1
|
Marsh JS, Teixeira C, Gavade S, Johnston C, Baranwal S, Snyder CN, Chang CL, Yang S, Spencer-Segal JL. Ventral subiculum control of avoidance behavior and hypothalamic-pituitary-adrenal axis reactivity via the bed nucleus of the stria terminalis in male and female mice - ISPNE 2024 Dirk Helhammer Award. Psychoneuroendocrinology 2025; 171:107229. [PMID: 39504606 PMCID: PMC12034369 DOI: 10.1016/j.psyneuen.2024.107229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Avoidance or anxiety-like behavior is accompanied by corresponding changes in hypothalamic-pituitary-adrenal (HPA) axis activation. The underlying neural circuitry for this coordinated behavioral and neuroendocrine control is not well established. Prior studies pointed to a neural projection from the ventral subiculum (vSub) to the bed nucleus of the stria terminalis (BNST) that can inhibit the HPA axis response to stress. Here, we used chemogenetics to investigate the role of vSub neurons and their projection to the anterior BNST (aBNST) in avoidance behavior and the accompanying corticosterone response in male and female mice. Surprisingly, we found that chemogenetic activation of ventral subiculum neurons increased the HPA axis response to an open field test in male and female mice, which was also seen with selective activation of vSub neurons projecting to the anterior BNST (vSub-aBNST neurons). On the other hand, VSub neuron and vSub-aBNST neuron activation had different effects on avoidance behavior, suggesting that the behavioral role of the VSub is variable and is dissociable from its neuroendocrine effects. In conclusion, our results reveal a surprising and novel role for the ventral subiculum in HPA axis activation via the anterior BNST. We also show that, like the ventral hippocampus, ventral subiculum neurons can increase or decrease avoidance behavior depending on their downstream projection.
Collapse
Affiliation(s)
- Jena S Marsh
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cara Teixeira
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Swapnil Gavade
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Colin Johnston
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Salisha Baranwal
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christen N Snyder
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chih-Lin Chang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shany Yang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joanna L Spencer-Segal
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Ketterer-Sykes EB, Saraceno E, Hough F, Wyse M, Restifo-Bernstein G, Blais AY, Khondokar M, Hoen P, López HH. Anxiolytic treatment of a trapped rat reduces helping and anxiogenic treatment increases helping: Evidence for emotional contagion in altruism. Pharmacol Biochem Behav 2024; 244:173846. [PMID: 39127241 DOI: 10.1016/j.pbb.2024.173846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The present experiment used the trapped rat model to explore whether pharmacological manipulation of distress affects the likelihood of helping behavior. 120 Sprague-Dawley rats (30 male pairs and 30 female pairs) completed 12 consecutive, daily trials assessing helping behavior. During an individual trial, a trapped rat was placed in a restrainer in the center of an open field, while its cagemate could move around freely and possibly open the restrainer by lifting a door. Trapped rats received an intraperitoneal injection of either 1) physiological saline, 2) the anxiolytic midazolam (1.5 mg/kg), or 3) the anxiogenic yohimbine (2.5 mg/kg) 30 min prior to the start of each trial. Dependent variables measured were: 1) door opening latency (sec), 2) percentage of trials in which a door opening occurred, and 3) the number of free rats classified as "openers." Based on emotional contagion theory, we predicted that 1) free rats paired with midazolam-subjects would show attenuated helping behavior (e.g., higher door opening latency) compared to controls, and conversely 2) free rats paired with yohimbine-subjects would show enhanced helping behavior. First, a significant sex-difference was observed, in that more females were classified as openers than males. This supports previous evidence that females express higher altruistic motivation and experience stronger emotional contagion than males. Second, midazolam-treatment significantly attenuated helping behavior. From trials 4-12, free rats paired with midazolam-subjects expressed slower door opening latencies compared to controls. Third, yohimbine-treatment significantly increased helping behavior (e.g., reduced door opening latencies) - but only on trials 1-3; by trials 9-12, this pattern was reversed. These results are consistent with emotional contagion theory and indicate that intensity of distress directly modulates altruistic motivation through vicarious state-matching.
