1
|
Kasap Acungil Z, Tayhan SE, Tosun NG, Nacar T. The Interactions of Resveratrol and Sodium Valproate on Penicillin-Induced Epilepsy Model: Electrophysiological and Molecular Study. Mol Neurobiol 2025; 62:3673-3683. [PMID: 39316354 DOI: 10.1007/s12035-024-04502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/14/2024] [Indexed: 09/25/2024]
Abstract
Epilepsy represents the most prevalent chronic neurological disease, characterized by spontaneous recurrent seizures. In experimental epilepsy models created by different methods, resveratrol has been demonstrated to reduce epileptiform activity and exhibit neuroprotective properties. A penicillin-induced model of epileptogenesis was used to investigate the effects of resveratrol and its combination with sodium valproate on epileptiform activity. The study design was an in vivo animal experimental study. Forty Wistar-albino rats were divided into five groups, each with eight rats. The groups are categorized as the saline group, penicillin group (only penicillin), resveratrol group, sodium valproate group, and resveratrol + sodium valproate group. ECoG recording was taken for 180 min in all groups and statistically evaluated. GABAα1, mGluR1/mGluR5, NMDAR1 receptor expressions in the hippocampus, and S100B level in serum were measured. The spike frequency decreased statistically to 60th min in the sodium valproate group and 150th min in the resveratrol group. The spike frequency decreased statistically in the 20th min and later measurements of the recording in the resveratrol + sodium valproate group. GABAα1 receptor expression was increased in all groups compared to the penicillin group. mGluR1/mGluR5, NMDAR1 receptor expression was decreased in all groups compared to the penicillin group. Serum S100B level increased in all groups compared to the penicillin group. There was no statistically significant difference in epileptiform activity when resveratrol alone was administered in the penicillin-induced epilepsy model. Resveratrol co-administered with sodium valproate significantly reduced epileptiform activity. Co-administration of the sodium valproate + resveratrol group made the receptor level's highest GABAα1receptor expression at receptors.
Collapse
Affiliation(s)
- Zeynep Kasap Acungil
- Department of Physiotherapy and Rehabilitation, Faculty of Health Science, Tokat Gaziosmanpasa University, Tokat, Turkey.
| | - Secil Erden Tayhan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Nazan Goksen Tosun
- Department of Medical Services and Techniques, Vocational School of Health Services, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Tuncer Nacar
- Department of Physiology, Faculty of Medicine, Yüksek Ihtisas University, Ankara, Turkey
| |
Collapse
|
2
|
Chronic Treatment of Ascorbic Acid Leads to Age-Dependent Neuroprotection against Oxidative Injury in Hippocampal Slice Cultures. Int J Mol Sci 2021; 22:ijms22041608. [PMID: 33562628 PMCID: PMC7914624 DOI: 10.3390/ijms22041608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Increased oxidative damage in the brain, which increases with age, is the cause of abnormal brain function and various diseases. Ascorbic acid (AA) is known as an endogenous antioxidant that provides neuronal protection against oxidative damage. However, with aging, its extracellular concentrations and uptake decrease in the brain. Few studies have dealt with age-related functional changes in the brain to sustained ascorbate supplementation. This study aimed to investigate the susceptibility of hippocampal neurons to oxidative injury following acute and chronic AA administration. Oxidative stress was induced by kainic acid (KA, 5 µM) for 18 h in hippocampal slice cultures. After KA exposure, less neuronal cell death was observed in the 3 w cultured slice compared to the 9 w cultured slice. In the chronic AA treatment (6 w), the 9 w-daily group showed reduced neuronal cell death and increased superoxide dismutase (SOD) and Nrf2 expressions compared to the 9 w. In addition, the 9 w group showed delayed latencies and reduced signal activity compared to the 3 w, while the 9 w-daily group showed shorter latencies and increased signal activity than the 9 w. These results suggest that the maintenance of the antioxidant system by chronic AA treatment during aging could preserve redox capacity to protect hippocampal neurons from age-related oxidative stress.
