limited by a lack of high-quality evidence. OBJECTIVES To evaluate historical changes in the clinical characteristics of Sydenham chorea and identify clinical and treatment factors at disease onset associated with chorea duration, relapsing disease course, and functional outcome. DATA SOURCES The systematic search for this meta-analysis was conducted in PubMed, Embase, CINAHL, Cochrane Library, and LILACS databases and registers of clinical trials from inception to November 1, 2022 (search terms: [Sydenham OR Sydenham's OR rheumatic OR minor] AND chorea). STUDY SELECTION Published articles that included patients with a final diagnosis of Sydenham chorea (in selected languages). DATA EXTRACTION AND SYNTHESIS This study followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. Individual patient data on clinical characteristics, treatments, chorea duration, relapse, and final outcome were extracted. Data from patients in the modern era (1945 through 2022) were entered into multivariable models and stratified by corticosteroid duration for survival analysis of chorea duration. MAIN OUTCOMES AND MEASURES The planned study outcomes were chorea duration at onset, monophasic course (absence of relapse after ≥24 months), and functional outcome (poor: modified Rankin Scale score 2-6 or persisting chorea, psychiatric, or behavioral symptoms at final follow-up after ≥6 months; good: modified Rankin Scale score 0-1 and no chorea, psychiatric, or behavioral symptoms at final follow-up). RESULTS In total, 1479 patients were included (from 307 articles), 1325 since 1945 (median [IQR] age at onset, 10 [8-13] years; 875 of 1272 female [68.8%]). Immunotherapy was associated with shorter chorea duration (hazard ratio for chorea resolution, 1.51 [95% CI, 1.05-2.19]; P = .03). The median chorea duration in patients receiving 1 or more months of corticosteroids was 1.2 months (95% CI, 1.2-2.0) vs 2.8 months (95% CI, 2.0-3.0) for patients receiving none (P = .004). Treatment factors associated with monophasic disease course were antibiotics (odds ratio [OR] for relapse, 0.28 [95% CI, 0.09-0.85]; P = .02), corticosteroids (OR, 0.32 [95% CI, 0.15-0.67]; P = .003), and sodium valproate (OR, 0.33 [95% CI, 0.15-0.71]; P = .004). Patients receiving at least 1 month of corticosteroids had significantly lower odds of relapsing course (OR, 0.10 [95% CI, 0.04-0.25]; P < .001). No treatment factor was associated with good functional outcome. CONCLUSIONS AND RELEVANCE In this meta-analysis of treatments and outcomes in patients with Sydenham chorea, immunotherapy, in particular corticosteroid treatment, was associated with faster resolution of chorea. Antibiotics, corticosteroids and sodium valproate were associated with a monophasic disease course. This synthesis of retrospective data should support the development of evidence-based treatment guidelines for patients with Sydenham chorea.
Collapse
Affiliation(s)
- Michael Eyre
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Children’s Neurosciences, Evelina London Children’s Hospital at Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Terrence Thomas
- Department of Paediatrics, Neurology Service, KK Women’s and Children’s Hospital, Singapore
| | | | - Sonia Khamis
- Children’s Neurosciences, Evelina London Children’s Hospital at Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Sameer M. Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, United Kingdom
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Adrian Sie
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
- NHS Lanarkshire, Bothwell, United Kingdom
| | - Tamsin Newlove-Delgado
- Children and Young People’s Mental Health (ChYMe) Research Collaboration, University of Exeter Medical School, Exeter, United Kingdom
| | - Michael Morton
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Erika Molteni
- School of Biomedical Engineering and Imaging Sciences, King’s College London, United Kingdom
| | - Russell C. Dale
- Kids Neuroscience Centre, The Children’s Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Westmead, Australia
| | - Ming Lim
- Faculty of Life Sciences and Medicine, King’s College London, United Kingdom
- Children’s Neurosciences, Evelina London Children’s Hospital at Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Margherita Nosadini
- Paediatric Neurology and Neurophysiology Unit, Department of Women’s and Children’s Health, University Hospital of Padova, Padova, Italy
- Neuroimmunology Group, Paediatric Research Institute “Città della Speranza,” Padova, Italy
| |
Collapse
|
5
|
Zarate-Lopez D, Torres-Chávez AL, Gálvez-Contreras AY, Gonzalez-Perez O. Three Decades of Valproate: A Current Model for Studying Autism Spectrum Disorder. Curr Neuropharmacol 2024; 22:260-289. [PMID: 37873949 PMCID: PMC10788883 DOI: 10.2174/1570159x22666231003121513] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with increased prevalence and incidence in recent decades. Its etiology remains largely unclear, but it seems to involve a strong genetic component and environmental factors that, in turn, induce epigenetic changes during embryonic and postnatal brain development. In recent decades, clinical studies have shown that inutero exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug, is an environmental factor associated with an increased risk of ASD. Subsequently, prenatal VPA exposure in rodents has been established as a reliable translational model to study the pathophysiology of ASD, which has helped demonstrate neurobiological changes in rodents, non-human primates, and brain organoids from human pluripotent stem cells. This evidence supports the notion that prenatal VPA exposure is a valid and current model to replicate an idiopathic ASD-like disorder in experimental animals. This review summarizes and describes the current features reported with this animal model of autism and the main neurobiological findings and correlates that help elucidate the pathophysiology of ASD. Finally, we discuss the general framework of the VPA model in comparison to other environmental and genetic ASD models.
Collapse
Affiliation(s)
- David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Ana Laura Torres-Chávez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Alma Yadira Gálvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara 44340, México
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
| |
Collapse
|
6
|
Mehmood A, Shah S, Guo RY, Haider A, Shi M, Ali H, Ali I, Ullah R, Li B. Methyl-CpG-Binding Protein 2 Emerges as a Central Player in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Cell Mol Neurobiol 2023; 43:4071-4101. [PMID: 37955798 PMCID: PMC11407427 DOI: 10.1007/s10571-023-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
MECP2 and its product methyl-CpG binding protein 2 (MeCP2) are associated with multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), which are inflammatory, autoimmune, and demyelinating disorders of the central nervous system (CNS). However, the mechanisms and pathways regulated by MeCP2 in immune activation in favor of MS and NMOSD are not fully understood. We summarize findings that use the binding properties of MeCP2 to identify its targets, particularly the genes recognized by MeCP2 and associated with several neurological disorders. MeCP2 regulates gene expression in neurons, immune cells and during development by modulating various mechanisms and pathways. Dysregulation of the MeCP2 signaling pathway has been associated with several disorders, including neurological and autoimmune diseases. A thorough understanding of the molecular mechanisms underlying MeCP2 function can provide new therapeutic strategies for these conditions. The nervous system is the primary system affected in MeCP2-associated disorders, and other systems may also contribute to MeCP2 action through its target genes. MeCP2 signaling pathways provide promise as potential therapeutic targets in progressive MS and NMOSD. MeCP2 not only increases susceptibility and induces anti-inflammatory responses in immune sites but also leads to a chronic increase in pro-inflammatory cytokines gene expression (IFN-γ, TNF-α, and IL-1β) and downregulates the genes involved in immune regulation (IL-10, FoxP3, and CX3CR1). MeCP2 may modulate similar mechanisms in different pathologies and suggest that treatments for MS and NMOSD disorders may be effective in treating related disorders. MeCP2 regulates gene expression in MS and NMOSD. However, dysregulation of the MeCP2 signaling pathway is implicated in these disorders. MeCP2 plays a role as a therapeutic target for MS and NMOSD and provides pathways and mechanisms that are modulated by MeCP2 in the regulation of gene expression.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Suleman Shah
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Arsalan Haider
- Key Lab of Health Psychology, Institute of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mengya Shi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, 44000, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
7
|
Meng Y, Qiu X, Tang Z, Mao Y, Tan Y. Lactobacillus paracasei L9 affects disease progression in experimental autoimmune neuritis by regulating intestinal flora structure and arginine metabolism. J Neuroinflammation 2023; 20:122. [PMID: 37217991 DOI: 10.1186/s12974-023-02808-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Autoimmune neuropathies are common peripheral nervous system (PNS) disorders. Environmental influences and dietary components are known to affect the course of autoimmune diseases. Intestinal microorganisms can be dynamically regulated through diet, and this study combines intestinal microorganisms with diseases to open up new therapeutic ideas. METHODS In Lewis rats, a model of EAN was established with P0 peptide, Lactobacillus were used as treatment, serum T-cell ratio, inflammatory factors, sciatic neuropathological changes, and pathological inflammatory effects on intestinal mucosa were detected, and fecal metabolomics and 16 s microbiome analysis were performed to further explore the mechanism. RESULTS In the EAN rat model, Lactobacillus paracasei L9 (LP) could dynamically regulate the CD4+/CD8+T balance in serum, reduce serum IL-1, IL-6 and TNF-α expression levels, improve sciatic nerve demyelination and inflammatory infiltration, and reduce nervous system score. In the rat model of EAN, intestinal mucosa was damaged. Occludin and ZO-1 were downregulated. IL-1, TNF-α and Reg3γ were upregulated. LP gavage induced intestinal mucosa recovery; occludin and ZO-1 upregulation; IL-1, TNF-α and Reg3γ downregulation. Finally, metabolomics and 16 s microbiome analysis were performed, and differential metabolites were enriched with an important metabolic pathway, arginine and proline metabolism. CONCLUSION LP improved EAN in rats by influencing intestinal community and the lysine and proline metabolism.