Collapse
Affiliation(s)
- Eleanor B Ketterer-Sykes
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Elisabeth Saraceno
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Frances Hough
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Maya Wyse
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Gabriella Restifo-Bernstein
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Allison Y Blais
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Maisha Khondokar
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Penn Hoen
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Hassan H López
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America.
| |
Collapse
|
3
|
Peart DR, Andrade AK, Logan CN, Knackstedt LA, Murray JE. Regulation of Cocaine-related Behaviors by Estrogen and Progesterone. Neurosci Biobehav Rev 2022; 135:104584. [DOI: 10.1016/j.neubiorev.2022.104584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/30/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
|
4
|
Kirouac GJ. The Paraventricular Nucleus of the Thalamus as an Integrating and Relay Node in the Brain Anxiety Network. Front Behav Neurosci 2021; 15:627633. [PMID: 33732118 PMCID: PMC7959748 DOI: 10.3389/fnbeh.2021.627633] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/28/2021] [Indexed: 12/25/2022] Open
Abstract
The brain anxiety network is composed of a number of interconnected cortical regions that detect threats and execute appropriate defensive responses via projections to the shell of the nucleus accumbens (NAcSh), dorsolateral region of the bed nucleus of the stria terminalis (BSTDL) and lateral region of the central nucleus of the amygdala (CeL). The paraventricular nucleus of the thalamus (PVT) is anatomically positioned to integrate threat- and arousal-related signals from cortex and hypothalamus and then relay these signals to neural circuits in the NAcSh, BSTDL, and CeL that mediate defensive responses. This review describes the anatomical connections of the PVT that support the view that the PVT may be a critical node in the brain anxiety network. Experimental findings are reviewed showing that the arousal peptides orexins (hypocretins) act at the PVT to promote avoidance of potential threats especially following exposure of rats to a single episode of footshocks. Recent anatomical and experimental findings are discussed which show that neurons in the PVT provide divergent projections to subcortical regions that mediate defensive behaviors and that the projection to the NAcSh is critical for the enhanced social avoidance displayed in rats exposed to footshocks. A theoretical model is proposed for how the PVT integrates cortical and hypothalamic signals to modulate the behavioral responses associated with anxiety and other challenging situations.
Collapse
Affiliation(s)
- Gilbert J. Kirouac
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
A projection from the paraventricular nucleus of the thalamus to the shell of the nucleus accumbens contributes to footshock stress-induced social avoidance. Neurobiol Stress 2020; 13:100266. [PMID: 33344719 PMCID: PMC7739169 DOI: 10.1016/j.ynstr.2020.100266] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) is an area of the dorsal midline thalamus that contributes to footshock induced anxiety. The PVT sends a dense projection to the shell of the nucleus accumbens (NAcSh) and the present study explored if this projection is involved in the behavioral changes produced by a single exposure of rats to inescapable footshocks. The inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) hM4Di was transduced in PVT neurons that project to the NAcSh. Rats were exposed to an episode of moderately intense footshock (1.5 mA × 2 s × 5) and assigned to either high-responder (HR) or low-responder groups (LR) according to their level of fear generalization 24 h later. The effect of chemogenetic inhibition of the PVT-NAcSh projection on anxiety- and fear-like behaviors was assessed at approximately 2 weeks post-footshock. HR showed a higher level of social avoidance compared to non-shocked animals and LR. The elevated level of social avoidance was attenuated in the HR treated with the hM4Di agonist clozapine (0.01 mg/kg, i.p.) or clozapine N-oxide (CNO) administrations in the NAcSh while avoidance of open spaces and contextual fear expression were not affected. Analysis of protein product of the early to immediate gene cfos indicated that these effects were mediated by dynorphin neurons in the NAcSh. This study provides evidence for a role of a projection from the PVT to the NAcSh in stress-induced social avoidance independent of anxiety to non-social stimuli and contextual fear mechanisms.
