1
|
Xiong X, Samollow PB, Cao W, Metz R, Zhang C, Leandro AC, VandeBerg JL, Wang X. Genetic and genomic architecture in eight strains of the laboratory opossum Monodelphis domestica. G3 (BETHESDA, MD.) 2022; 12:jkab389. [PMID: 34751383 PMCID: PMC8728031 DOI: 10.1093/g3journal/jkab389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/24/2021] [Indexed: 11/21/2022]
Abstract
The gray short-tailed opossum (Monodelphis domestica) is an established laboratory-bred marsupial model for biomedical research. It is a critical species for comparative genomics research, providing the pivotal phylogenetic outgroup for studies of derived vs ancestral states of genomic/epigenomic characteristics for eutherian mammal lineages. To characterize the current genetic profile of this laboratory marsupial, we examined 79 individuals from eight established laboratory strains. Double digest restriction site-associated DNA sequencing and whole-genome resequencing experiments were performed to investigate the genetic architecture in these strains. A total of 66,640 high-quality single nucleotide polymorphisms (SNPs) were identified. We analyzed SNP density, average heterozygosity, nucleotide diversity, and population differentiation parameter Fst within and between the eight strains. Principal component and population structure analysis clearly resolve the strains at the level of their ancestral founder populations, and the genetic architecture of these strains correctly reflects their breeding history. We confirmed the successful establishment of the first inbred laboratory opossum strain LSD (inbreeding coefficient F > 0.99) and a nearly inbred strain FD2M1 (0.98 < F < 0.99), each derived from a different ancestral background. These strains are suitable for various experimental protocols requiring controlled genetic backgrounds and for intercrosses and backcrosses that can generate offspring with informative SNPs for studying a variety of genetic and epigenetic processes. Together with recent advances in reproductive manipulation and CRISPR/Cas9 techniques for Monodelphis domestica, the existence of distinctive inbred strains will enable genome editing on different genetic backgrounds, greatly expanding the utility of this marsupial model for biomedical research.
Collapse
Affiliation(s)
- Xiao Xiong
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Paul B Samollow
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Wenqi Cao
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Richard Metz
- Genomics and Bioinformatics Service Center, Texas A&M AgriLife Research, College Station, TX 77845, USA
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Institute of Precision Medicine, Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
| | - Ana C Leandro
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - John L VandeBerg
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
2
|
Borges R, Johnson WE, O'Brien SJ, Gomes C, Heesy CP, Antunes A. Adaptive genomic evolution of opsins reveals that early mammals flourished in nocturnal environments. BMC Genomics 2018; 19:121. [PMID: 29402215 PMCID: PMC5800076 DOI: 10.1186/s12864-017-4417-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/22/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Based on evolutionary patterns of the vertebrate eye, Walls (1942) hypothesized that early placental mammals evolved primarily in nocturnal habitats. However, not only Eutheria, but all mammals show photic characteristics (i.e. dichromatic vision, rod-dominated retina) suggestive of a scotopic eye design. RESULTS Here, we used integrative comparative genomic and phylogenetic methodologies employing the photoreceptive opsin gene family in 154 mammals to test the likelihood of a nocturnal period in the emergence of all mammals. We showed that mammals possess genomic patterns concordant with a nocturnal ancestry. The loss of the RH2, VA, PARA, PARIE and OPN4x opsins in all mammals led us to advance a probable and most-parsimonious hypothesis of a global nocturnal bottleneck that explains the loss of these genes in the emerging lineage (> > 215.5 million years ago). In addition, ancestral character reconstruction analyses provided strong evidence that ancestral mammals possessed a nocturnal lifestyle, ultra-violet-sensitive vision, low visual acuity and low orbit convergence (i.e. panoramic vision). CONCLUSIONS Overall, this study provides insight into the evolutionary history of the mammalian eye while discussing important ecological aspects of the photic paleo-environments ancestral mammals have occupied.
Collapse
Affiliation(s)
- Rui Borges
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia, 199004
- Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, 8000, North Ocean Drive, Ft Lauderdale, 33004, Florida, USA
| | - Cidália Gomes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
- ICBAS, Institute of the Biomedical Sciences of Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Christopher P Heesy
- Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th avenue, Glendale, AZ, USA
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
3
|
Dos Santos ÍGD, Jorge EC, Copola AGL, Bertassoli BM, Goes AMD, Silva GAB. FGF2, FGF3 and FGF4 expression pattern during molars odontogenesis in Didelphis albiventris. Acta Histochem 2017; 119:129-141. [PMID: 28012573 DOI: 10.1016/j.acthis.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 12/12/2022]
Abstract
Odontogenesis is guided by a complex signaling cascade in which several molecules, including FGF2-4, ensure all dental groups development and specificity. Most of the data on odontogenesis derives from rodents, which does not have all dental groups. Didelphis albiventris is an opossum with the closest dentition to humans, and the main odontogenesis stages occur when the newborns are in the pouch. In this study, D. albiventris postnatals were used to characterize the main stages of their molars development; and also to establish FGF2, FGF3 and FGF4 expression pattern. D. albiventris postnatals were processed for histological and indirect immunoperoxidase analysis of the tooth germs. Our results revealed similar dental structures between D. albiventris and mice. However, FGF2, FGF3 and FGF4 expression patterns were observed in a larger number of dental structures, suggesting broader functions for these molecules in this opossum species. The knowledge of the signaling that determinates odontogenesis in an animal model with complete dentition may contribute to the development of therapies for the replacement of lost teeth in humans. This study may also contribute to the implementation of D. albiventris as model for Developmental Biology studies.