Collapse
Affiliation(s)
- Yuting Meng
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xiangjie Qiu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Yu Mao
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
8
|
Ubah UDB, Triyasakorn K, Roan B, Conlin M, Lai JCK, Awale PS. Pan HDACi Valproic Acid and Trichostatin A Show Apparently Contrasting Inflammatory Responses in Cultured J774A.1 Macrophages. EPIGENOMES 2022; 6:epigenomes6040038. [PMID: 36412793 PMCID: PMC9680436 DOI: 10.3390/epigenomes6040038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
This study was initiated as an attempt to clarify some of the apparent conflicting data regarding the so-called anti-inflammatory versus proinflammatory properties of histone deacetylase inhibitors (HDACis). In cell culture, typically, chronic pretreatment with the HDACi valproic acid (VPA) and trichostatin A (TSA) exhibits an anti-inflammatory effect. However, the effect of acute treatment with VPA and TSA on the levels of inflammatory cytokines in J774A.1 macrophage cell line is unknown. Therefore, this study investigated the effect of acute treatment with VPA and TSA on levels of key inflammatory cytokines in maximally stimulated J774A.1 cells. J774A.1 macrophages were treated with either VPA or TSA for 1 h (acute treatment), followed by maximal stimulation with LPS + IFNγ for 24 h. ELISA was used to measure the levels of proinflammatory cytokines TNFα, NO and IL-1β from the culture medium. Acute treatment with VPA showed a dose-dependent increase in levels of all three cytokines. Similar to VPA, TSA also showed a dose-dependent increase in levels of IL-1β alone. This study sheds new light on the conflicting data in the literature that may partly be explained by acute or short-term exposure versus chronic or long-term exposure to HDACi.
Collapse
Affiliation(s)
- Ubah Dominic Babah Ubah
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Korawin Triyasakorn
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Brandon Roan
- Division of Health Sciences, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Minsyusheen Conlin
- Department of Biological Sciences, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - James C. K. Lai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Prabha S. Awale
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
- Correspondence:
| |
Collapse
|
9
|
Jayaraman S, Jayaraman A. Impact of histone modifier-induced protection against autoimmune encephalomyelitis on multiple sclerosis treatment. Front Neurol 2022; 13:980758. [PMID: 36313502 PMCID: PMC9614082 DOI: 10.3389/fneur.2022.980758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis is a progressive demyelinating central nervous system disorder with unknown etiology. The condition has heterogeneous presentations, including relapsing-remitting multiple sclerosis and secondary and primary progressive multiple sclerosis. The genetic and epigenetic mechanisms underlying these various forms of multiple sclerosis remain elusive. Many disease-modifying therapies approved for multiple sclerosis are broad-spectrum immunomodulatory drugs that reduce relapses but do not halt the disease progression or neuroaxonal damage. Some are also associated with many severe side effects, including fatalities. Improvements in disease-modifying treatments especially for primary progressive multiple sclerosis remain an unmet need. Several experimental animal models are available to decipher the mechanisms involved in multiple sclerosis. These models help us decipher the advantages and limitations of novel disease-modifying therapies for multiple sclerosis.
Collapse
Affiliation(s)
- Sundararajan Jayaraman
- Department of Surgery, University of Illinois College of Medicine, Peoria, IL, United States
| | | |
Collapse
|
10
|
Yu H, Bai S, Hao Y, Guan Y. Fatty acids role in multiple sclerosis as "metabokines". J Neuroinflammation 2022; 19:157. [PMID: 35715809 PMCID: PMC9205055 DOI: 10.1186/s12974-022-02502-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/01/2022] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS), as an autoimmune neurological disease with both genetic and environmental contribution, still lacks effective treatment options among progressive patients, highlighting the need to re-evaluate disease innate properties in search for novel therapeutic targets. Fatty acids (FA) and MS bear an interesting intimate connection. FA and FA metabolism are highly associated with autoimmunity, as the diet-derived circulatory and tissue-resident FAs level and composition can modulate immune cells polarization, differentiation and function, suggesting their broad regulatory role as “metabokines”. In addition, FAs are indeed protective factors for blood–brain barrier integrity, crucial contributors of central nervous system (CNS) chronic inflammation and progressive degeneration, as well as important materials for remyelination. The remaining area of ambiguity requires further exploration into this arena to validate the existed phenomenon, develop novel therapies, and confirm the safety and efficacy of therapeutic intervention targeting FA metabolism.
Collapse
Affiliation(s)
- Haojun Yu
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Shuwei Bai
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| |
Collapse
|
11
|
Madireddy S, Madireddy S. Therapeutic Interventions to Mitigate Mitochondrial Dysfunction and Oxidative Stress–Induced Damage in Patients with Bipolar Disorder. Int J Mol Sci 2022; 23:ijms23031844. [PMID: 35163764 PMCID: PMC8836876 DOI: 10.3390/ijms23031844] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
Bipolar disorder (BD) is characterized by mood changes, including recurrent manic, hypomanic, and depressive episodes, which may involve mixed symptoms. Despite the progress in neurobiological research, the pathophysiology of BD has not been extensively described to date. Progress in the understanding of the neurobiology driving BD could help facilitate the discovery of therapeutic targets and biomarkers for its early detection. Oxidative stress (OS), which damages biomolecules and causes mitochondrial and dopamine system dysfunctions, is a persistent finding in patients with BD. Inflammation and immune dysfunction might also play a role in BD pathophysiology. Specific nutrient supplements (nutraceuticals) may target neurobiological pathways suggested to be perturbed in BD, such as inflammation, mitochondrial dysfunction, and OS. Consequently, nutraceuticals may be used in the adjunctive treatment of BD. This paper summarizes the possible roles of OS, mitochondrial dysfunction, and immune system dysregulation in the onset of BD. It then discusses OS-mitigating strategies that may serve as therapeutic interventions for BD. It also analyzes the relationship between diet and BD as well as the use of nutritional interventions in the treatment of BD. In addition, it addresses the use of lithium therapy; novel antipsychotic agents, including clozapine, olanzapine, risperidone, cariprazine, and quetiapine; and anti-inflammatory agents to treat BD. Furthermore, it reviews the efficacy of the most used therapies for BD, such as cognitive–behavioral therapy, bright light therapy, imagery-focused cognitive therapy, and electroconvulsive therapy. A better understanding of the roles of OS, mitochondrial dysfunction, and inflammation in the pathogenesis of bipolar disorder, along with a stronger elucidation of the therapeutic functions of antioxidants, antipsychotics, anti-inflammatory agents, lithium therapy, and light therapies, may lead to improved strategies for the treatment and prevention of bipolar disorder.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Correspondence:
| | | |
Collapse
|
12
|
Polaryzacja mikrogleju i makrofagów w wybranych chorobach degeneracyjnych i zapalnych układu nerwowego. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Makrofagi to komórki efektorowe układu odpornościowego zdolne do polaryzacji, czyli zmiany fenotypu powiązanej ze zmianą aktywności. Można wyróżnić: polaryzację klasyczną (M1), która służy obronie przed patogenami, a makrofagi M1 mają aktywność ogólnie prozapalną, oraz polaryzację alternatywną (M2), która sprzyja wygaszaniu stanu zapalnego i regeneracji tkanki. Makrofagi zasiedlają niemal cały organizm, więc zjawisko ich polaryzacji ma wpływ na wiele procesów zachodzących w różnych tkankach. W układzie nerwowym reprezentacją osiadłych makrofagów jest mikroglej. Jednak w wielu sytuacjach patologicznych w mózgu pojawiają się także makrofagi rekrutowane z monocytów krążących we krwi. Choroby neurodegeneracyjne, urazy i choroby autoimmunologiczne są związane z reakcją układu odpornościowego, która może mieć istotny wpływ na dalszy przebieg choroby i na tempo regeneracji tkanki. Polaryzacja makrofagów ma w związku z tym znaczenie w chorobach centralnego układu nerwowego. Aktywność komórek M1 i M2 może bowiem różnie wpływać na przeżywalność neuronów i oligodendrocytów, na wzrost aksonów, na proces demielinizacji czy na szczelność bariery krew–mózg. Wynika to z różnic między fenotypami w wytwarzaniu reaktywnych form tlenu i tlenku azotu, wydzielaniu cytokin i czynników wzrostu, bezpośrednich oddziaływaniach na sąsiednie komórki i zdolnościach do fagocytozy. W artykule omówiono to zagadnienie w: udarze mózgu, urazie rdzenia kręgowego, chorobie Alzheimera, stwardnieniu zanikowym bocznym i stwardnieniu rozsianym. W wielu spośród tych patologii obserwuje się gradient czasowy lub przestrzenny rozmieszczenia w tkance poszczególnych fenotypów mikrogleju i/lub makrofagów. Wydaje się zatem, że zmiany polaryzacji makrofagów mogą potencjalnie sprzyjać regeneracji tkanki lub hamować rozwój chorób neurodegeneracyjnych.
Collapse
|
13
|
Wu MY, Wang EJ, Feng D, Li M, Ye RD, Lu JH. Pharmacological insights into autophagy modulation in autoimmune diseases. Acta Pharm Sin B 2021; 11:3364-3378. [PMID: 34900523 PMCID: PMC8642426 DOI: 10.1016/j.apsb.2021.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
As a cellular bulk degradation and survival mechanism, autophagy is implicated in diverse biological processes. Genome-wide association studies have revealed the link between autophagy gene polymorphisms and susceptibility of autoimmune diseases including systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), indicating that autophagy dysregulation may be involved in the development of autoimmune diseases. A series of autophagy modulators have displayed protective effects on autoimmune disease models, highlighting the emerging role of autophagy modulators in treating autoimmune diseases. This review explores the roles of autophagy in the autoimmune diseases, with emphasis on four major autoimmune diseases [SLE, rheumatoid arthritis (RA), IBD, and experimental autoimmune encephalomyelitis (EAE)]. More importantly, the therapeutic potentials of small molecular autophagy modulators (including autophagy inducers and inhibitors) on autoimmune diseases are comprehensively analyzed.