Collapse
|
6
|
Pharmacology of Herbal Sexual Enhancers: A Review of Psychiatric and Neurological Adverse Effects. Pharmaceuticals (Basel) 2020; 13:ph13100309. [PMID: 33066617 PMCID: PMC7602496 DOI: 10.3390/ph13100309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Sexual enhancers increase sexual potency, sexual pleasure, or libido. Substances increasing libido alter the concentrations of specific neurotransmitters or sex hormones in the central nervous system. Interestingly, the same pathways are involved in the mechanisms underlying many psychiatric and neurological disorders, and adverse reactions associated with the use of aphrodisiacs are strongly expected. However, sexual enhancers of plant origin have gained popularity over recent years, as natural substances are often regarded as a safer alternative to modern medications and are easily acquired without prescription. We reviewed the psychiatric and neurological adverse effects associated with the consumption of herbal aphrodisiacs Areca catechu L., Argemone Mexicana L., Citrus aurantium L., Eurycoma longifolia Jack., Lepidium meyenii Walp., Mitragyna speciosa Korth., Panax ginseng C. A. Mey, Panax quinquefolius L., Pausinystalia johimbe (K. Schum.) Pierre ex Beille, Piper methysticum G. Forst., Ptychopetalum olacoides Benth., Sceletium tortuosum (L.) N. E. Brown, Turnera diffusa Willd. ex. Schult., Voacanga africana Stapf ex Scott-Elliot, and Withania somnifera (L.) Dunal. A literature search was conducted on the PubMed, Scopus, and Web of Science databases with the aim of identifying all the relevant articles published on the issue up to June 2020. Most of the selected sexual enhancers appeared to be safe at therapeutic doses, although mild to severe adverse effects may occur in cases of overdosing or self-medication with unstandardized products. Drug interactions are more concerning, considering that herbal aphrodisiacs are likely used together with other plant extracts and/or pharmaceuticals. However, few data are available on the side effects of several plants included in this review, and more clinical studies with controlled administrations should be conducted to address this issue.
Collapse
|
7
|
Pedersen WS, Muftuler LT, Larson CL. A high-resolution fMRI investigation of BNST and centromedial amygdala activity as a function of affective stimulus predictability, anticipation, and duration. Soc Cogn Affect Neurosci 2020; 14:1167-1177. [PMID: 31820811 PMCID: PMC7057282 DOI: 10.1093/scan/nsz095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/16/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Relative to the centromedial amygdala (CM), the bed nucleus of the stria terminalis (BNST) may exhibit more sustained activation toward threat, sensitivity to unpredictability and activation during anxious anticipation. These factors are often intertwined. For example, greater BNST (vs CM) activation during a block of aversive stimuli may reflect either more sustained activation to the stimuli or greater activation due to the anticipation of upcoming stimuli. To further investigate these questions, we had participants (19 females, 9 males) complete a task adapted from a study conducted by Somerville, Whalen and Kelly in 2013, during high-resolution 7-Tesla fMRI BOLD acquisition. We found a larger response to negative vs neutral blocks (sustained threat) than to images (transient) in the BNST, but not the CM. However, in an additional analysis, we also found BNST, but not CM, activation to the onset of the anticipation period on negative vs neutral trials, possibly contributing to BNST activation across negative blocks. Predictability did not affect CM or BNST activation. These results suggest a BNST role in anxious anticipation and highlight the need for further research clarifying the temporal response characteristics of these regions.
Collapse
|
8
|
Pedersen WS, Schaefer SM, Gresham LK, Lee SD, Kelly MP, Mumford JA, Oler JA, Davidson RJ. Higher resting-state BNST-CeA connectivity is associated with greater corrugator supercilii reactivity to negatively valenced images. Neuroimage 2019; 207:116428. [PMID: 31809887 DOI: 10.1016/j.neuroimage.2019.116428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/31/2019] [Accepted: 12/01/2019] [Indexed: 12/24/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) and central nucleus of the amygdala (CeA) are hypothesized to be the output nodes of the extended amygdala threat response, integrating multiple signals to coordinate the threat response via outputs to the hypothalamus and brainstem. The BNST and CeA are structurally and functionally connected, suggesting interactions between these regions may regulate how the response to provocation unfolds. However, the relationship between human BNST-CeA connectivity and the behavioral response to affective stimuli is little understood. To investigate whether individual differences in BNST-CeA connectivity are related to the affective response to negatively valenced stimuli, we tested relations between resting-state BNST-CeA connectivity and both facial electromyographic (EMG) activity of the corrugator supercilii muscle and eyeblink startle magnitude during affective image presentation within the Refresher sample of the Midlife in the United States (MIDUS) study. We found that higher right BNST-CeA connectivity was associated with greater corrugator activity to negative, but not positive, images. There was a trend-level association between right BNST-CeA connectivity and trait negative affect. Eyeblink startle magnitude was not significantly related to BNST-CeA connectivity. These results suggest that functional interactions between BNST and CeA contribute to the behavioral response to negative emotional events.