Collapse
|
3
|
Wu B, Ma Y, Yi Z, Liu S, Rao S, Zou L, Wang S, Xue Y, Jia T, Zhao S, Shi L, Li L, Yuan H, Liang S. Resveratrol-decreased hyperalgesia mediated by the P2X 7 receptor in gp120-treated rats. Mol Pain 2018; 13:1744806917707667. [PMID: 28554250 PMCID: PMC5453631 DOI: 10.1177/1744806917707667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Chronic pain is a common symptom in human immunodeficiency virus (HIV)-1 infection/acquired immunodeficiency syndrome patients. The literature shows that the HIV envelope glycoprotein 120 (gp120) can directly cause hyperalgesia by stimulating primary sensory afferent nerves. The P2X7 receptor in the dorsal root ganglia (DRG) is closely related to neuropathic and inflammatory pain. In this study, we aimed to explore the effect of resveratrol (RES) on gp120-induced neuropathic pain that is mediated by the P2X7 receptor in the rat DRG. Results Mechanical hyperalgesia in rats treated with gp120 was increased compared with that in the sham group. The P2X7 expression levels in rats treated with gp120 were higher than those in the sham group. Co-localization of the P2X7 receptor and glial fibrillary acidic protein (GFAP, a marker of satellite glial cells [SGCs]) in the DRG SGCs of the gp120 group exhibited more intense staining than that of the sham group. RES decreased the mechanical hyperalgesia and P2X7 expression levels in gp120 treatment rats. Co-localization of the P2X7 receptor and GFAP in the gp120+ RES group was significantly decreased compared to the gp120 group. RES decreased the IL-1β and TNF-α receptor (R) expression levels and ERK1/2 phosphorylation levels as well as increased IL-10 expression in the DRG of gp120-treated rats. Whole cell clamping demonstrated that RES significantly inhibited adenosine triphosphate-activated currents in HEK293 cells that were transfected with the P2X7 plasmid. Conclusions RES relieved mechanical hyperalgesia in gp120-treated rats by inhibiting the P2X7 receptor.
Collapse
Affiliation(s)
- Bing Wu
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yucheng Ma
- 2 Queen Mary School, Medical College of Nanchang University Nanchang, Jiangxi, People's Republic of China
| | - Zhihua Yi
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shuangmei Liu
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shenqiang Rao
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Lifang Zou
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shouyu Wang
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yun Xue
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Tianyu Jia
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shanhong Zhao
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Liran Shi
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Lin Li
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Huilong Yuan
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shangdong Liang
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
4
|
Folbergrová J, Ješina P, Kubová H, Otáhal J. Effect of Resveratrol on Oxidative Stress and Mitochondrial Dysfunction in Immature Brain during Epileptogenesis. Mol Neurobiol 2018; 55:7512-7522. [PMID: 29427088 DOI: 10.1007/s12035-018-0924-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 01/04/2023]
Abstract
The presence of oxidative stress in immature brain has been demonstrated during the acute phase of status epilepticus (SE). The knowledge regarding the long periods of survival after SE is not unequivocal, lacking direct evidence. To examine the presence and time profile of oxidative stress, its functional effect on mitochondria and the influence of an antioxidant treatment in immature rats during epileptogenesis, status epilepticus (SE) was induced in immature 12-day-old rats by Li-pilocarpine and at selected periods of the epileptogenesis; rat pups were subjected to examinations. Hydroethidine method was employed for detection of superoxide anion (O2.-), 3-nitrotyrosine (3-NT), and 4-hydroxynonenal (4-HNE) for oxidative damage of mitochondrial proteins and complex I activity for mitochondrial function. Natural polyphenolic antioxidant resveratrol was given in two schemes: "acute treatment," i.p. administration 30 min before, 30 and 60 min after induction of SE and "full treatment" when applications continued once daily for seven consecutive days (25 mg/kg each dose). The obtained results clearly document that the period of epileptogenesis studied (up to 4 weeks) in immature brain is associated with the significant enhanced production of O2.-, the increased levels of 3-NT and 4-HNE and the persisting deficiency of complex I activity. Application of resveratrol either completely prevented or significantly reduced markers both of oxidative stress and mitochondrial dysfunction. The findings suggest that targeting oxidative stress in combination with current antiepileptic therapies may provide a benefit in the treatment of epilepsy.