Collapse
Affiliation(s)
- Ming-Yue Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 9999078, China
| | - Er-Jin Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 9999078, China
| | - Du Feng
- Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou 510000, China
| | - Min Li
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510000, China
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, the Chinese University of Hong Kong, Shenzhen 518000, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 9999078, China
| |
Collapse
|
14
|
Rayatpour A, Farhangi S, Verdaguer E, Olloquequi J, Ureña J, Auladell C, Javan M. The Cross Talk between Underlying Mechanisms of Multiple Sclerosis and Epilepsy May Provide New Insights for More Efficient Therapies. Pharmaceuticals (Basel) 2021; 14:ph14101031. [PMID: 34681255 PMCID: PMC8541630 DOI: 10.3390/ph14101031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/17/2022] Open
Abstract
Despite the significant differences in pathological background of neurodegenerative diseases, epileptic seizures are a comorbidity in many disorders such as Huntington disease (HD), Alzheimer's disease (AD), and multiple sclerosis (MS). Regarding the last one, specifically, it has been shown that the risk of developing epilepsy is three to six times higher in patients with MS compared to the general population. In this context, understanding the pathological processes underlying this connection will allow for the targeting of the common and shared pathological pathways involved in both conditions, which may provide a new avenue in the management of neurological disorders. This review provides an outlook of what is known so far about the bidirectional association between epilepsy and MS.
Collapse
Affiliation(s)
- Atefeh Rayatpour
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Sahar Farhangi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Ester Verdaguer
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Biomedical Sciences Institute, Health Sciences Faculty, Universidad Autónoma de Chile, Talca 3460000, Chile;
| | - Jesus Ureña
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Carme Auladell
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
- Correspondence: (C.A.); (M.J.)
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
- Cell Science Research Center, Department of Brain and Cognitive Sciences, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14117-13116, Iran
- Correspondence: (C.A.); (M.J.)
| |
Collapse
|
15
|
Perez-Muñoz ME, Sugden S, Harmsen HJM, 't Hart BA, Laman JD, Walter J. Nutritional and ecological perspectives of the interrelationships between diet and the gut microbiome in multiple sclerosis: Insights from marmosets. iScience 2021; 24:102709. [PMID: 34296070 PMCID: PMC8282968 DOI: 10.1016/j.isci.2021.102709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis, have shown potential links between diet components, microbiome composition, and modulation of immune responses. In this review, we reanalyze and discuss findings in an outbred marmoset EAE model in which a yogurt-based dietary supplement decreased disease frequency and severity. We show that although diet has detectable effects on the fecal microbiome, microbiome changes are more strongly associated with the EAE development. Using an ecological framework, we further show that the dominant factors influencing the gut microbiota were marmoset sibling pair and experimental time point. These findings emphasize challenges in assigning cause-and-effect relationships in studies of diet-microbiome-host interactions and differentiating the diet effects from other environmental, stochastic, and host-related factors. We advocate for animal experiments to be designed to allow causal inferences of the microbiota's role in pathology while considering the complex ecological processes that shape microbial communities.
Collapse
Affiliation(s)
- Maria Elisa Perez-Muñoz
- Department of Agricultural, Nutritional and Food Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Scott Sugden
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen 9700AE, The Netherlands
| | - Bert A 't Hart
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Neurobiology, University of Groningen, University Medical Center Groningen 9700AE, Groningen, The Netherlands.,Department Anatomy and Neuroscience, Amsterdam University Medical Center, Amsterdam 1081HV, The Netherlands
| | - Jon D Laman
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Neurobiology, University of Groningen, University Medical Center Groningen 9700AE, Groningen, The Netherlands.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9700AE, The Netherlands
| | - Jens Walter
- Department of Agricultural, Nutritional and Food Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.,APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork - National University of Ireland, Cork T12 YT20, Ireland
| |
Collapse
|
16
|
Pedro Ferreira J, Pitt B, Zannad F. Histone deacetylase inhibitors for cardiovascular conditions and healthy longevity. THE LANCET. HEALTHY LONGEVITY 2021; 2:e371-e379. [DOI: 10.1016/s2666-7568(21)00061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/19/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022] Open
|
17
|
Guglielmo R, Miskowiak KW, Hasler G. Evaluating endophenotypes for bipolar disorder. Int J Bipolar Disord 2021; 9:17. [PMID: 34046710 PMCID: PMC8160068 DOI: 10.1186/s40345-021-00220-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phenotypic heterogeneity is a major impediment to the elucidation of the neurobiology and genetics of bipolar disorder. Endophenotype could help in reducing heterogeneity by defining biological traits that are more direct expressions of gene effects. The aim of this review is to examine the recent literature on clinical, epidemiological, neurobiological, and genetic findings and to select and evaluate candidate endophenotypes for bipolar disorder. Evaluating putative endophenotype could be helpful in better understanding the neurobiology of bipolar disorder by improving the definition of bipolar-related phenotypes in genetic studies. In this manner, research on endophenotypes could be useful to improve psychopathological diagnostics in the long-run by dissecting psychiatric macro phenotypes into biologically valid components. MAIN BODY The associations among the psychopathological and biological endophenotypes are discussed with respect to specificity, temporal stability, heritability, familiarity, and clinical and biological plausibility. Numerous findings regarding brain function, brain structure, neuropsychology and altered neurochemical pathways in patients with bipolar disorder and their relatives deserve further investigation. Overall, major findings suggest a developmental origin of this disorder as all the candidate endophenotypes that we have been able to select are present both in the early stages of the disorder as well as in subjects at risk. CONCLUSIONS Among the stronger candidate endophenotypes, we suggest circadian rhythm instability, dysmodulation of emotion and reward, altered neuroimmune state, attention and executive dysfunctions, anterior cingulate cortex thickness and early white matter abnormalities. In particular, early white matter abnormalities could be the result of a vulnerable brain on which new stressors are added in young adulthood which favours the onset of the disorder. Possible pathways that lead to a vulnerable brain are discussed starting from the data about molecular and imaging endophenotypes of bipolar disorder.
Collapse
Affiliation(s)
- Riccardo Guglielmo
- Psychiatry Research Unit, Fribourg Network for Mental Health (RFSM), University of Fribourg, Chemin du Cardinal-Journet 3, 1752, Villars-sur-Glâne, Switzerland.,Department of Neuroscience, Institute of Psychiatry, Catholic University Medical School, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gregor Hasler
- Psychiatry Research Unit, Fribourg Network for Mental Health (RFSM), University of Fribourg, Chemin du Cardinal-Journet 3, 1752, Villars-sur-Glâne, Switzerland.
| |
Collapse
|
18
|
Lin JR, Huang SH, Wu CH, Chen YW, Hong ZJ, Cheng CP, Sytwu HK, Lin GJ. Valproic Acid Suppresses Autoimmune Recurrence and Allograft Rejection in Islet Transplantation through Induction of the Differentiation of Regulatory T Cells and Can Be Used in Cell Therapy for Type 1 Diabetes. Pharmaceuticals (Basel) 2021; 14:ph14050475. [PMID: 34067829 PMCID: PMC8157191 DOI: 10.3390/ph14050475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus (T1D) results from the destruction of insulin-producing β cells in the islet of the pancreas by lymphocytes. Non-obese diabetic (NOD) mouse is an animal model frequently used for this disease. It has been considered that T1D is a T cell-mediated autoimmune disease. Both CD4+ and CD8+ T cells are highly responsible for the destruction of β cells within the pancreatic islets of Langerhans. Previous studies have revealed that regulatory T (Treg) cells play a critical role in the homeostasis of the immune system as well as immune tolerance to autoantigens, thereby preventing autoimmunity. Valproic acid (VPA), a branched short-chain fatty acid, is widely used as an antiepileptic drug and a mood stabilizer. Previous reports have demonstrated that VPA treatment decreases the incidence and severity of collagen-induced arthritis and experimental autoimmune neuritis by increasing the population of Treg cells in these mouse disease models. Given the effect of VPA in the induction of Treg cells’ population, we evaluated the therapeutic potential and the protective mechanism of VPA treatment in the suppression of graft autoimmune rejection and immune recurrence in syngeneic or allogenic islet transplantation mouse models. In our study, we found that the treatment of VPA increased the expression of forkhead box P3 (FOXP3), which is a critical transcription factor that controls Treg cells’ development and function. Our data revealed that 400 mg/kg VPA treatment in recipients effectively prolonged the survival of syngeneic and allogenic islet grafts. The percentage of Treg cells in splenocytes increased in VPA-treated recipients. We also proved that adoptive transfer of VPA-induced Tregs to the transplanted recipients effectively prolonged the survival of islet grafts. The results of this study provide evidence of the therapeutic potential and the underlying mechanism of VPA treatment in syngeneic islet transplantation for T1D. It also provides experimental evidence for cell therapy by adoptive transferring of in vitro VPA-induced Tregs for the suppression of autoimmune recurrence.
Collapse
Affiliation(s)
- Jeng-Rong Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Shing-Hwa Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (S.-H.H.); (C.-P.C.)
- Department of General Surgery, En Chu Kong Hospital, New Taipei 23741, Taiwan;
| | - Chih-Hsiung Wu
- Department of General Surgery, En Chu Kong Hospital, New Taipei 23741, Taiwan;
| | - Yuan-Wu Chen
- School of Dentistry, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Zhi-Jie Hong
- Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Chia-Pi Cheng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (S.-H.H.); (C.-P.C.)
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan;
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Gu-Jiun Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (S.-H.H.); (C.-P.C.)