Collapse
|
9
|
Pedersen WS, Muftuler LT, Larson CL. Conservatism and the neural circuitry of threat: economic conservatism predicts greater amygdala-BNST connectivity during periods of threat vs safety. Soc Cogn Affect Neurosci 2018; 13:43-51. [PMID: 29126127 PMCID: PMC5793824 DOI: 10.1093/scan/nsx133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/28/2017] [Indexed: 11/30/2022] Open
Abstract
Political conservatism is associated with an increased negativity bias, including increased attention and reactivity toward negative and threatening stimuli. Although the human amygdala has been implicated in the response to threatening stimuli, no studies to date have investigated whether conservatism is associated with altered amygdala function toward threat. Furthermore, although an influential theory posits that connectivity between the amygdala and bed nucleus of the stria terminalis (BNST) is important in initiating the response to sustained or uncertain threat, whether individual differences in conservatism modulate this connectivity is unknown. To test whether conservatism is associated with increased reactivity in neural threat circuitry, we measured participants’ self-reported social and economic conservatism and asked them to complete high-resolution fMRI scans while under threat of an unpredictable shock and while safe. We found that economic conservatism predicted greater connectivity between the BNST and a cluster of voxels in the left amygdala during threat vs safety. These results suggest that increased amygdala–BNST connectivity during threat may be a key neural correlate of the enhanced negativity bias found in conservatism.
Collapse
Affiliation(s)
- Walker S Pedersen
- Psychology Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christine L Larson
- Psychology Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
10
|
Pedersen WS, Balderston NL, Miskovich TA, Belleau EL, Helmstetter FJ, Larson CL. The effects of stimulus novelty and negativity on BOLD activity in the amygdala, hippocampus, and bed nucleus of the stria terminalis. Soc Cogn Affect Neurosci 2018; 12:748-757. [PMID: 28008079 PMCID: PMC5460050 DOI: 10.1093/scan/nsw178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022] Open
Abstract
The amygdala responds to stimulus novelty, which may correspond to an evaluation of novel stimuli for potential threat, and trait anxiety may modulate this response. The bed nucleus of the stria terminalis (BNST) may also be sensitive to novelty as it responds to both uncertainty and threat. If so, a BNST novelty response may also be affected by trait anxiety and interact with stimulus negativity. We presented participants with novel and repeated negative and neutral images while measuring brain activity via fMRI, and assessed participants’ self-reported trait anxiety. We expected to replicate past findings of novelty responses in the hippocampus and amygdala that are independent of stimulus negativity. We also expected BNST novelty-sensitivity and that trait anxiety would predict greater sensitivity to both novelty and negativity in the amygdala and BNST, but not the hippocampus. Our a priori analyses replicated past findings of a novelty response that was independent of valence in the hippocampus and amygdala. The BNST exhibited a novelty response for negative, but not neutral, images. Trait anxiety did not modulate the response to novelty or negativity in any of the ROIs investigated. Our findings suggest that the BNST plays a role in the detection of novelty. Key words: novelty; bed nucleus of the stria terminalis; BNST; amygdale; fMRI; BST
Collapse
Affiliation(s)
- Walker S Pedersen
- Department of Psychology, University of Wisconsin - Milwaukee, Milwaukee, WI 53211, USA
| | - Nicholas L Balderston
- Department of Psychology, University of Wisconsin - Milwaukee, Milwaukee, WI 53211, USA
| | - Tara A Miskovich
- Department of Psychology, University of Wisconsin - Milwaukee, Milwaukee, WI 53211, USA
| | - Emily L Belleau
- Department of Psychology, University of Wisconsin - Milwaukee, Milwaukee, WI 53211, USA
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin - Milwaukee, Milwaukee, WI 53211, USA
| | - Christine L Larson
- Department of Psychology, University of Wisconsin - Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
11
|
Walker LC, Kastman HE, Krstew EV, Gundlach AL, Lawrence AJ. Central amygdala relaxin-3/relaxin family peptide receptor 3 signalling modulates alcohol seeking in rats. Br J Pharmacol 2017; 174:3359-3369. [PMID: 28726252 PMCID: PMC5595761 DOI: 10.1111/bph.13955] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/21/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Alcohol use disorders are a leading cause of preventable deaths worldwide, and stress is a major trigger of relapse. The neuropeptide relaxin-3 and its cognate receptor, relaxin family peptide receptor 3 (RXFP3), modulate stress-induced relapse to alcohol seeking in rats, and while the bed nucleus of the stria terminalis has been implicated in this regard, the central nucleus of the amygdala (CeA) also receives a relaxin-3 innervation and CeA neurons densely express RXFP3 mRNA. Moreover, the CeA is consistently implicated in both stress and addictive disorders. Yohimbine precipitates relapse-like behaviour in rodents, although exactly how yohimbine induces relapse is unknown, possibly by increasing stress levels and inducing heightened cue reactivity. EXPERIMENTAL APPROACH In the current study, we examined the effects of yohimbine (1 mg·kg-1 , i.p.) on anxiety-like behaviour in alcohol-experienced rats. Furthermore, we assessed CeA neuronal activation following yohimbine-induced reinstatement of alcohol seeking and the role of the relaxin-3/RXFP3 signalling within the CeA in yohimbine-induced reinstatement to alcohol seeking. KEY RESULTS Low-dose yohimbine was anxiogenic in rats with a history of alcohol use. Furthermore, yohimbine-induced reinstatement of alcohol seeking increased Fos activation in CeA corticotrophin-releasing factor, dynorphin and GABA neurons compared with naïve and vehicle controls. Bilateral intra-CeA injections of the selective RXFP3 antagonist, R3(B1-22)R, attenuated yohimbine-induced reinstatement of alcohol seeking. CONCLUSIONS Collectively, these data suggest that the CeA is a node where yohimbine acts to induce reinstatement of alcohol seeking and implicate the relaxin-3/RXFP3 system within the CeA in this process.