Collapse
Affiliation(s)
- Íria Gabriela Dias Dos Santos
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Avenida Presidente Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Erika Cristina Jorge
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Avenida Presidente Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Aline Gonçalves Lio Copola
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Avenida Presidente Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Bruno Machado Bertassoli
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Avenida Presidente Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Alfredo Miranda de Goes
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Avenida Presidente Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Gerluza Aparecida Borges Silva
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Avenida Presidente Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Dooley JC, Donaldson MS, Krubitzer LA. Cortical plasticity following stripe rearing in the marsupial Monodelphis domestica: neural response properties of V1. J Neurophysiol 2017; 117:566-581. [PMID: 27852732 DOI: 10.1152/jn.00431.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022] Open
Abstract
The functional organization of the primary visual area (V1) and the importance of sensory experience in its normal development have been well documented in eutherian mammals. However, very few studies have investigated the response properties of V1 neurons in another large class of mammals, or whether sensory experience plays a role in shaping their response properties. Thus we reared opossums (Monodelphis domestica) in normal and vertically striped cages until they reached adulthood. They were then anesthetized using urethane, and electrophysiological techniques were used to examine neuronal responses to different orientations, spatial and temporal frequencies, and contrast levels. For normal opossums, we observed responses to the temporal and spatial characteristics of the stimulus to be similar to those described in small, nocturnal, eutherian mammals such as rats and mice; neurons in V1 responded maximally to stimuli at 0.09 cycles per degree and 2.12 cycles per second. Unlike other eutherians, but similar to other marsupials investigated, only 40% of the neurons were orientation selective. In stripe-reared animals, neurons were significantly more likely to respond to vertical stimuli at a wider range of spatial frequencies, and were more sensitive to gratings at lower contrast values compared with normal animals. These results are the first to demonstrate experience-dependent plasticity in the visual system of a marsupial species. Thus the ability of cortical neurons to alter their properties based on the dynamics of the visual environment predates the emergence of eutherian mammals and was likely present in our earliest mammalian ancestors. NEW & NOTEWORTHY These results are the first description of visual response properties of the most commonly studied marsupial model organism, the short-tailed opossum (Monodelphis domestica). Further, these results are the first to demonstrate experience-dependent plasticity in the visual system of a marsupial species. Thus the ability of cortical neurons to alter their properties based on the dynamics of the visual environment predates the emergence of eutherian mammals and was likely present in our earliest mammalian ancestors.
Collapse
Affiliation(s)
- James C Dooley
- Center for Neuroscience, University of California, Davis, Davis, California; and
| | - Michaela S Donaldson
- Center for Neuroscience, University of California, Davis, Davis, California; and
| | - Leah A Krubitzer
- Center for Neuroscience, University of California, Davis, Davis, California; and .,Department of Psychology, University of California, Davis, Davis, California
| |
Collapse
|
5
|
Pavan SE, Jansa SA, Voss RS. Molecular phylogeny of short-tailed opossums (Didelphidae: Monodelphis ): Taxonomic implications and tests of evolutionary hypotheses. Mol Phylogenet Evol 2014; 79:199-214. [DOI: 10.1016/j.ympev.2014.05.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 02/01/2023]
|
6
|
Seelke AMH, Dooley JC, Krubitzer LA. Photic preference of the short-tailed opossum (Monodelphis domestica). Neuroscience 2014; 269:273-80. [PMID: 24709041 DOI: 10.1016/j.neuroscience.2014.03.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
The gray short-tailed opossum (Monodelphis domestica) is a nocturnal South American marsupial that has been gaining popularity as a laboratory animal. However, compared to traditional laboratory animals like rats, very little is known about its behavior, either in the wild or in a laboratory setting. Here we investigated the photic preference of the short-tailed opossum. Opossums were placed in a circular testing arena and allowed to move freely between dark (0 lux) and light (∼1.4, 40, or 400 lux) sides of the arena. In each of these conditions opossums spent significantly more time in the dark than in the illuminated side and a greater proportion of time in the dark than would be expected by chance. In the high-contrast (∼400 lux) illumination condition, the mean bout length (i.e., duration of one trip on the light or dark side) was significantly longer on the dark side than on the light side. When we examined the number of bouts greater than 30 and 60s in duration, we found a significant difference between the light and dark sides in all light contrast conditions. These data indicate that the short-tailed opossum prefers the dark to the light, and can also detect very slight differences in light intensity. We conclude that although rats and opossums share many similar characteristics, including ecological niche, their divergent evolutionary heritage results in vastly different behavioral capabilities. Only by observing the behavioral capabilities and preferences of opossums will we be able to manipulate the experimental environment to best elicit and elucidate their behavior and alterations in behavior that can arise from experimental manipulations.