- Correspondence: ; Tel.: +886-287-923-100 (ext. 18709)
| |
Collapse
|
19
|
Microglial Expression of Hdac1 and Hdac2 is Dispensable for Experimental Autoimmune Encephalomyelitis (EAE) Progression. J 2020. [DOI: 10.3390/j3040028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previously, we reported that microglial expression of histone deacetylases 1 and 2 (Hdac1 and Hdac2) is required for microglial maturation and modulates disease progression in a mouse model of Alzheimer’s disease. Here, we analyze the role of microglial expression of Hdac1 and Hdac2 in another disease paradigm, namely experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. The aim of this study was to ascertain whether microglial expression of these two epigenetic regulators modulates disease progression in the context of autoimmune disease. Hdac1 and Hdac2 were knocked out either individually or in combination using a microglia-specific, tamoxifen-inducible Cre-deleter line (Cx3cr1-CreERT2). The clinical course as well as histopathological changes during EAE were assessed in adult mice lacking microglial expression of these genes. Overall, no differences in disease onset, progression or severity could be detected in mice lacking microglial expression of either one or both of Hdac1 and Hdac2 genes. Similarly, the histopathology showed no differences in lymphocyte or macrophage infiltration or demyelination in either of the analyzed groups. As such, we conclude that unlike in neurodegenerative disease, microglial expression of Hdac1 and Hdac2 does not play a role in EAE.
Collapse
|
20
|
Valproic acid inhibits interferon-γ production by NK cells and increases susceptibility to Listeria monocytogenes infection. Sci Rep 2020; 10:17802. [PMID: 33082490 PMCID: PMC7576816 DOI: 10.1038/s41598-020-74836-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Valproic acid (VPA) is a drug commonly used for epileptic seizure control. Recently, it has been shown that VPA alters the activation of several immune cells, including Natural Killer (NK) cells, which play an important role in the containment of viruses and intracellular bacteria. Although VPA can increase susceptibility to extracellular pathogens, it is unknown whether the suppressor effect of VPA could affect the course of intracellular bacterial infection. This study aimed to evaluate the role of VPA during Listeria monocytogenes (L.m) infection, and whether NK cell activation was affected. We found that VPA significantly augmented mortality in L.m infected mice. This effect was associated with increased bacterial load in the spleen, liver, and blood. Concurrently, decreased levels of IFN-γ in serum and lower splenic indexes were observed. Moreover, in vitro analysis showed that VPA treatment decreased the frequency of IFN-γ-producing NK cells within L.m infected splenocytes. Similarly, VPA inhibited the production of IFN-γ by NK cells stimulated with IL-12 and IL-18, which is a crucial system for early IFN-γ production in listeriosis. Finally, VPA decreased the phosphorylation of STAT4, p65, and p38, without affecting the expression of IL-12 and IL-18 receptors. Altogether, our results indicate that VPA increases the susceptibility to Listeria monocytogenes infection and suggest that NK cell is one of the main targets of VPA, but further work is needed to ascertain this effect.
Collapse
|
21
|
Hamminger P, Rica R, Ellmeier W. Histone deacetylases as targets in autoimmune and autoinflammatory diseases. Adv Immunol 2020; 147:1-59. [PMID: 32981634 DOI: 10.1016/bs.ai.2020.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reversible lysine acetylation of histones is a key epigenetic regulatory process controlling gene expression. Reversible histone acetylation is mediated by two opposing enzyme families: histone acetyltransferases (HATs) and histone deacetylases (HDACs). Moreover, many non-histone targets of HATs and HDACs are known, suggesting a crucial role for lysine acetylation as a posttranslational modification on the cellular proteome and protein function far beyond chromatin-mediated gene regulation. The HDAC family consists of 18 members and pan-HDAC inhibitors (HDACi) are clinically used for the treatment of certain types of cancer. HDACi or individual HDAC member-deficient (cell lineage-specific) mice have also been tested in a large number of preclinical mouse models for several autoimmune and autoinflammatory diseases and in most cases HDACi treatment results in an attenuation of clinical disease severity. A reduction of disease severity has also been observed in mice lacking certain HDAC members. This indicates a high therapeutic potential of isoform-selective HDACi for immune-mediated diseases. Isoform-selective HDACi and thus targeted inactivation of HDAC isoforms might also overcome the adverse effects of current clinically approved pan-HDACi. This review provides a brief overview about the fundamental function of HDACs as epigenetic regulators, highlights the roles of HDACs beyond chromatin-mediated control of gene expression and summarizes the studies showing the impact of HDAC inhibitors and genetic deficiencies of HDAC members for the outcome of autoimmune and autoinflammatory diseases with a focus on rheumatoid arthritis, inflammatory bowel disease and experimental autoimmune encephalomyelitis (EAE) as an animal model of multiple sclerosis.
Collapse
Affiliation(s)
- Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Abstract
Multiple sclerosis (MS) is an aggravating autoimmune disease that cripples young patients slowly with physical, sensory and cognitive deficits. The break of self-tolerance to neuronal antigens is the key to the pathogenesis of MS, with autoreactive T cells causing demyelination that subsequently leads to inflammation-mediated neurodegenerative events in the central nervous system. The exact etiology of MS remains elusive; however, the interplay of genetic and environmental factors contributes to disease development and progression. Given that genetic variation only accounts for a fraction of risk for MS, extrinsic risk factors including smoking, infection and lack of vitamin D or sunshine, which cause changes in gene expression, contribute to disease development through epigenetic regulation. To date, there is a growing body of scientific evidence to support the important roles of epigenetic processes in MS. In this chapter, the three main layers of epigenetic regulatory mechanisms, namely DNA methylation, histone modification and microRNA-mediated gene regulation, will be discussed, with a particular focus on the role of epigenetics on dysregulated immune responses and neurodegenerative events in MS. Also, the potential for epigenetic modifiers as biomarkers and therapeutics for MS will be reviewed.
Collapse
Affiliation(s)
- Vera Sau-Fong Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Queen Mary Hospital, Hong Kong SAR, China.
| |
Collapse
|
23
|
Kim S, Santhanam S, Lim S, Choi J. Targeting Histone Deacetylases to Modulate Graft-Versus-Host Disease and Graft-Versus-Leukemia. Int J Mol Sci 2020; 21:ijms21124281. [PMID: 32560120 PMCID: PMC7349873 DOI: 10.3390/ijms21124281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the main therapeutic strategy for patients with both malignant and nonmalignant disorders. The therapeutic benefits of allo-HSCT in malignant disorders are primarily derived from the graft-versus-leukemia (GvL) effect, in which T cells in the donor graft recognize and eradicate residual malignant cells. However, the same donor T cells can also recognize normal host tissues as foreign, leading to the development of graft-versus-host disease (GvHD), which is difficult to separate from GvL and is the most frequent and serious complication following allo-HSCT. Inhibition of donor T cell toxicity helps in reducing GvHD but also restricts GvL activity. Therefore, developing a novel therapeutic strategy that selectively suppresses GvHD without affecting GvL is essential. Recent studies have shown that inhibition of histone deacetylases (HDACs) not only inhibits the growth of tumor cells but also regulates the cytotoxic activity of T cells. Here, we compile the known therapeutic potential of HDAC inhibitors in preventing several stages of GvHD pathogenesis. Furthermore, we will also review the current clinical features of HDAC inhibitors in preventing and treating GvHD as well as maintaining GvL.
Collapse
Affiliation(s)
- Sena Kim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Correspondence: (S.K.); (J.C.)
| | | | - Sora Lim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Jaebok Choi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Correspondence: (S.K.); (J.C.)
| |
Collapse
|
24
|
Liu S, Liu L, Jin D, Zhang Q, Takai S. The novel mechanism of valproate to prevent peritoneal adhesion formation. Surg Today 2020; 50:1091-1098. [PMID: 32239305 DOI: 10.1007/s00595-020-01979-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/24/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE A novel pharmacological mechanism of valproate was analyzed using a hamster model of adhesion. METHODS Valproate or placebo was administered just after cecal injury and adhesion severity scores and histological were analyzed. RESULTS The adhesion severity scores in the placebo- and valproate-treated groups were 2.67 ± 0.42 and 1.0 ± 0.37, respectively, with a significant difference between the groups. A significant increase in mast cell numbers was observed in the placebo-treated group vs. the sham-operated group; however, the mast cell number in the adhesive lesion was significantly lower in the valproate-treated group than in the placebo-treated group. The number of cells positive for chymase, an enzyme in mast cells, in the adhesive lesion was significantly higher in the placebo-treated group, but its increase was attenuated significantly by treatment with valproate. The myeloperoxidase gene expression level in the cecum was significantly higher in the placebo-treated group than in the sham-operated group, but there was no significant difference in the myeloperoxidase gene expression level between the sham-operated and valproate-treated groups in. In an in vitro experiment, valproate inhibited purified human and hamster chymases dose-dependently. CONCLUSION The chymase inhibitory effect of valproate may contribute to prevent adhesion formation after abdominal injury.
Collapse
Affiliation(s)
- Shuangping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Liping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Denan Jin
- Department of Innovative Medicine, Osaka Medical College, Takatsuki, 569-8686, Japan
| | - Qinggao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China.
| | - Shinji Takai
- Department of Innovative Medicine, Osaka Medical College, Takatsuki, 569-8686, Japan.
| |
Collapse
|
25
|
Gao Q, Wang Y, Ma N, Dai H, Roy AC, Chang G, Shi X, Shen X. Sodium valproate attenuates the iE-DAP induced inflammatory response by inhibiting the NOD1-NF-κB pathway and histone modifications in bovine mammary epithelial cells. Int Immunopharmacol 2020; 83:106392. [PMID: 32182568 DOI: 10.1016/j.intimp.2020.106392] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/14/2020] [Accepted: 03/08/2020] [Indexed: 12/30/2022]
Abstract
The anti-inflammatory effects of sodium valproate (VPA) in vivo and in vitro have been demonstrated in recent studies. The aim of this study was to evaluate whether VPA can suppress inflammation in bovine mammary epithelial cells (BMECs) stimulated by γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP). First, the concentration and treatment points of iE-DAP and VPA were optimized. Then, BMECs were cultured in complete media and separated into four groups: untreated control cells (CON group), cells stimulated by 10 μg/mL iE-DAP for 6 h (DAP group), cells stimulated by 0.5 mmol/L VPA for 6 h (VPA group), and cells pretreated with VPA (0.5 mmol/L) for 6 h followed by 10 μg/mL of iE-DAP for 6 h (VD group). The results showed that the level of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the culture medium increased in the iE-DAP-treated cells and that pretreatment with VPA reversed this increase. iE-DAP increased both mRNA and protein expression levels of nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and receptor-interacting protein kinas (RIPK2) and activated inhibitor of NF-κB (IκB) and nuclear factor-kappa B p65 (NF-κB p65) through phosphorylation. Upon activation of the NF-κB pathway, the expression of the pro-inflammatory cytokines IL-6, interleukin-8 (IL-8) and interleukin-1β (IL-1β), the acute phase protein serum amyloid A 3 (SAA3) and the lingual antimicrobial peptide (LAP) but not haptoglobi (HP) or bovine neutrophil beta defensing 5 (BNBD5) were increased in the DAP group. The VPA pretreatment induced the acetylation of signal transducers and activators of transcription(STAT1) and histone 3 (H3) by inhibiting histone deacetylase (HDAC) and then suppressed the NF-κB pathway. Moreover, VPA induced autophagy and reduced apoptosis in BMECs in the VD group. These results suggested that VPA treatment can attenuate the inflammatory response induced by iE-DAP.