Collapse
Affiliation(s)
- Leigh C Walker
- The Florey Institute of Neuroscience and Mental HealthParkvilleVICAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| | - Hanna E Kastman
- The Florey Institute of Neuroscience and Mental HealthParkvilleVICAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| | - Elena V Krstew
- The Florey Institute of Neuroscience and Mental HealthParkvilleVICAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental HealthParkvilleVICAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental HealthParkvilleVICAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| |
Collapse
|
12
|
Pedersen WS, Muftuler LT, Larson CL. Disentangling the effects of novelty, valence and trait anxiety in the bed nucleus of the stria terminalis, amygdala and hippocampus with high resolution 7T fMRI. Neuroimage 2017; 156:293-301. [PMID: 28502843 DOI: 10.1016/j.neuroimage.2017.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 04/17/2017] [Accepted: 05/06/2017] [Indexed: 12/21/2022] Open
Abstract
The hippocampus and amygdala exhibit sensitivity to stimulus novelty that is reduced in participants with inhibited temperament, which is related to trait anxiety. Although the bed nucleus of the stria terminalis (BNST) is highly connected to the amygdala and is implicated in anxiety, whether the BNST responds to novelty remains unstudied, as well as how trait anxiety may modulate this response. Additionally how novelty, stimulus negativity and trait anxiety interact to affect activity in these areas is also unclear. To address these questions, we presented participants with novel and repeated, fearful and neutral faces, while measuring brain activity via fMRI, and also assessed participants' self-reported trait anxiety. As the small size of the BNST makes assessing its activity at typical fMRI resolution difficult, we employed high resolution 7 Tesla scanning. Our results replicate findings of novelty sensitivity that is independent of valence in the hippocampus. Our results also provide novel evidence for a BNST novelty response toward neutral, but not fearful faces. We also found that the novelty response in the hippocampus and BNST was blunted in participants with high trait anxiety. Additionally, we found left amygdala sensitivity to stimulus negativity that was blunted for high trait anxiety participants. These findings extend past research on the response to novel stimuli in the hippocampus and amygdala at high resolution, and are the first to demonstrate trait anxiety modulated novelty sensitivity in the BNST that is dependent on stimulus valence.
Collapse
Affiliation(s)
- Walker S Pedersen
- Department of Psychology, University of Wisconsin - Milwaukee, United States
| | - L Tugan Muftuler
- Department of Neurosurgery and Center for Imaging Research, Medical College of Wisconsin, United States
| | - Christine L Larson
- Department of Psychology, University of Wisconsin - Milwaukee, United States.