Collapse
Affiliation(s)
- Jaroslava Folbergrová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Pavel Ješina
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Hana Kubová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Jakub Otáhal
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
5
|
Lazo-Gomez R, Tapia R. Quercetin prevents spinal motor neuron degeneration induced by chronic excitotoxic stimulus by a sirtuin 1-dependent mechanism. Transl Neurodegener 2017; 6:31. [PMID: 29201361 PMCID: PMC5697078 DOI: 10.1186/s40035-017-0102-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
Background Excitotoxicity is a mechanism of foremost importance in the selective motor neuron degeneration characteristic of motor neuron disorders. Effective therapeutic strategies are an unmet need for these disorders. Polyphenols, such as quercetin and resveratrol, are plant-derived compounds that activate sirtuins (SIRTs) and have shown promising results in some models of neuronal death, although their effects have been scarcely tested in models of motor neuron degeneration. Methods In this work we investigated the effects of quercetin and resveratrol in an in vivo model of excitotoxic motor neuron death induced by the chronic infusion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) into the rat spinal cord tissue. Quercetin and resveratrol were co-infused with AMPA and motor behavior and muscle strength were assessed daily for up to ten days. Then, animals were fixed and lumbar spinal cord tissue was analyzed by histological and immunocytological procedures. Results We found that the chronic infusion of AMPA [1 mM] caused a progressive motor neuron degeneration, accompanied by astrogliosis and microgliosis, and motor deficits and paralysis of the rear limbs. Quercetin infusion ameliorated AMPA-induced paralysis, rescued motor neurons, and prevented both astrogliosis and microgliosis, and these protective effects were prevented by EX527, a very selective SIRT1 inhibitor. In contrast, neither resveratrol nor EX527 alone improved motor behavior deficits or reduced motor neuron degeneration, albeit both reduced gliosis. Conclusions These results suggest that quercetin exerts its beneficial effects through a SIRT1-mediated mechanism, and thus SIRT1 plays an important role in excitotoxic neurodegeneration and therefore its pharmacological modulation might provide opportunities for therapy in motor neuron disorders. Electronic supplementary material The online version of this article (10.1186/s40035-017-0102-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafael Lazo-Gomez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| |
Collapse
|
6
|
Ethemoglu MS, Seker FB, Akkaya H, Kilic E, Aslan I, Erdogan CS, Yilmaz B. Anticonvulsant activity of resveratrol-loaded liposomes in vivo. Neuroscience 2017; 357:12-19. [PMID: 28577913 DOI: 10.1016/j.neuroscience.2017.05.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 12/25/2022]
Abstract
Resveratrol (3,5,4'-stilbenetriol), a natural polyphenol produced by various plants, has attracted attention over the past decade because of its multiple beneficial properties, including anti-inflammatory, anti-oxidant and chemopreventive, yet, there is limited information about its antiepileptic effects. Moreover, its poor solubility in water and low bioavailability are the challenging issues. In the present study, we aimed to investigate effects of free resveratrol and resveratrol delivered in amphipathic liposomal delivery system, which has a high blood-brain barrier crossing potential, on penicillin-induced epileptic seizure model. For this purpose, adult male Sprague-Dawley rats were divided into four groups as saline (Control), liposome (LIP), free resveratrol (RES) and resveratrol+liposome (RES+LIP). Penicillin-induced epileptic activity was recorded for 120 min by electrocorticography. Glutathione S-transferase (GST), Glutathione (GSH), Superoxide dismutase (SOD) and Malondialdehyde (MDA) assays were performed in brain tissues collected. Our results showed that RES+LIP was the most effective anticonvulsant treatment on penicillin-induced epileptic seizures when compared to control, as RES+LIP immediately decreased the number of spikes per minute. GST and SOD activity, as well as the GSH levels, were significantly increased in the RES+LIP group as compared with the control group. Also, the MDA levels were significantly higher in the RES+LIP compared to RES and control groups. In conclusion, RES+LIP treatment was more effective on the decrease in spike frequency and spike amplitudes than other treatments. Our results suggest that the RES+LIP is more effective than RES on penicillin-induced epileptiform activity.