Collapse
Affiliation(s)
- Qianyun Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hongyu Dai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Animesh Chandra Roy
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoli Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
26
|
Jamebozorgi K, Rostami D, Pormasoumi H, Taghizadeh E, Barreto GE, Sahebkar A. Epigenetic aspects of multiple sclerosis and future therapeutic options. Int J Neurosci 2020; 131:56-64. [PMID: 32075477 DOI: 10.1080/00207454.2020.1732974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease accompanied by demyelination of neurons in the central nervous system that mostly affects young adults, especially women. This disease has two phases including relapsing-remitting form (RR-MS) by episodes of relapse and periods of clinical remission and secondary-progressive form (SP-MS), which causes more disability. The inheritance pattern of MS is not exactly identified and there is an agreement that it has a complex pattern with an interplay among environmental, genetic and epigenetic alternations. Epigenetic mechanisms that are identified for MS pathogenesis are DNA methylation, histone modification and some microRNAs' alternations. Several cellular processes including apoptosis, differentiation and evolution can be modified along with epigenetic changes. Some alternations are associated with epigenetic mechanisms in MS patients and these changes can become key points for MS therapy. Therefore, the aim of this review was to discuss epigenetic mechanisms that are associated with MS pathogenesis and future therapeutic approaches.
Collapse
Affiliation(s)
| | - Daryoush Rostami
- School of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Hosein Pormasoumi
- Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Chrysin suppress immune responses and protects from experimental autoimmune encephalomyelitis in mice. J Neuroimmunol 2019; 335:577007. [DOI: 10.1016/j.jneuroim.2019.577007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 01/24/2023]
|
28
|
Castro K, Casaccia P. Epigenetic modifications in brain and immune cells of multiple sclerosis patients. Mult Scler 2019; 24:69-74. [PMID: 29307300 DOI: 10.1177/1352458517737389] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Multiple sclerosis (MS) is a debilitating neurological disease whose onset and progression are influenced by the interplay of genetic and environmental factors. Epigenetic modifications, which include post-translational modification of the histones and DNA, are considered mediators of gene-environment interactions and a growing body of evidence suggests that they play an important role in MS pathology and could be potential therapeutic targets. Since epigenetic events regulate transcription of different genes in a cell type-specific fashion, we caution on the distinct functional consequences that targeting the same epigenetic modifications might have in distinct cell types. In this review, we primarily focus on the role of histone acetylation and DNA methylation on oligodendrocyte and T-cell function and its potential implications for MS. We find that decreased histone acetylation and increased DNA methylation in oligodendrocyte lineage (OL) cells enhance myelin repair, which is beneficial for MS, while the same epigenetic processes in T cells augment their pro-inflammatory phenotype, which can exacerbate disease severity. In conclusion, epigenetic-based therapies for MS may have great value but only when cellular specificity is taken into consideration.
Collapse
Affiliation(s)
- Kamilah Castro
- Department of Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrizia Casaccia
- Department of Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA/Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY, USA
| |
Collapse
|
29
|
Exploring the Drug Repurposing Versatility of Valproic Acid as a Multifunctional Regulator of Innate and Adaptive Immune Cells. J Immunol Res 2019; 2019:9678098. [PMID: 31001564 PMCID: PMC6437734 DOI: 10.1155/2019/9678098] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/30/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Valproic acid (VPA) is widely recognized for its use in the control of epilepsy and other neurological disorders in the past 50 years. Recent evidence has shown the potential of VPA in the control of certain cancers, owed in part to its role in modulating epigenetic changes through the inhibition of histone deacetylases, affecting the expression of genes involved in the cell cycle, differentiation, and apoptosis. The direct impact of VPA in cells of the immune system has only been explored recently. In this review, we discuss the effects of VPA in the suppression of some activation mechanisms in several immune cells that lead to an anti-inflammatory response. As expected, immune cells are not exempt from the effect of VPA, as it also affects the expression of genes of the cell cycle and apoptosis through epigenetic modifications. In addition to inhibiting histone deacetylases, VPA promotes RNA interference, activates histone methyltransferases, or represses the activation of transcription factors. However, during the infectious process, the effectiveness of VPA is subject to the biological nature of the pathogen and the associated immune response; this is because VPA can promote the control or the progression of the infection. Due to its various effects, VPA is a promising alternative for the control of autoimmune diseases and hypersensitivity and needs to be further explored.
Collapse
|
30
|
Zhu S, Zhang Z, Jia LQ, Zhan KX, Wang LJ, Song N, Liu Y, Cheng YY, Yang YJ, Guan L, Min DY, Yang GL. Valproic acid attenuates global cerebral ischemia/reperfusion injury in gerbils via anti-pyroptosis pathways. Neurochem Int 2019; 124:141-151. [PMID: 30611759 DOI: 10.1016/j.neuint.2019.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/11/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
Ischemic stroke is the third most common cause of death and the leading cause of disability worldwide in adults. The antiepileptic drug valproic acid (VPA) was reported to protect cerebral ischemia/reperfusion injury. However, the action mechanism of VPA in cerebral ischemia/reperfusion injury has not been fully understood. We explored the action mechanism of VPA in vivo and in vitro. Gerbils were subjected to transient global cerebral ischemic-reperfusion injury, and hippocampal neuron injury was treated with oxygen-glucose deprivation in vitro. Morris water maze test was performed to evaluate the cognitive dysfunction. Histopathological examinations and western blot were performed to evaluate the pyroptosis of neurons. The results showed that VPA attenuated the cognitive dysfunction, pyroptosis of the gerbils suffer from ischemic-reperfusion injury and decreased hippocampal neurons pyroptosis induced by oxygen-glucose deprivation in vitro. In addition, western blot and real-time PCR analysis revealed that VPA modulated the protein expression of apoptosis repressor with caspase recruitment domain (ARC), caspase-1 and IL-1β/IL-18. Our results suggested that VPA alleviated ischemic/reperfusion injury-mediated neuronal impairment by anti-pyroptotic effects.
Collapse
Affiliation(s)
- Shu Zhu
- Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang, 110002, China.
| | - Zhe Zhang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China
| | - Lian-Qun Jia
- Key Laboratory of Minstry of Education for TCM Viscera State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Kai-Xuan Zhan
- Key Laboratory of Minstry of Education for TCM Viscera State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Li-Jun Wang
- Department of Pharmacy, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Nan Song
- Key Laboratory of Minstry of Education for TCM Viscera State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Yue Liu
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China
| | - Yan-Yan Cheng
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China
| | - Yong-Ju Yang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China
| | - Le Guan
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China
| | - Dong-Yu Min
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China.
| | - Guan-Lin Yang
- Key Laboratory of Minstry of Education for TCM Viscera State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China.
| |
Collapse
|
31
|
Sun L, Telles E, Karl M, Cheng F, Luetteke N, Sotomayor EM, Miller RH, Seto E. Loss of HDAC11 ameliorates clinical symptoms in a multiple sclerosis mouse model. Life Sci Alliance 2018; 1:e201800039. [PMID: 30456376 PMCID: PMC6238389 DOI: 10.26508/lsa.201800039] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 01/12/2023] Open
Abstract
In an animal model for multiple sclerosis, the absence of HDAC11 reduces clinical severity, spinal cord demyelination, and immune cell infiltration, suggesting that HDAC11 is a promising target for MS treatment. Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous system (CNS). There is no known cure for MS, and currently available drugs for managing this disease are only effective early on and have many adverse side effects. Results from recent studies suggest that histone deacetylase (HDAC) inhibitors may be useful for the treatment of autoimmune and inflammatory diseases such as MS. However, the underlying mechanisms by which HDACs influence immune-mediated diseases such as MS are unclear. More importantly, the question of which specific HDAC(s) are suitable drug targets for the potential treatment of MS remains unanswered. Here, we investigate the functional role of HDAC11 in experimental autoimmune encephalomyelitis, a mouse model for MS. Our results indicate that the loss of HDAC11 in KO mice significantly reduces clinical severity and demyelination of the spinal cord in the post-acute phase of experimental autoimmune encephalomyelitis. The absence of HDAC11 leads to reduced immune cell infiltration into the CNS and decreased monocytes and myeloid DCs in the chronic progressive phase of the disease. Mechanistically, HDAC11 controls the expression of the pro-inflammatory chemokine C–C motif ligand 2 (CCL2) gene by enabling the binding of PU.1 transcription factor to the CCL2 promoter. Our results reveal a novel pathophysiological function for HDAC11 in CNS demyelinating diseases, and warrant further investigations into the potential use of HDAC11-specific inhibitors for the treatment of chronic progressive MS.