| |
Collapse
|
13
|
Reyes BAS, Kravets JL, Connelly KL, Unterwald EM, Van Bockstaele EJ. Localization of the delta opioid receptor and corticotropin-releasing factor in the amygdalar complex: role in anxiety. Brain Struct Funct 2016; 222:1007-1026. [PMID: 27376372 DOI: 10.1007/s00429-016-1261-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/22/2016] [Indexed: 12/24/2022]
Abstract
It is well established that central nervous system norepinephrine (NE) and corticotropin-releasing factor (CRF) systems are important mediators of behavioral responses to stressors. More recent studies have defined a role for delta opioid receptors (DOPR) in maintaining emotional valence including anxiety. The amygdala plays an important role in processing emotional stimuli, and has been implicated in the development of anxiety disorders. Activation of DOPR or inhibition of CRF in the amygdala reduces baseline and stress-induced anxiety-like responses. It is not known whether CRF- and DOPR-containing amygdalar neurons interact or whether they are regulated by NE afferents. Therefore, this study sought to better define interactions between the CRF, DOPR and NE systems in the basolateral (BLA) and central nucleus of the amygdala (CeA) of the male rat using anatomical and functional approaches. Irrespective of the amygdalar subregion, dual immunofluorescence microscopy showed that DOPR was present in CRF-containing neurons. Immunoelectron microscopy confirmed that DOPR was localized to both dendritic processes and axon terminals in the BLA and CeA. Semi-quantitative dual immunoelectron microscopy analysis of gold-silver labeling for DOPR and immunoperoxidase labeling for CRF revealed that 55 % of the CRF neurons analyzed contained DOPR in the BLA while 67 % of the CRF neurons analyzed contained DOPR in the CeA. Furthermore, approximately 41 % of DOPR-labeled axon terminals targeted BLA neurons that expressed CRF while 29 % of DOPR-labeled axon terminals targeted CeA neurons that expressed CRF. Triple label immunofluorescence microscopy revealed that DOPR and CRF were co-localized in common cellular profiles that were in close proximity to NE-containing fibers in both subregions. These anatomical results indicate significant interactions between DOPR and CRF in this critical limbic region and reveal that NE is poised to regulate these peptidergic systems in the amygdala. Functional studies were performed to determine if activation of DOPR could inhibit the anxiety produced by elevation of NE in the amygdala using the pharmacological stressor yohimbine. Administration of the DOPR agonist, SNC80, significantly attenuated elevated anxiogenic behaviors produced by yohimbine as measured in the rat on the elevated zero maze. Taken together, results from this study demonstrate the convergence of three important systems, NE, CRF, and DOPR, in the amygdala and provide insight into their functional role in modulating stress and anxiety responses.
Collapse
Affiliation(s)
- Beverly A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, 245 S. 15th Street, Philadelphia, PA, 19102, USA.
| | - J L Kravets
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, 245 S. 15th Street, Philadelphia, PA, 19102, USA
| | - K L Connelly
- Center for Substance Abuse Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - E M Unterwald
- Center for Substance Abuse Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - E J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, 245 S. 15th Street, Philadelphia, PA, 19102, USA
| |
Collapse
|
14
|
Psychopharmacological characterisation of the successive negative contrast effect in rats. Psychopharmacology (Berl) 2015; 232:2697-709. [PMID: 25791190 PMCID: PMC4502301 DOI: 10.1007/s00213-015-3905-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/23/2015] [Indexed: 11/27/2022]
Abstract
RATIONALE Successive negative contrast (SNC) describes a change in the behaviour of an animal following a downshift in the quantitative or qualitative value of an expected reward. This behavioural response has been hypothesised to be linked to affective state, with negative states associated with larger and/or prolonged shifts in behaviour. OBJECTIVE This study has investigated whether different psychopharmacological treatments have dissociable actions on the SNC effect in rats and related these findings to their actions on different neurotransmitter systems and affective state. METHODS Animals were trained to perform a nose-poke response to obtain a high-value food reward (four pellets). SNC was quantified during devalue sessions in which the reward was reduced to one pellet. Using a within-subject study design, the effects of acute treatment with anxiolytic, anxiogenic, antidepressant and dopaminergic drugs were investigated during both baseline (four pellets) or devalue sessions (one pellet). RESULTS The indirect dopamine agonist, amphetamine, attenuated the SNC effect whilst the D1/D2 antagonist, alpha-flupenthixol, potentiated it. The antidepressant citalopram, anxiolytic buspirone and anxiogenic FG7142 had no specific effects on SNC, although FG7142 induced general impairments at higher doses. The α2-adrenoceptor antagonist, yohimbine, increased premature responding but had no specific effect on SNC. Results for the anxiolytic diazepam were mixed with one group showing an attenuation of the SNC effect whilst the other showed no effect. CONCLUSIONS These data suggest that the SNC effect is mediated, at least in part, by dopamine signalling. The SNC effect may also be attenuated by benzodiazepine anxiolytics.