Collapse
Affiliation(s)
- A M H Seelke
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, United States
| | - J C Dooley
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, United States
| | - L A Krubitzer
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, United States; Department of Psychology, University of California, Davis, 1544 Newton Court, Davis, CA 95618, United States.
| |
Collapse
|
7
|
Speca DJ, Ogata G, Mandikian D, Bishop HI, Wiler SW, Eum K, Wenzel HJ, Doisy ET, Matt L, Campi KL, Golub MS, Nerbonne JM, Hell JW, Trainor BC, Sack JT, Schwartzkroin PA, Trimmer JS. Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability. GENES BRAIN AND BEHAVIOR 2014; 13:394-408. [PMID: 24494598 DOI: 10.1111/gbb.12120] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/28/2013] [Accepted: 01/31/2014] [Indexed: 12/29/2022]
Abstract
The Kv2.1 delayed rectifier potassium channel exhibits high-level expression in both principal and inhibitory neurons throughout the central nervous system, including prominent expression in hippocampal neurons. Studies of in vitro preparations suggest that Kv2.1 is a key yet conditional regulator of intrinsic neuronal excitability, mediated by changes in Kv2.1 expression, localization and function via activity-dependent regulation of Kv2.1 phosphorylation. Here we identify neurological and behavioral deficits in mutant (Kv2.1(-/-) ) mice lacking this channel. Kv2.1(-/-) mice have grossly normal characteristics. No impairment in vision or motor coordination was apparent, although Kv2.1(-/-) mice exhibit reduced body weight. The anatomic structure and expression of related Kv channels in the brains of Kv2.1(-/-) mice appear unchanged. Delayed rectifier potassium current is diminished in hippocampal neurons cultured from Kv2.1(-/-) animals. Field recordings from hippocampal slices of Kv2.1(-/-) mice reveal hyperexcitability in response to the convulsant bicuculline, and epileptiform activity in response to stimulation. In Kv2.1(-/-) mice, long-term potentiation at the Schaffer collateral - CA1 synapse is decreased. Kv2.1(-/-) mice are strikingly hyperactive, and exhibit defects in spatial learning, failing to improve performance in a Morris Water Maze task. Kv2.1(-/-) mice are hypersensitive to the effects of the convulsants flurothyl and pilocarpine, consistent with a role for Kv2.1 as a conditional suppressor of neuronal activity. Although not prone to spontaneous seizures, Kv2.1(-/-) mice exhibit accelerated seizure progression. Together, these findings suggest homeostatic suppression of elevated neuronal activity by Kv2.1 plays a central role in regulating neuronal network function.
Collapse
Affiliation(s)
- D J Speca
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Qi Y, Li H, Wills RH, Perez-Hurtado P, Yu X, Kilgour DPA, Barrow MP, Lin C, O’Connor PB. Absorption-mode Fourier transform mass spectrometry: the effects of apodization and phasing on modified protein spectra. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:828-34. [PMID: 23568027 PMCID: PMC4024093 DOI: 10.1007/s13361-013-0600-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 05/11/2023]
Abstract
The method of phasing broadband Fourier transform ion cyclotron resonance (FT-ICR) spectra allows plotting the spectra in the absorption-mode; this new approach significantly improves the quality of the data at no extra cost. Herein, an internal calibration method for calculating the phase function has been developed and successfully applied to the top-down spectra of modified proteins, where the peak intensities vary by 100×. The result shows that the use of absorption-mode spectra allows more peaks to be discerned within the recorded data, and this can reveal much greater information about the protein and modifications under investigation. In addition, noise and harmonic peaks can be assigned immediately in the absorption-mode.
Collapse
Affiliation(s)
- Yulin Qi
- Department of Chemistry, University of Warwick, Coventry, United Kingdom, CV4 7AL
| | - Huilin Li
- Department of Chemistry, University of Warwick, Coventry, United Kingdom, CV4 7AL
| | - Rebecca H. Wills
- Department of Chemistry, University of Warwick, Coventry, United Kingdom, CV4 7AL
| | - Pilar Perez-Hurtado
- Department of Chemistry, University of Warwick, Coventry, United Kingdom, CV4 7AL
| | - Xiang Yu
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118 USA
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 USA
| | - David. P. A. Kilgour
- Department of Chemistry, University of Warwick, Coventry, United Kingdom, CV4 7AL
| | - Mark P. Barrow
- Department of Chemistry, University of Warwick, Coventry, United Kingdom, CV4 7AL
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118 USA
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 USA
| | - Peter B. O’Connor
- Department of Chemistry, University of Warwick, Coventry, United Kingdom, CV4 7AL
| |
Collapse
|