Collapse
Affiliation(s)
- Lei Sun
- George Washington University Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Elphine Telles
- George Washington University Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Molly Karl
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Fengdong Cheng
- George Washington University Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Noreen Luetteke
- George Washington University Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Eduardo M Sotomayor
- George Washington University Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Robert H Miller
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Edward Seto
- George Washington University Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
32
|
Tiwari S, Lapierre J, Ojha CR, Martins K, Parira T, Dutta RK, Caobi A, Garbinski L, Ceyhan Y, Esteban-Lopez M, El-Hage N. Signaling pathways and therapeutic perspectives related to environmental factors associated with multiple sclerosis. J Neurosci Res 2018; 96:1831-1846. [PMID: 30204260 PMCID: PMC7167107 DOI: 10.1002/jnr.24322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disorder of unknown etiology. Both genetic-susceptibility and environment exposures, including vitamin D deficiency, Epstein-Barr viral and Herpesvirus (HHV-6) infections are strongly implicated in the activation of T cells and MS-pathogenesis. Despite precise knowledge of how these factors could be operating alone or in combination to facilitate and aggravate the disease progression, it is clear that prolonged induction of inflammatory molecules and recruitment of other immune cells by the activated T cells results in demyelination and axonal damage. It is imperative to understand the risk factors associated with MS progression and how these factors contribute to disease pathology. Understanding of the underlying mechanisms of what factors triggers activation of T cells to attack myelin antigen are important to strategize therapeutics and therapies against MS. Current review provides a detailed literature to understand the role of both pathogenic and non-pathogenic factors on the impact of MS.
Collapse
Affiliation(s)
- Sneham Tiwari
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Jessica Lapierre
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Chet Raj Ojha
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Kyle Martins
- Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Tiyash Parira
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Rajib Kumar Dutta
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Allen Caobi
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Luis Garbinski
- Cell Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Yasemin Ceyhan
- Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Maria Esteban-Lopez
- Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Nazira El-Hage
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
33
|
Gholamzad M, Ebtekar M, Ardestani MS, Azimi M, Mahmodi Z, Mousavi MJ, Aslani S. A comprehensive review on the treatment approaches of multiple sclerosis: currently and in the future. Inflamm Res 2018; 68:25-38. [DOI: 10.1007/s00011-018-1185-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
|
34
|
Mohammadi A, Sharifi A, Pourpaknia R, Mohammadian S, Sahebkar A. Manipulating macrophage polarization and function using classical HDAC inhibitors: Implications for autoimmunity and inflammation. Crit Rev Oncol Hematol 2018; 128:1-18. [DOI: 10.1016/j.critrevonc.2018.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
|
35
|
He H, Hu Z, Xiao H, Zhou F, Yang B. The tale of histone modifications and its role in multiple sclerosis. Hum Genomics 2018; 12:31. [PMID: 29933755 PMCID: PMC6013900 DOI: 10.1186/s40246-018-0163-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/08/2018] [Indexed: 02/08/2023] Open
Abstract
Epigenetics defines the persistent modifications of gene expression in a manner that does not involve the corresponding alterations in DNA sequences. It includes modifications of DNA nucleotides, nucleosomal remodeling, and post-translational modifications (PTMs). It is becoming evident that PTMs which act singly or in combination to form “histone codes” orchestrate the chromatin structure and dynamic functions. PTMs of histone tails have been demonstrated to influence numerous biological developments, as well as disease onset and progression. Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating and neurodegenerative disease of the central nervous system, of which the precise pathophysiological mechanisms remain to be fully elucidated. There is a wealth of emerging evidence that epigenetic modifications may confer risk for MS, which provides new insights into MS. Histone PTMs, one of the key events that regulate gene activation, seem to play a prominent role in the epigenetic mechanism of MS. In this review, we summarize recent studies in our understanding of the epigenetic language encompassing histone, with special emphasis on histone acetylation and histone lysine methylation, two of the best characterized histone modifications. We also discuss how the current studies address histone acetylation and histone lysine methylation influencing pathophysiology of MS and how future studies could be designed to establish optimized therapeutic strategies for MS.
Collapse
Affiliation(s)
- Hui He
- Department of Neurology, 2nd Xiangya Hospital, Central South University, No 139, Renmin Road, Changsha, Hunan Province, China
| | - Zhiping Hu
- Department of Neurology, 2nd Xiangya Hospital, Central South University, No 139, Renmin Road, Changsha, Hunan Province, China
| | - Han Xiao
- Department of Neurology, 2nd Xiangya Hospital, Central South University, No 139, Renmin Road, Changsha, Hunan Province, China
| | - Fangfang Zhou
- Department of Neurology, 2nd Xiangya Hospital, Central South University, No 139, Renmin Road, Changsha, Hunan Province, China
| | - Binbin Yang
- Department of Neurology, 2nd Xiangya Hospital, Central South University, No 139, Renmin Road, Changsha, Hunan Province, China.
| |
Collapse
|
36
|
Neuroprotective effects of valproic acid on brain ischemia are related to its HDAC and GSK3 inhibitions. Pharmacol Biochem Behav 2018; 167:17-28. [DOI: 10.1016/j.pbb.2018.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 11/22/2022]
|
37
|
Chu F, Shi M, Zheng C, Shen D, Zhu J, Zheng X, Cui L. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 2018; 318:1-7. [PMID: 29606295 DOI: 10.1016/j.jneuroim.2018.02.015] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/10/2018] [Accepted: 02/26/2018] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune and neurodegenerative disorder characterized by chronic inflammation, demyelination, as well as axonal and neuronal loss in the central nervous system (CNS). Macrophages and microglia are important components of the innate immune system. They participate in the primary response to microorganisms and play a role in inflammatory responses, homeostasis, and tissue regeneration. In the initial phase of MS and experimental autoimmune encephalomyelitis (EAE), an animal model of MS, macrophages from peripheral tissues infiltrate into the CNS and, together with residential microglia, contribute to the pathogenesis of MS. In the early stages, microglia and macrophages are expressed as the M1 phenotype, which can release proinflammatory cytokines, leading to tissue damage in the CNS. However, in the later stage, the M2 phenotype, which is the phenotype that is associated with resolving inflammation and tissue repair, becomes predominant in the CNS. Therefore, it is hypothesized that the M1/M2 phenotype balance plays an important role in disease progression and that the transition from the proinflammatory M1 phenotype to the regulatory or anti-inflammatory M2 phenotype can lead to restoration of homeostasis and improved functional outcomes. This review of recent literature focuses on the discussion of the M1/M2 phenotypes of microglia and macrophages as well as their relevance in the pathophysiology and treatment of MS and EAE. Furthermore, the possibility of directing the polarization of microglia and macrophages toward the M2 phenotype as a therapeutic and preventative strategy for MS is discussed.
Collapse
Affiliation(s)
- Fengna Chu
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Mingchao Shi
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chao Zheng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Donghui Shen
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin Province, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Huddinge, SE-14157 Huddinge, Stockholm, Sweden.
| | - Xiangyu Zheng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Li Cui
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
38
|
Pinto JV, Passos IC, Librenza-Garcia D, Marcon G, Schneider MA, Conte JH, Abreu da Silva JP, Lima LP, Quincozes-Santos A, Kauer-Sant’Anna M, Kapczinski F. Neuron-glia Interaction as a Possible Pathophysiological Mechanism of Bipolar Disorder. Curr Neuropharmacol 2018; 16:519-532. [PMID: 28847296 PMCID: PMC5997869 DOI: 10.2174/1570159x15666170828170921] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/26/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence has shown the importance of glial cells in the neurobiology of bipolar disorder. Activated microglia and inflammatory cytokines have been pointed out as potential biomarkers of bipolar disorder. Indeed, recent studies have shown that bipolar disorder involves microglial activation in the hippocampus and alterations in peripheral cytokines, suggesting a potential link between neuroinflammation and peripheral toxicity. These abnormalities may also be the biological underpinnings of outcomes related to neuroprogression, such as cognitive impairment and brain changes. Additionally, astrocytes may have a role in the progression of bipolar disorder, as these cells amplify inflammatory response and maintain glutamate homeostasis, preventing excitotoxicity. The present review aims to discuss neuron-glia interactions and their role in the pathophysiology and treatment of bipolar disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Flávio Kapczinski
- Address correspondence to this author at the Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton-ON, Canada; Tel: +55 512 101 8845; E-mails: ,
| |
Collapse
|
39
|
Liu Q, Li H, Yang J, Niu X, Zhao C, Zhao L, Wang Z. Valproic acid attenuates inflammation of optic nerve and apoptosis of retinal ganglion cells in a rat model of optic neuritis. Biomed Pharmacother 2017; 96:1363-1370. [PMID: 29198746 DOI: 10.1016/j.biopha.2017.11.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/04/2017] [Accepted: 11/10/2017] [Indexed: 11/29/2022] Open
Abstract
AIMS Optic neuritis (ON) is an inflammatory disease of the optic nerve, which often occurs in patients with multiple sclerosis (MS) and leads to retinal ganglion cell (RGC) death and even severe visual loss. Valproic acid (VPA) is a short-chain branched fatty acid with anti-epileptic, neuro-protective and anti-inflammatory effects. Here, we examined the effects of VPA in experimental autoimmune encephalomyelitis (EAE) rats and explored the underlying mechanisms. MAIN METHODS EAE was induced by subcutaneous injection with myelin basic protein, emulsified with complete Freund's adjuvant and Mycobacterium tuberculosis H37Ra into the Lewis rats. Subsequently, animals in the VPA groups were treated orally with VPA (250 or 500 mg/kg) once a day for 13 days. KEY FINDINGS VPA treatment significantly attenuated inflammation and microgliosis in optic nerve in EAE-ON rats, as evidenced by the decrease in the mRNA levels of interferon (INF)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-17, and inducible nitric oxide synthase (iNOS), the suppression in nuclear factor (NF)-κB signal pathway as well as the down-regulation of CD11b expression in optic nerve. Additionally, the apoptotic RGCs were remarkably increased in the EAE retina, which was inhibited by VPA treatment. Consistent with the TUNEL staining, VPA administration also obviously suppressed the ratio of Bax: Bcl-2 and the expression of cleaved caspase-3 and PARP in optic nerve in EAE rats. SIGNIFICANCE Our findings demonstrated that VPA treatment could prevent inflammation responses and RGC apoptosis in optic nerve in EAE-ON rats, suggesting that VPA may be available for optic nerve protection during ON.