Collapse
|
15
|
Avery SN, Clauss JA, Winder DG, Woodward N, Heckers S, Blackford JU. BNST neurocircuitry in humans. Neuroimage 2014; 91:311-23. [PMID: 24444996 PMCID: PMC4214684 DOI: 10.1016/j.neuroimage.2014.01.017] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/10/2013] [Accepted: 01/09/2014] [Indexed: 01/17/2023] Open
Abstract
Anxiety and addiction disorders are two of the most common mental disorders in the United States, and are typically chronic, disabling, and comorbid. Emerging evidence suggests the bed nucleus of the stria terminalis (BNST) mediates both anxiety and addiction through connections with other brain regions, including the amygdala and nucleus accumbens. Although BNST structural connections have been identified in rodents and a limited number of structural connections have been verified in non-human primates, BNST connections have yet to be described in humans. Neuroimaging is a powerful tool for identifying structural and functional circuits in vivo. In this study, we examined BNST structural and functional connectivity in a large sample of humans. The BNST showed structural and functional connections with multiple subcortical regions, including limbic, thalamic, and basal ganglia structures, confirming structural findings in rodents. We describe two novel connections in the human brain that have not been previously reported in rodents or non-human primates, including a structural connection with the temporal pole, and a functional connection with the paracingulate gyrus. The findings of this study provide a map of the BNST's structural and functional connectivity across the brain in healthy humans. In large part, the BNST neurocircuitry in humans is similar to the findings from rodents and non-human primates; however, several connections are unique to humans. Future explorations of BNST neurocircuitry in anxiety and addiction disorders have the potential to reveal novel mechanisms underlying these disabling psychiatric illnesses.
Collapse
Affiliation(s)
- Suzanne N Avery
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Psychiatric Neuroimaging Program, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Jacqueline A Clauss
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Psychiatric Neuroimaging Program, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Danny G Winder
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Neil Woodward
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Psychiatric Neuroimaging Program, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Stephan Heckers
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Psychiatric Neuroimaging Program, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Jennifer Urbano Blackford
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Psychiatric Neuroimaging Program, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Department of Psychology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA.
| |
Collapse
|
16
|
Smith CD, Piasecki CC, Weera M, Olszewicz J, Lonstein JS. Noradrenergic alpha-2 receptor modulators in the ventral bed nucleus of the stria terminalis: effects on anxiety behavior in postpartum and virgin female rats. Behav Neurosci 2013; 127:582-97. [PMID: 23796237 PMCID: PMC3947518 DOI: 10.1037/a0032776] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Emotional hyperreactivity can inhibit maternal responsiveness in female rats and other animals. Maternal behavior in postpartum rats is disrupted by increasing norepinephrine release in the ventral bed nucleus of the stria terminalis (BSTv) with the α2-autoreceptor antagonist, yohimbine, or the more selective α2-autoreceptor antagonist, idazoxan (Smith et al., 2012). Because high noradrenergic activity in the BSTv can also increase anxiety-related behaviors, increased anxiety may underlie the disrupted mothering of dams given yohimbine or idazoxan. To assess this possibility, anxiety-related behaviors in an elevated plus maze were assessed in postpartum rats after administration of yohimbine or idazoxan. It was further assessed if the α2-autoreceptor agonist clonidine (which decreases norepinephrine release) would, conversely, reduce dams' anxiety. Groups of diestrous virgins were also examined. It was found that peripheral or intra-BSTv yohimbine did increase anxiety-related behavior in postpartum females. However, BSTv infusion of idazoxan did not reproduce yohimbine's anxiogenic effects and anxiety was not reduced by peripheral or intra-BSTv clonidine. Because yohimbine is a weak 5HT1A receptor agonist, other groups of females received BSTv infusion of the 5HT1A receptor agonist 8OH-DPAT, but it did not alter their anxiety-related behavior. Lastly, levels of norepinephrine and serotonin in tissue punches from the BSTv did not differ between postpartum and diestrous rats, but serotonin turnover was lower in mothers. These results suggest that the impaired maternal behavior after BSTv infusion of yohimbine or idazoxan cannot both be readily explained by an increase in dams' anxiety, and that BSTv α2-autoreceptor modulation alone has little influence on anxiety-related behaviors in postpartum or diestrous rats.