Collapse
Affiliation(s)
- M S Ethemoglu
- Yeditepe University, Medical School, Department of Physiology, Ataşehir, İstanbul, Turkey
| | - F B Seker
- Yeditepe University, Medical School, Department of Physiology, Ataşehir, İstanbul, Turkey
| | - H Akkaya
- Yeditepe University, Experimental Research Center, Ataşehir, İstanbul, Turkey
| | - E Kilic
- Istanbul Medipol University, Department of Physiology, Istanbul, Turkey
| | - I Aslan
- Yeditepe University, Faculty of Pharmacy, Ataşehir, İstanbul, Turkey
| | - C S Erdogan
- Yeditepe University, Medical School, Department of Physiology, Ataşehir, İstanbul, Turkey
| | - B Yilmaz
- Yeditepe University, Medical School, Department of Physiology, Ataşehir, İstanbul, Turkey.
| |
Collapse
|
7
|
Li Z, You Z, Li M, Pang L, Cheng J, Wang L. Protective Effect of Resveratrol on the Brain in a Rat Model of Epilepsy. Neurosci Bull 2017; 33:273-280. [PMID: 28161868 PMCID: PMC5567521 DOI: 10.1007/s12264-017-0097-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/15/2016] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence has suggested resveratrol as a promising drug candidate for the treatment of epilepsy. To validate this, we tested the protective effect of resveratrol on a kainic acid (KA)-induced epilepsy model in rats and investigated the underlying mechanism. We found that acute resveratrol application partially inhibited evoked epileptiform discharges in the hippocampal CA1 region. During acute, silent and chronic phases of epilepsy, the expression of hippocampal kainate glutamate receptor (GluK2) and the GABAA receptor alpha1 subunit (GABAAR-alpha1) was up-regulated and down-regulated, respectively. Resveratrol reversed these effects and induced an antiepileptic effect. Furthermore, in the chronic phase, resveratrol treatment inhibited the KA-induced increased glutamate/GABA ratio in the hippocampus. The antiepileptic effects of resveratrol may be partially attributed to the reduction of glutamate-induced excitotoxicity and the enhancement in GABAergic inhibition.
Collapse
MESH Headings
- Animals
- Anticonvulsants/administration & dosage
- Anticonvulsants/pharmacology
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/physiopathology
- Disease Models, Animal
- Down-Regulation
- Epilepsy, Temporal Lobe/chemically induced
- Epilepsy, Temporal Lobe/drug therapy
- Epilepsy, Temporal Lobe/metabolism
- Excitatory Amino Acid Agonists/pharmacology
- Glutamic Acid/drug effects
- Kainic Acid/pharmacology
- Male
- Neuroprotective Agents/administration & dosage
- Neuroprotective Agents/pharmacology
- Rats
- Rats, Wistar
- Receptors, GABA-A/drug effects
- Receptors, Kainic Acid/drug effects
- Resveratrol
- Stilbenes/administration & dosage
- Stilbenes/pharmacology
- Up-Regulation
- gamma-Aminobutyric Acid/drug effects
- GluK2 Kainate Receptor
Collapse
Affiliation(s)
- Zhen Li
- Department of Pharmacology, Anhui Medical University, Hefei, 230032, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhuyan You
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Min Li
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Liang Pang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Juan Cheng
- Department of Pharmacology, Anhui Medical University, Hefei, 230032, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Liecheng Wang
- Department of Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
8
|
Mishra V, Shuai B, Kodali M, Shetty GA, Hattiangady B, Rao X, Shetty AK. Resveratrol Treatment after Status Epilepticus Restrains Neurodegeneration and Abnormal Neurogenesis with Suppression of Oxidative Stress and Inflammation. Sci Rep 2015; 5:17807. [PMID: 26639668 PMCID: PMC4671086 DOI: 10.1038/srep17807] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/06/2015] [Indexed: 12/18/2022] Open
Abstract
Antiepileptic drug therapy, though beneficial for restraining seizures, cannot thwart status epilepticus (SE) induced neurodegeneration or down-stream detrimental changes. We investigated the efficacy of resveratrol (RESV) for preventing SE-induced neurodegeneration, abnormal neurogenesis, oxidative stress and inflammation in the hippocampus. We induced SE in young rats and treated with either vehicle or RESV, commencing an hour after SE induction and continuing every hour for three-hours on SE day and twice daily thereafter for 3 days. Seizures were terminated in both groups two-hours after SE with a diazepam injection. In contrast to the vehicle-treated group, the hippocampus of animals receiving RESV during and after SE presented no loss of glutamatergic neurons in hippocampal cell layers, diminished loss of inhibitory interneurons expressing parvalbumin, somatostatin and neuropeptide Y in the dentate gyrus, reduced aberrant neurogenesis with preservation of reelin + interneurons, lowered concentration of oxidative stress byproduct malondialdehyde and pro-inflammatory cytokine tumor necrosis factor-alpha, normalized expression of oxidative stress responsive genes and diminished numbers of activated microglia. Thus, 4 days of RESV treatment after SE is efficacious for thwarting glutamatergic neuron degeneration, alleviating interneuron loss and abnormal neurogenesis, and suppressing oxidative stress and inflammation. These results have implications for restraining SE-induced chronic temporal lobe epilepsy.