Collapse
Affiliation(s)
- Qiang Liu
- Neurology Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China; Ningxia Key Laboratory of Craniocerebral Diseases, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Haining Li
- Neurology Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China; Graduate College, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Juan Yang
- Neurology Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China; Graduate College, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Xiaoyan Niu
- Neurology Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Chunmei Zhao
- Neurology Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Li Zhao
- Neurology Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Zhenhai Wang
- Neurology Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China; Ningxia Key Laboratory of Craniocerebral Diseases, Yinchuan, Ningxia, 750004, People's Republic of China; National Engineering Research Center for Beijing Biochip Technology, Sub-Center in Ningxia, Yinchuan, Ningxia, 750004, People's Republic of China.
| |
Collapse
|
40
|
Göschl L, Preglej T, Hamminger P, Bonelli M, Andersen L, Boucheron N, Gülich AF, Müller L, Saferding V, Mufazalov IA, Hirahara K, Seiser C, Matthias P, Penz T, Schuster M, Bock C, Waisman A, Steiner G, Ellmeier W. A T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis. J Autoimmun 2017; 86:51-61. [PMID: 28964722 DOI: 10.1016/j.jaut.2017.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) is a human neurodegenerative disease characterized by the invasion of autoreactive T cells from the periphery into the CNS. Application of pan-histone deacetylase inhibitors (HDACi) ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model for MS, suggesting that HDACi might be a potential therapeutic strategy for MS. However, the function of individual HDAC members in the pathogenesis of EAE is not known. In this study we report that mice with a T cell-specific deletion of HDAC1 (using the Cd4-Cre deleter strain; HDAC1-cKO) were completely resistant to EAE despite the ability of HDAC1cKO CD4+ T cells to differentiate into Th17 cells. RNA sequencing revealed STAT1 as a prominent upstream regulator of differentially expressed genes in activated HDAC1-cKO CD4+ T cells and this was accompanied by a strong increase in phosphorylated STAT1 (pSTAT1). This suggests that HDAC1 controls STAT1 activity in activated CD4+ T cells. Increased pSTAT1 levels correlated with a reduced expression of the chemokine receptors Ccr4 and Ccr6, which are important for the migration of T cells into the CNS. Finally, EAE susceptibility was restored in WT:HDAC1-cKO mixed BM chimeric mice, indicating a cell-autonomous defect. Our data demonstrate a novel pathophysiological role for HDAC1 in EAE and provide evidence that selective inhibition of HDAC1 might be a promising strategy for the treatment of MS.
Collapse
Affiliation(s)
- Lisa Göschl
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Liisa Andersen
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Nicole Boucheron
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Alexandra F Gülich
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Lena Müller
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Victoria Saferding
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Ilgiz A Mufazalov
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; AMED-PRIME, AMED, Chiba 260-8670, Japan
| | - Christian Seiser
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; Max Planck Institute for Informatics, 66123, Saarbrücken, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Günter Steiner
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
41
|
Zheleznyakova GY, Piket E, Marabita F, Pahlevan Kakhki M, Ewing E, Ruhrmann S, Needhamsen M, Jagodic M, Kular L. Epigenetic research in multiple sclerosis: progress, challenges, and opportunities. Physiol Genomics 2017; 49:447-461. [PMID: 28754822 DOI: 10.1152/physiolgenomics.00060.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/24/2017] [Indexed: 01/02/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system. MS likely results from a complex interplay between predisposing causal gene variants (the strongest influence coming from HLA class II locus) and environmental risk factors such as smoking, infectious mononucleosis, and lack of sun exposure/vitamin D. However, little is known about the mechanisms underlying MS development and progression. Moreover, the clinical heterogeneity and variable response to treatment represent additional challenges to a comprehensive understanding and efficient treatment of disease. Epigenetic processes, such as DNA methylation and histone posttranslational modifications, integrate influences from the genes and the environment to regulate gene expression accordingly. Studying epigenetic modifications, which are stable and reversible, may provide an alternative approach to better understand and manage disease. We here aim to review findings from epigenetic studies in MS and further discuss the challenges and clinical opportunities arising from epigenetic research, many of which apply to other diseases with similar complex etiology. A growing body of evidence supports a role of epigenetic processes in the mechanisms underlying immune pathogenesis and nervous system dysfunction in MS. However, disparities between studies shed light on the need to consider possible confounders and methodological limitations for a better interpretation of the data. Nevertheless, translational use of epigenetics might offer new opportunities in epigenetic-based diagnostics and therapeutic tools for a personalized care of MS patients.
Collapse
Affiliation(s)
- Galina Y Zheleznyakova
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eliane Piket
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Francesco Marabita
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Majid Pahlevan Kakhki
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ewoud Ewing
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sabrina Ruhrmann
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
42
|
Zaccara G, Giovannelli F, Giorgi FS, Franco V, Gasparini S, Tacconi FM. Do antiepileptic drugs increase the risk of infectious diseases? A meta-analysis of placebo-controlled studies. Br J Clin Pharmacol 2017; 83:1873-1879. [PMID: 28370224 DOI: 10.1111/bcp.13296] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/27/2017] [Accepted: 03/20/2017] [Indexed: 12/31/2022] Open
Abstract
AIMS Experimental studies show that some antiepileptic drugs (AEDs) may modify natural immune defences, thus influencing the risk of developing infectious diseases. The aim of this meta-analysis was to explore whether AEDs as a class of drugs or singularly may increase risk of infectious diseases. METHODS A meta-analysis of all randomized, double-blind, placebo-controlled trials (RCTs) investigating any AED in any condition was performed. All terms that could be coded in the System Organ Classes (SOCs) of infections and infestations using the Medical Dictionary for Regulatory Activities were recorded. Additional subanalyses were performed also pooling together AEDs sharing similar mechanisms of action. RESULTS Two hundreds and sixty-nine double-blind, placebo-controlled studies were identified and, among them, 127 RCTs with 16 AEDs (brivaracetam, gabapentin, lacosamide, levetiracetam, lamotrigine, oxcarbazepine, perampanel, pregabalin, phenytoin, remacemide, retigabine, rufinamide, tiagabine, topiramate, valproate, zonisamide) reported at least one of 19 symptoms or diseases that could be included in the Medical Dictionary for Regulatory Activities SOC term infections and infestations. These terms were singularly recorded and then pooled together in the SOC term infection and infestation. Topiramate was significantly associated with an increased risk of infection (risk difference = 0.04; 95% confidence interval = 0.01/0.06), while oxcarbazepine was significantly associated with a lower risk (-0.005; -0.09/-0.01). Risk difference of all studies with all AEDs showed a slight, but significantly increased risk of infection (0.01; 0.00/0.002). Levetiracetam and brivaracetam RCTs, when pooled together, were associated with a significantly increased risk of infection (0.03; 0.01/0.05). CONCLUSIONS Some AEDs are associated with a mild increased risk of infection.
Collapse
Affiliation(s)
- Gaetano Zaccara
- Unit of Neurology, Department of Medicine, Florence Health Authority, Florence, Italy
| | - Fabio Giovannelli
- Unit of Neurology, Department of Medicine, Florence Health Authority, Florence, Italy.,Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Filippo Sean Giorgi
- Department of Clinical and Experimental Medicine, Section of Neurology, University of Pisa and Pisa University Hospital, Pisa, Italy
| | - Valentina Franco
- Department of Internal Medicine and Therapeutics, Division of Clinical and Experimental Pharmacology, University of Pavia, Pavia, Italy
| | - Sara Gasparini
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | |
Collapse
|
43
|
Ahmadi M, Gharibi T, Dolati S, Rostamzadeh D, Aslani S, Baradaran B, Younesi V, Yousefi M. Epigenetic modifications and epigenetic based medication implementations of autoimmune diseases. Biomed Pharmacother 2017; 87:596-608. [DOI: 10.1016/j.biopha.2016.12.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
|
44
|
Valproic acid and ASK1 deficiency ameliorate optic neuritis and neurodegeneration in an animal model of multiple sclerosis. Neurosci Lett 2016; 639:82-87. [PMID: 28040492 DOI: 10.1016/j.neulet.2016.12.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 11/23/2022]
Abstract
Optic neuritis, which is an acute inflammatory demyelinating syndrome of the central nervous system, is one of the major complications in multiple sclerosis (MS). Herein, we investigated the therapeutic potential of valproic acid (VPA) on optic neuritis in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. EAE was induced in C57BL/6 mice by immunization with MOG35-55 and VPA (300mg/kg) was administered via intraperitoneal injection once daily from day 3 postimmunization until the end of the experimental period (day 28). VPA treatment suppressed neuroinflammation and decreased the clinical score of EAE at an early phase (from day 12-14 after immunization). We also examined the effects of apoptosis signal-regulating kinase 1 (ASK1), an evolutionarily conserved signaling intermediate for innate immunity, in EAE mice. ASK1 deficiency strongly suppressed microglial activation and decreased the clinical score of EAE at a late phase (day 25, 27 and 28 after immunization). When VPA was administered to ASK1-deficient EAE mice, the clinical score was suppressed in both early and late phases (from day 12-28 after immunization) and showed synergistic effects on protection of retinal neurons. Our findings raise intriguing possibilities that the widely prescribed drug VPA and ASK1 inhibition may be useful for neuroinflammatory disorders including optic neuritis and MS.