Collapse
Affiliation(s)
- Carl D. Smith
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| | - Christopher C. Piasecki
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| | - Marcus Weera
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| | - Joshua Olszewicz
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| | - Joseph S. Lonstein
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| |
Collapse
|
17
|
Ventura-Silva AP, Melo A, Ferreira AC, Carvalho MM, Campos FL, Sousa N, Pêgo JM. Excitotoxic lesions in the central nucleus of the amygdala attenuate stress-induced anxiety behavior. Front Behav Neurosci 2013; 7:32. [PMID: 23626528 PMCID: PMC3630370 DOI: 10.3389/fnbeh.2013.00032] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 04/04/2013] [Indexed: 11/17/2022] Open
Abstract
The extended amygdala, composed by the amygdaloid nuclei and the bed nucleus of the stria terminalis (BNST), plays a critical role in anxiety behavior. In particular, the link between the central nucleus of the amygdala (CeA) and the BNST seems to be critical to the formation of anxiety-like behavior. Chronic unpredictable stress (CUS) exposure is recognized as a validated animal model of anxiety and is known to trigger significant morphofunctional changes in the extended amygdala. Quite surprisingly, no study has ever analyzed the role of the CeA in the onset of stress-induced anxiety and fear conditioning behaviors; thus, in the present study we induced a bilateral excitotoxic lesion in the CeA of rats that were subsequently exposed to a chronic stress protocol. Data shows that the lesion in the CeA induces different results in anxiety and fear-behaviors. More specifically, lesioned animals display attenuation of the stress response and of stress-induced anxiety-like behavior measured in the elevated-plus maze (EPM) when compared with stressed animals with sham lesions. This attenuation was paralleled by a decrease of stress-induced corticosterone levels. In contrast, we did not observe any significant effect of the lesion in the acoustic startle paradigm. As expected, lesion of the CeA precluded the appearance of fear behavior in a fear-potentiated startle paradigm in both non-stressed and stressed rats. These results confirm the implication of the CeA in fear conditioning behavior and unravel the relevance of this brain region in the regulation of the HPA axis activity and in the onset of anxiety behavior triggered by stress.
Collapse
Affiliation(s)
- Ana P Ventura-Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | | | | | | | | | | | | |
Collapse
|
18
|
Zheng H, Rinaman L. Yohimbine anxiogenesis in the elevated plus maze requires hindbrain noradrenergic neurons that target the anterior ventrolateral bed nucleus of the stria terminalis. Eur J Neurosci 2013; 37:1340-9. [PMID: 23368289 DOI: 10.1111/ejn.12123] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/14/2012] [Accepted: 12/10/2012] [Indexed: 11/27/2022]
Abstract
The α2 adrenergic receptor antagonist yohimbine (YO) increases transmitter release from noradrenergic (NA) terminals in cortical and subcortical brain regions, including the bed nucleus of the stria terminalis (BST). YO activates the hypothalamic-pituitary-adrenal (HPA) stress axis and is potently anxiogenic in rats and humans. We previously reported that hindbrain NA neurons within the caudal nucleus of the solitary tract (NST-A2/C2) and ventrolateral medulla (VLM-A1/C1) that innervate the anterior ventrolateral (vl)BST contribute to the ability of YO to activate the HPA stress axis in rats. To determine whether the same NA pathway also contributes to YO-induced anxiogenesis in the elevated plus maze (EPMZ), a selective saporin ribotoxin conjugate (dopamine beta hydroxylase conjugated to saporin toxin, DSAP) was microinjected bilaterally into the anterior vlBST to destroy its NA inputs. Sham-lesioned controls were microinjected with vehicle. Two experiments were conducted to determine DSAP lesion effects on EPMZ behavior. DSAP lesions did not alter maze behavior in rats after intraperitoneal saline, and did not alter the significant effect of prior maze experience to reduce exploratory and open arm maze activities. However, in maze-naïve rats, DSAP lesions abolished YO anxiogenesis in the EPMZ. Post-mortem immunocytochemical analyses confirmed that DSAP consistently ablated caudal NST-A2/C2 and VLM-A1/C1 neurons that innervate the anterior vlBST. DSAP lesions did not destroy non-NA inputs to the anterior vlBST, and produced inconsistent cell loss within the pontine locus coeruleus (A6 cell group) that was unrelated to YO anxiogenesis. Thus, the ability of YO to increase anxiety-like behavior in the EPMZ depends on hindbrain NA neurons that target the anterior vlBST.
Collapse
Affiliation(s)
- Huiyuan Zheng
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|