Collapse
Affiliation(s)
- Vikas Mishra
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - Geetha A. Shetty
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| |
Collapse
|
9
|
The role and potential mechanism of resveratrol in the prevention and control of epilepsy. Future Med Chem 2015; 7:2005-18. [PMID: 26505553 DOI: 10.4155/fmc.15.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epilepsy is one of the most common diseases affecting the nervous system, with more than 50 million patients suffering from epilepsy worldwide. Although epilepsy has been prevalent for thousands of years, it is still not possible to completely control the disease. Despite an increase in the number of available antiepileptic drugs, the incidence of epilepsy and its cure rate have not been substantially improved; thus, there is an urgent need to identify new drugs that treat, cure or protect against epilepsy. Resveratrol is a polyphenol compound with a broad range of biological activity; not only it has considerable antiepileptic effects, but it is also neuroprotective and has functions to counter epileptic depression. Resveratrol has the potential to be a new antiepileptic drug, thus further studies are needed to better investigate its potential.
Collapse
|
10
|
Park EJ, Pezzuto JM. The pharmacology of resveratrol in animals and humans. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1071-113. [PMID: 25652123 DOI: 10.1016/j.bbadis.2015.01.014] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 01/01/2015] [Accepted: 01/21/2015] [Indexed: 12/12/2022]
Abstract
In addition to thousands of research papers related to resveratrol (RSV), approximately 300 review articles have been published. Earlier research tended to focus on pharmacological activities of RSV related to cardiovascular systems, inflammation, and carcinogenesis/cancer development. More recently, the horizon has been broadened by exploring the potential effect of RSV on the aging process, diabetes, neurological dysfunction, etc. Herein, we primarily focus on the in vivo pharmacological effects of RSV reported over the past 5 years (2009-2014). In addition, recent clinical intervention studies performed with resveratrol are summarized. Some discrepancies exist between in vivo studies with animals and clinical studies, or between clinical studies, which are likely due to disparate doses of RSV, experimental settings, and subject variation. Nevertheless, many positive indications have been reported with mammals, so it is reasonable to advocate for the conduct of more definitive clinical studies. Since the safety profile is pristine, an added advantage is the use of RSV as a dietary supplement. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes.
Collapse
Affiliation(s)
- Eun-Jung Park
- The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI 96720, USA
| | - John M Pezzuto
- The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI 96720, USA.
| |
Collapse
|
11
|
Kaminski RM, Rogawski MA, Klitgaard H. The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments. Neurotherapeutics 2014; 11:385-400. [PMID: 24671870 PMCID: PMC3996125 DOI: 10.1007/s13311-014-0266-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A major goal of contemporary epilepsy research is the identification of therapies to prevent the development of recurrent seizures in individuals at risk, including those with brain injuries, infections, or neoplasms; status epilepticus; cortical dysplasias; or genetic epilepsy susceptibility. In this review we consider the evidence largely from preclinical models for the antiepileptogenic activity of a diverse range of potential therapies, including some marketed antiseizure drugs, as well as agents that act by immune and inflammatory mechanisms; reduction of oxidative stress; activation of the mammalian target of rapamycin or peroxisome proliferator-activated receptors γ pathways; effects on factors related to thrombolysis, hematopoesis, and angiogenesis; inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reducatase; brain-derived neurotrophic factor signaling; and blockade of α2 adrenergic and cannabinoid receptors. Antiepileptogenesis refers to a therapy of which the beneficial action is to reduce seizure frequency or severity outlasting the treatment period. To date, clinical trials have failed to demonstrate that antiseizure drugs have such disease-modifying activity. However, studies in animal models with levetiracetam and ethosuximide are encouraging, and clinical trials with these agents are warranted. Other promising strategies are inhibition of interleukin 1β signaling by drugs such as VX-765; modulation of sphingosine 1-phosphate signaling by drugs such as fingolimod; activation of the mammalian target of rapamycin by drugs such as rapamycin; the hormone erythropoietin; and, paradoxically, drugs such as the α2 adrenergic receptor antagonist atipamezole and the CB1 cannabinoid antagonist SR141716A (rimonabant) with proexcitatory activity. These approaches could lead to a new paradigm in epilepsy drug therapy where treatment for a limited period prevents the occurrence of spontaneous seizures, thus avoiding lifelong commitment to symptomatic treatment.