Collapse
|
45
|
Aslani S, Jafari N, Javan MR, Karami J, Ahmadi M, Jafarnejad M. Epigenetic Modifications and Therapy in Multiple Sclerosis. Neuromolecular Med 2016; 19:11-23. [PMID: 27382982 DOI: 10.1007/s12017-016-8422-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
Abstract
Breakthroughs in genetic studies, like whole human genome sequencing and genome-wide association studies (GWAS), have richened our knowledge of etiopathology of autoimmune diseases (AID) through discovery of genetic patterns. Nonetheless, the precise etiology of autoimmune diseases remains largely unknown. The lack of complete concordance of autoimmune disease in identical twins suggests that non-genetic factors also play a major role in determining disease susceptibility. Although there is no certain definition, epigenetics has been known as heritable alterations in gene function without changes in the nucleotide sequence. DNA methylation, histone modifications, and microRNA-associated gene expression suppression are the central mechanisms for epigenetic regulations. Multiple sclerosis (MS) is a disorder of the central nervous system (CNS), characterized by both inflammatory and neurodegenerative features. Although studies on epigenetic alterations in MS only began in the past decade, a mounting number of surveys suggest that epigenetic changes may be involved in the initiation and development of MS, probably through bridging the effects of environmental risk factors to genetics. Arming with clear understanding of epigenetic dysregulations underpins development of epigenetic therapies. Identifying agents inhibiting the enzymes controlling epigenetic modifications, particularly DNA methyltransferases and histone deacetylases, will be promising therapeutic tool toward MS. In the article underway, it is aimed to go through the recent progresses, attempting to disclose how epigenetics associates with the pathogenesis of MS and how can be used as therapeutic approach.
Collapse
Affiliation(s)
- Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Jafari
- Markey Cancer Center, University of Kentucky, 741 South Limestone St. Biomedical Biological Research Building (BBSRB), 378D, Lexington, KY, 40506, USA.
| | - Mohammad Reza Javan
- Department of Immunology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Jafar Karami
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Jafarnejad
- Department of Pharmacology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| |
Collapse
|
46
|
Chou YH, Hsieh WC, Chen LC, Lirng JF, Wang SJ. Association between the serotonin transporter and cytokines: Implications for the pathophysiology of bipolar disorder. J Affect Disord 2016; 191:29-35. [PMID: 26630394 DOI: 10.1016/j.jad.2015.10.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/31/2015] [Accepted: 10/31/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Reduced brain serotonin transporter (SERT) has been demonstrated in bipolar disorder (BD). The aim of this study was to explore the potential role of cytokines on reduced SERT in BD. METHODS Twenty-eight BD type I patients and 28 age- and gender-matched healthy controls (HCs) were recruited. Single photon emission computed tomography with the radiotracer 123I ADAM was used for SERT imaging. Regions of interest included the midbrain, thalamus, putamen and caudate. Seven cytokines, including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1α (IL-1α), IL-1β, IL-4, IL-6 and IL-10, were measured using an enzyme linked immune-sorbent assay. RESULTS SERT availability in the midbrain and caudate was significantly lower in BD compared to HCs. IL-1β was significantly lower, whereas IL-10 was significantly higher in BD compared to HCs. Multiple linear regression analyses revealed that there were associations between cytokines, IL-1α, IL-1β, IL-6 and SERT availability in the midbrain but not in the thalamus, putamen and caudate. Furthermore, linear mixed effect analyses demonstrated that these associations were not different between HCs and BD. CONCLUSION While many cytokines have been proposed to be important in the pathophysiology of BD, our results demonstrated that significant associations between cytokines and SERT availability may explain the role of cytokines in mood regulation. However, these associations were not different between HCs and BD, which imply the role of these cytokines is not specific for BD.
Collapse
Affiliation(s)
- Yuan-Hwa Chou
- Departments of Psychiatry Taipei Veterans General Hospital and National Yang Ming University, Taipei, Taiwan.
| | - Wen-Chi Hsieh
- Departments of Psychiatry Taipei Veterans General Hospital and National Yang Ming University, Taipei, Taiwan
| | - Li-Chi Chen
- Departments of Psychiatry Taipei Veterans General Hospital and National Yang Ming University, Taipei, Taiwan
| | - Jiing-Feng Lirng
- Departments of Radiology Taipei Veterans General Hospital and National Yang Ming University, Taipei, Taiwan
| | - Shyh-Jen Wang
- Departments of Nuclear Medicine, Taipei Veterans General Hospital and National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
47
|
Muneer A. Bipolar Disorder: Role of Inflammation and the Development of Disease Biomarkers. Psychiatry Investig 2016; 13:18-33. [PMID: 26766943 PMCID: PMC4701682 DOI: 10.4306/pi.2016.13.1.18] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/21/2015] [Accepted: 06/18/2015] [Indexed: 12/15/2022] Open
Abstract
Bipolar disorder is a severe and enduring psychiatric condition which in many cases starts during early adulthood and follows a relapsing and remitting course throughout life. In many patients the disease follows a progressive path with brief periods of inter-episode recovery, sub-threshold symptoms, treatment resistance and increasing functional impairment in the biopsychosocial domains. Knowledge about the neurobiology of bipolar disorder is increasing steadily and evidence from several lines of research implicates immuno-inflammatory mechanisms in the brain and periphery in the etiopathogenesis of this illness and its comorbidities. The main findings are an increase in the levels of proinflammatory cytokines during acute episodes with a decrease in neurotrophic support. Related to these factors are glial cell dysfunction, neuro-endocrine abnormalities and neurotransmitter aberrations which together cause plastic changes in the mood regulating areas of the brain and neuroprogression of the bipolar diathesis. Research in the above mentioned areas is providing an opportunity to discover novel biomarkers for the disease and the field is reaching a point where major breakthroughs can be expected in the not too distant future. It is hoped that with new discoveries fresh avenues will be found to better treat an otherwise recalcitrant disease.
Collapse
Affiliation(s)
- Ather Muneer
- Islamic International Medical College, Riphah International University, Rawalpindi, Pakistan
| |
Collapse
|
48
|
Khan S, Jena G, Tikoo K, Kumar V. Valproate attenuates the proteinuria, podocyte and renal injury by facilitating autophagy and inactivation of NF-κB/iNOS signaling in diabetic rat. Biochimie 2015; 110:1-16. [DOI: 10.1016/j.biochi.2014.12.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/23/2014] [Indexed: 12/19/2022]
|
49
|
KhorshidAhmad T, Acosta C, Cortes C, Lakowski TM, Gangadaran S, Namaka M. Transcriptional Regulation of Brain-Derived Neurotrophic Factor (BDNF) by Methyl CpG Binding Protein 2 (MeCP2): a Novel Mechanism for Re-Myelination and/or Myelin Repair Involved in the Treatment of Multiple Sclerosis (MS). Mol Neurobiol 2015; 53:1092-1107. [PMID: 25579386 DOI: 10.1007/s12035-014-9074-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/29/2014] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a chronic progressive, neurological disease characterized by the targeted immune system-mediated destruction of central nervous system (CNS) myelin. Autoreactive CD4+ T helper cells have a key role in orchestrating MS-induced myelin damage. Once activated, circulating Th1-cells secrete a variety of inflammatory cytokines that foster the breakdown of blood-brain barrier (BBB) eventually infiltrating into the CNS. Inside the CNS, they become reactivated upon exposure to the myelin structural proteins and continue to produce inflammatory cytokines such as tumor necrosis factor α (TNFα) that leads to direct activation of antibodies and macrophages that are involved in the phagocytosis of myelin. Proliferating oligodendrocyte precursors (OPs) migrating to the lesion sites are capable of acute remyelination but unable to completely repair or restore the immune system-mediated myelin damage. This results in various permanent clinical neurological disabilities such as cognitive dysfunction, fatigue, bowel/bladder abnormalities, and neuropathic pain. At present, there is no cure for MS. Recent remyelination and/or myelin repair strategies have focused on the role of the neurotrophin brain-derived neurotrophic factor (BDNF) and its upstream transcriptional repressor methyl CpG binding protein (MeCP2). Research in the field of epigenetic therapeutics involving histone deacetylase (HDAC) inhibitors and lysine acetyl transferase (KAT) inhibitors is being explored to repress the detrimental effects of MeCP2. This review will address the role of MeCP2 and BDNF in remyelination and/or myelin repair and the potential of HDAC and KAT inhibitors as novel therapeutic interventions for MS.
Collapse
Affiliation(s)
- Tina KhorshidAhmad
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Crystal Acosta
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Claudia Cortes
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Ted M Lakowski
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Surendiran Gangadaran
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Michael Namaka
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada. .,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada. .,College of Medicine, University of Manitoba, Winnipeg, Canada. .,School of Medical Rehabilitation, College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
50
|
Anderson G, Rodriguez M. Multiple sclerosis: the role of melatonin and N-acetylserotonin. Mult Scler Relat Disord 2014; 4:112-23. [PMID: 25787187 DOI: 10.1016/j.msard.2014.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/06/2014] [Accepted: 12/09/2014] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is an immune mediated disorder that is under intensive investigation in an attempt to improve on available treatments. Many of the changes occurring in MS, including increased mitochondrial dysfunction, pain reporting and depression may be partly mediated by increased indoleamine 2,3-dioxygenase, which drives tryptophan to the production of neuroregulatory tryptophan catabolites and away from serotonin, N-acetylserotonin and melatonin production. The consequences of decreased melatonin have classically been attributed to circadian changes following its release from the pineal gland. However, recent data shows that melatonin may be produced by all mitochondria containing cells to some degree, including astrocytes and immune cells, thereby providing another important MS treatment target. As well as being a powerful antioxidant, anti-inflammatory and antinociceptive, melatonin improves mitochondrial functioning, partly via increased oxidative phosphorylation. Melatonin also inhibits demyelination and increases remyelination, suggesting that its local regulation in white matter astrocytes by serotonin availability and apolipoprotein E4, among other potential factors, will be important in the etiology, course and treatment of MS. Here we review the role of local melatonin and its precursors, N-acetylserotonin and serotonin, in MS.
Collapse
|