Collapse
Affiliation(s)
| | - Michael A. Rogawski
- />Department of Neurology, University of California, Davis School of Medicine, Sacramento, CA USA
| | | |
Collapse
|
12
|
Meng XJ, Wang F, Li CK. Resveratrol is Neuroprotective and Improves Cognition in Pentylenetetrazole-kindling Model of Epilepsy in Rats. Indian J Pharm Sci 2014; 76:125-31. [PMID: 24843185 PMCID: PMC4023281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 01/19/2014] [Accepted: 01/25/2014] [Indexed: 12/03/2022] Open
Abstract
S100B protein in serum and cerebral spinal fluid is increasingly used as a biochemical marker in early examinations after seizure to assess brain damage. Resveratrol, a nonflavonoid polyphenol, has been identified as a potent antiepileptic agent. However, a potential association between epilepsy with S100B protein in the cerebral spinal fluid and the sera of animal models lacks investigation. In this study, we evaluated the effects of resveratrol on behaviour and S100B protein levels in cerebral spinal fluid and serum in a rat model of chronic epilepsy induced via pentylenetetrazole kindling. By Morris water maze experiment analysis, we found that recovery of cognitive function in the resveratrol group (15 mg/kg/day), was significantly better than that of either the untreated or the vehicle groups. Further Nissl staining revealed that resveratrol significantly reduced pentylenetetrazole-induced death of neurons in the CA1 and CA3 regions of the hippocampus. Moreover, S100B protein levels in the cerebral spinal fluid and serum of rats treated with resveratrol were significantly reduced compared with the untreated and vehicle groups. These novel findings suggest an important mechanism of resveratrol and contribute to the treatment of epilepsy.
Collapse
Affiliation(s)
- X. J. Meng
- Department of Neurosurgery, School of Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - F. Wang
- Department of Neurosurgery, School of Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - C. K. Li
- Department of Neurosurgery, School of Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
13
|
Halbsgut LR, Fahim E, Kapoor K, Hong H, Friedman LK. Certain secondary antiepileptic drugs can rescue hippocampal injury following a critical growth period despite poor anticonvulsant activity and cognitive deficits. Epilepsy Behav 2013; 29:466-77. [PMID: 24103817 DOI: 10.1016/j.yebeh.2013.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 12/23/2022]
Abstract
Clinical and experimental studies have shown that many common secondary antiepileptic drugs (AEDs) are ineffective at blocking seizures in adulthood; however, some afford neuroprotection. In early development, certain AEDs cause apoptosis; however, it is unknown whether these drugs are neurotoxic to the juvenile brain following a developmentally regulated proapoptotic period and whether they alter the seizure threshold, seizure-induced neuronal vulnerability, and/or cognitive function. Lamotrigine (LTG), carbamazepine (CBZ), phenytoin (PHT), valproate (VPA), and topiramate (TPM) were systemically administered to rat pups for 7days beginning on postnatal (P) day 14 (P14), then half the animals were injected with kainate (KA) to trigger seizures, an age when the CA1 subregion becomes preferentially sensitive to status epilepticus. Histological outcome, seizure severity, and learning and memory were determined with an electroencephalograph (EEG), silver impregnation, and a water-maze swim task. None of the AEDs tested significantly attenuated behavioral or electrographic seizures. Phenytoin increased mortality, identifying a detrimental side effect of this drug. The other drugs (LTG, VPA, TPM, and CBZ) afforded different amounts of protection to the CA1 subregion but not to the CA3 subregion or extrahippocampal structures. With the exception of VPA, AED-treated animals lagged behind during swim task acquisition. All groups improved in the water-maze swim task over time, particularly on the last trials; however, the average escape latency was still impaired for TPM-treated animals and all AED+KA-treated groups. Thus, while certain AEDs demonstrated some neuroprotective effects, poor antiepileptic activity, memory impairment, and other deleterious side effects were observed with these drugs suggesting that the search for potentially more effective and tolerated agents is essential for improving clinical outcome in children and adolescents with epilepsy.
Collapse
|